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La physique statistique a pour objet d’expliquer le comportement et I’évolution de systémes macro-
scopiques sans se soucier des détails de la dynamique. Pour illustrer ceci, commencgons par un petit exemple.

2.1 Exemple : N spins indépendants

Soit un systéeme composé de N particules ayant chacune une aimantation pouvant étre dirigée soit vers le
haut, soit vers le bas.
On considere :

e N particules, avec i =1,..., N

e S; = +1 pour décrire 'aimantation de la particule 7.

Soit la dynamique de ce systéeme décrite comme suit : apres un temps %, I’une des particules change de
direction avec une probabilité p.

Du point de vue macroscopique, on ne s’intéresse qu’a la valeur moyenne de ces spins. En effet, si toutes
les particules ont leur aimantation orientée dans le méme sens, aimantation du systéme sera grande. A
I'inverse, si la moitié des particules ont leur aimantation orientée vers le haut et 'autre moitié vers le bas, le
systeme n’aura pas d’aimantation, peu importe I’aimantation individuelle de chaque particule.

Definition 2.1 Un micro-état est la spécification détaillée d’une configuration microscopique d’un
systéeme.

Dans cet exemple, on compte 2V micro-états :

{£1,41,...,+1}

Pour un systeme réel, N peut étre tres grand. C’est pourquoi on ne s’intéresse qu’au macro-état du
systeme, qui dans cet exemple est 'aimantation moyenne. Celle-ci est caractérisée par :

Exemple pour N = 3 :
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Micro-état | Aimantation totale | Aimantation moyenne

+++ 3 1

++- 1 1/3
+—+ 1 1/3
+—— -1 -1/3
— 4+ 4+ 1 1/3
— - 1 -1/3
I -1 -1/3
-—= -3 -1

Table 2.1: Micro-états, aimantation totale et moyenne pour N = 3

On compte 4 macro-états : m € {1,1/3,—-1/3, —1}.

A chaque micro-état, on peut associer un macro-état. On note Qn (Mmacro-état) le nombre de micro-états
correspondants.

On a ici :

Q1) =1, u(1/3)=3, Qu(-1/3)=3, Qu(~1)=

Equation Maitresse (Master Equation) Afin d’approfondir ’étude d’un tel systéme et de sa dynamique
au cours du temps, nous allons exprimer ’évolution du systeme a partir d’une équation différentielle utilisant
les probabilités de transition, décrites dans la partie précédente. Une telle expression se nomme l’équation
maitresse. On part donc de la définition suivante, de la probabilité P,y (m) de I'état m au temps t+1/N:

Pryyn(m) = Pi(m) - (1—p) +p [Pt (m n ;) w 4P (m _ ;) H”;Q/N} L@

Le premier terme correspond au cas dans lequel le systéeme se trouve déja a ’état m au temps ¢ et aucune
des particules ne se retourne, donc la probabilité c’est juste le produit entre la probabilité d’étre déja a 1’état
m, P,(m), et la probabilité que il y & pas des retournement, 1 — p. Les autres deux termes correspondent
respectivement au cas d’un retournement de particule vers le bas et vers le haut. Chaque terme est le produit
de trois termes : La probabilité d’étre dans un certain état & l'instant ¢, la probabilité de retournement d’une
particule, p/N, et le nombre de particules possibles qui se peuvent retourner.

Il est ensuite possible d’exprimer la valeur moyenne (m);1,nx au temps ¢+ 1/N en utilisant la définition
probabiliste de l'espérance, et en y injectant ’eq.(2.1). On obtient ainsi:
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(myessyn = [ dm - mPrs () (2.2)
—(1=p) [ mP(m)dm+ (2.3)
—&-p/dm-m[M;—MVPt (m+§.>+1_m;2/NPt (m—;ﬂ (2.4)
= (L= p)(m)i+ (2.5)

+p/da:1 (1 +2x1> (ml - 12v> Py(1) —|—p/dx2 (1 2“72) <x2 + ;) P, (x2) (2.6)

mQt m2t
—-pmetp (-5 ) o - 24 0 (Do DY 228 o)

= (m)¢ — ﬁ(m% (2.8)

ol on a utilisé la linéarité de I'intégrale dans la deuxieme ligne, puis les changements de variable 1 = m+ %
et xo =m — % (et qui préservent les bornes d’intégration) dans la troisieme ligne.

Une relation de proportionnalité peut étre notée pour I’état moyen m entre les temps ¢ et t—l—% aleq.(2.8).
Cette équation, une fois réarrangée, peut étre écrite sous la forme d’une équation différentielle pour la limite
N —o00:

(ehosa o = (s = 2oy e TR, (29)

Et en prenant la limite lorsque N tends vers l'infini:

We — —2p(m), (2.10)

Une telle équation différentielle est caractéristique d’une décroissance exponentielle dont la solution générale
est de la forme :

(m)y = moe V7 (2.11)
avec 7 = 1/2p la constante de décroissance [1]. De fagon similaire, on peut déterminer une expression de la
variance de m au temps t, A1y = (M08 — <m>f+1/N. Le deuxiéme terme est obtenu par 1’eq.(2.8).
Pour le premier, il vient :

)1y = [ dm e Pryyom) (2.12)
=(1 —p)/m2 - Py(m)dm+ (2.13)
+p/dm.m2 [M;Qm.a(mjué)jul_’”;wv.a(m—fv)} (2.14)
= (1 —p)(m?)s+ (2.15)
+p/d:1:1 (1 *25”1> (:cl - ;)23(3;1) +p/dx2 (1 2352) (xQ + ;)23(@) (2.16)
= (1= )+ 3 (217

On a utilisé les mémes changements de variable que dans 1’eq.(2.8). Par des manipulations simples, on
obtient une équation similaire a ’eq.(2.9):
4p) 4p At+% -4y 4p

Biry =Dl = )+ 3 elmi +1) & —E e < —apA - Lo +1). (218)
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Et en reprenant la limite quant N tend vers I'infini:

dA,

o= —ApA; & Ay = ANge 2T, (2.19)

Au final, on trouve que la valeur moyenne et la variance de m sont
(m)e = moe™ "7, Ay = Nge /7. (2.20)
Or on remarque que a t = 0, (m);—g = mg, donc A;—o = 0, et donc que A; = 0 Vt. Alors, cela implique que
Py(m) = 8(m — (m),). (2.21)

Ce qui veut dire qu’a tout moment, le macro-état du systéme est compleétement déterministe et vaut (m);.
Il n’y a plus de notion d’aléatoire. La dynamique peut alors étre décrite seulement par le macro-état du
systeme, et comme ce macro-état est déterministe, on sait exactement comment se comporte le systeme.
Apres un temps tres grand, (m) vaut 0, et I’équilibre est atteint (c’est-a-dire que le macro-état ne change
plus).

En physique statistique, on espere alors pouvoir utiliser cette approche pour tous les systemes, c’est-a-
dire avoir une description du systeme seulement en fonction de son macro-état, en oubliant le détail des
micro-états. La question est alors de savoir comment obtenir cette description sans faire de calculs (ici, le
systeme était relativement simple, mais on pourrait penser a rajouter des interactions entre les particules,
des mouvements de celles-ci, ce qui compliquerait énormément les calculs).

Une premiere solution est d’étudier le systeme a temps grand, c’est-a-dire proche de 1’équilibre, ce qui évite
de s’intéresser aux détails de la dynamique.

Systéme a temps long (¢t >> 7) Afin de savoir pourquoi cette valeur moyenne est toujours nulle pour
des temps longs (i.e quand ¢t >> 7), une supposition va étre faite :

Proposition 2.2 (Hypothése d’ergodicité uniforme)
A temps long, la dynamique est ergodique et uniforme. Cela veut dire que le systéme visite tous les micro-états
possibles avec la méme probabilité. En somme, aucun micro-état n’est plus probable qu’un autre.

La probabilité d’étre dans un macro-état m dépend de Qn (Mmacro-stat)-

Proposition 2.3 Pour un N assez grand, nous avons que

O (m) = e NI log(55)+ 257 log(55)] (2.22)

Cela nous ameéne donc a dire que

1 1
~logQn(m) = H <J;m) (2.23)
ot H(z) = —xzlogz — (1 — x)log(1 — x) est la fonction d’entropie binaire.

Apres avoir fait ces suppositions, nous allons introduire un objet fondamental en physique statistique:
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Definition 2.4 (Entropie micro-canonique (ou de Boltzmann)) L’entropie associé au macro-état “m”
est donnée par :
S(m) = kplog Qn(m) (2.24)

La constante de Boltzmann kz = 1.38110723J. K ! a été ajoutée afin de pouvoir interpréter cet objet
comme étant Uentropie définie en thermodynamique (avec la bonne dimension physique), car elle
donne la "bonne” échelle de température. Les mathématiciens préferent souvent utiliser le logarithme
naturel, sans la constante, comme dans la proposition 2.3. En informatique, on utilise par contre le
logarithme en base 2 (on pense en bit 0/1). Toutes ces définitions sont équivalentes a une constante
multiplicative pres!

Il est intéressant de travailler avec un nouvel objet quand N est assez grand.

Definition 2.5 (Densité d’entropie)

s(m) = %kB log Qn(m) (2.25)

Nous avons que S(m) o« N, ce qui veut dire que I’entropie de Bolzamn est “extensive”. A linverse, la
densité d’entropie s(m) est dite “intensive” car elle possede une limite quand N — oo.

Maintenant, une question se pose: quelle est I’évolution du systéme avec le temps?
On a vu que, peu importe le temps de départ, 'expression (2.20) pour (m); montre une décroissance au fil
du temps. En ce qui concerne la densité d’entropie de Boltzmann (2.5), celle-ci a la forme suivante:

0.5

-1 ~05 ! 05 1

Figure 2.1: Densité d’entropie s(m)/kp en fonction de la valeur moyenne m.

Comme m décroit au fil du temps, on remarque donc que, peu importe le macro-état initial my, le systeme
va évoluer vers une configuration qui maximise la densité d’entropie. Ceci indique que I’entropie augmente
avec le temps, c’est-a-dire :

25 >0 (2.26)
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Ce raisonnement n’est pas seulement valable dans ce systeme en particulier, mais c’est une trivialité physique:
si les micro-états sont équiprobables et la dynamique du systeme touche tous les micro-états au fil du temps,
le systeme va strement se retrouver dans le macro-état avec le plus de micro-états possibles. L’entropie qui
n’est autre que le logarithme du comptage du nombre de micro-états correspondants va donc augmenter au
cours du temps. Le génie de Boltzmann réside donc dans I’explication du concept d’entropie de Clausius,
mesurant le “désordre” et l'irréversibilité dans les processus thermodynamiques, comme ’augmentation avec
le temps du nombre de micro-états correspondants a I’état du systeme.

Résolution avec les grandes déviations Il est tres important de remarquer que le systéeme présenté ici
peut aussi étre compris avec le formalisme des grandes déviations présenté au chapitre précédent.

Tout d’abord, en supposant la dynamique de notre systéme comme uniforme, on peut imaginer que
nos particules se retrouvent dans la boite s = +1 ou s = —1 avec une probabilité de 1/2. Ensuite, pour
calculer 'entropie du systéme on peut se demander quelle serait la probabilité d’observer empiriquement
une probabilité avec valeur moyenne m différente de 1/2. Celle-ci serait donc une loi de probabilité de type
{m}={P(s =+1) = (1 +m)/2, P(s = —1) = (1 —m)/2}. Le théoréme de Sanov (cf. Cours 1) nous donne
une réponse:

P({m}) = e NPrrlimh0), (2.27)

ou U est la loi uniforme avec P(s =1) = P(s = —1) = 1/2. En développant '’exposant on obtient:
P({m})=<e N Sl miln(mi/(1/2)) _ =N 7_, msIn(mi) =37, miIn(1/2) (2.28)
— o NI miln(mi)=In(1/2)  [NH({m}) (2.29)

On en déduit qu’il est exponentiellement rare d’observer une moyenne de magnétisation qui n’est pas celle
plus probable. La probabilité de trouver une distribution différente devient donc extrémement piquée vers 0
lorsque N diverge et, comme le systéme va tendre a se stabiliser & m = 0, ’entropie (voir Fig. 2.1) va étre
a nouveau maximisée.

2.2 Formalisme d’Hamilton et Espace des Phases

Afin de généraliser la démarche précédente a un systéme de N particules ayant des interactions quelconques,
on peut utiliser le formalisme d’Hamilton. Un systeme physique de N particules en D dimensions peut étre
modélisé par les coordonnées généralisées {¢; € RP,i =1,2,..., N} et impulsions généralisées {p; € R, i =
1,2,..., N} de chacune des particules. En physique classique les interactions sont décrites par les équations
de Lagrange,

pi = g(p') _ o
d 9g; (2.30)

)

Pi= e

Definition 2.6 On appelle H Uhamiltonien du systéme, qui, pour un systéme composé d’un potentiel
indépendant des vitesses représente l’énergie totale du systeme.

En performant une transformée de Legendre ([2]) sur les eq.(2.30) on obtient les équations d’Hamilton,
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N
pi__aqiv
. 0H
qiioh'pi'

(2.31)

® On obtient ainsi des équations du mouvement symétriques & un signe pres.

Proof 1 On peut facilement vérifier que ces équations sont équivalentes a celles de Newton. Prenons par
exemple, un systeme composé d’une particule de masse m, soumise a un potentiel V(q) avec une quantité
de mouvement p, ’hamiltonien du systéme est donc donné par,

=Y 1v() (2.32)

2m

En injectant cet hamiltonien dans les équations d’Hamilton eq. 2.31 on obtient alors,

. p . . =3
¢=—, p=mj= -V V(a), (2.33)

On retrouve ainsi les équations du mouvement du formalisme de Newton.

La symétrie des équations d’Hamilton permet de représenter la dynamique de I’ensemble du systeme
comme un seul objet Z € RZPN pour un systeme de N particules en D dimensions.

Definition 2.7 (Espace de phases) On appelle cet espace ¢ 2- D - N dimensions représentant la dy-
namique du systéeme [’Espace de phases et on écrit un vecteur de cet espace,

q1
X = X tel que q;,p; € RY (2.34)
Py
Proposition 2.8 L’équation d’évolution dans cet espace est donnée par :

ix  OH (0 1y
i JE tel que J = (_1N 0 > (2.35)

Ainsi on peut voir notre systeme de multiples particules comme un seul point dans I’espace de phases
dont la dynamique est simplement décrite par une équation d’Hamilton. La question que I'on peut se poser
c’est pourquoi utiliser un tel espace ? On peut justifier son utilisation de deux fagons :

1. Mécanique quantique : L’un des principes fondamentaux de la mécanique quantique est le principe
d’incertitude d’Heisenberg. En mécanique quantique, la mesure d’un observable se fait toujours avec une
certaine probabilité et donc une certaine incertitude. Disons que ’on veut mesurer la position = et 'impulsion
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p d’'une méme particule, chacun avec une incertitude respectivement de Az et Ap. Si on cherche a connaitre
simultanément ces 2 quantités, on ne peut pas dépasser une certaine précision dans la mesure, donnée par :

AzAp > Z (2.36)

Autrement dit, si 'on veut connaitre la position exacte d'une particule avec une précision infinie, c’est-a-
dire Az = ¢ < h/2, alors on perd toute U'information qu’on a sur la mesure de p car son incertitude devient
tres grande Ap > h/2Axz > 1. Pour revenir a l'espace des phases, cette limite fondamentale permet de
discrétiser ’espace des phases par de petits carrés de volume proche de cette limite fondamentale, h, ce qui
s’avere étre tres utile quand il s’agit de compter les micro-états associés a un macro-état car cela revient a
compter des hypercubes dans l’espace des phases (Fig.2.2).

D

4

O

Figure 2.2: Discrétisation de ’espace des phases pour une particule unidimensionnelle.

2. Hypothése Ergodique : La deuxiéme raison pour laquelle on utilise cet espace est que 'hypothese
ergodique est valable dans ce dernier, ce qui n’est pas forcément le cas d’autres espaces. Comme le stipule
la Prop.2.2, la physique statistique est fondée sur cette hypotheése. On va effectivement supposer qu’a temps
long, la dynamique étudiée sera équiprobablement distribuée entre tous les états. Par exemple, supposons
le cas d’un systeme de N particules identiques, a énergie constante, dont on peut écrire I’Hamiltonien :

N 2
H({aks e = 30 g + Vi) = B (2:37)

L’hypothése ergodique nous garantit que tous les états x définis comme a 1'eq.(2.34), et qui satisfont la
contrainte H(x,t) = E sont tous équiprobables & temps long. La validité de cette hypotheése nous vient d’un
théoreme bien plus général sur ’espace des phases :

Théoréme de Liouville

Proposition 2.9 Considérons la densité de probabilité p d’avoir des points en T au temps t dans [’espace

des phases :
p(t, (1)) = p(t, {G (&)}, {pi(t)}). (2.38)

Le théoréme de Liouuville affirme que
d
—p(t,Z(t)) = 0. 2.39
< p(1,7(1) (239
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Proof 2 Afin de prouver cela, explicitons la dérivée temporelle de la densité de probabilité :

Ay 92 N~ (D0 O
plt, F(t)) = aﬁZ(aq it i) (2:40)

avec N le nombre de particules. La conservation des lois de probabilité est valable et nous permet d’écrire

dp
E+V( pZ) =0, (2.41)

qui représente l’équation de conservation dans l’espace des phases. L’intégration de cette équation sur un
volume nous montre la variation, sur ce volume, de la densité de probabilité.
En dérivant les différents termes :

o= G S (g ) = oS (G )+ 0B ).

Afin de prouver le théoréme de Liouville, il nous suffira de montrer que le dernier terme de l’équation
précédente est nul.

Les équations d’Hamilton, qui ont été énoncées précédemment, permettent d’écrire :
N N
aq;  Op; 0*H 0*H
> o(32+22) =Y o3 - )=o. (2.43)
" \dq; Opi/ =" \0qidp; Opidq;

Nous avons ainsi montré que %p(t,f(t)) = 0, ce qui conclut la preuve et permet de remarquer que le
théoreme de Liouville est une conséquence des équations de conservation.

Une deuxieme fagon d’énoncer le théoreme de Liouville est :

dp ~~(OpOH 9pdH\ 9p
o HY = 44
ot 2 (569 ~ Gps60) ~ 3 * (P HY =0 (244)

Avec {p, H} le crochet de Poisson, pouvant étre défini comme :

0A0OB 0A0OB
4,5} = Z (3%' Opi  Op; aqi). (2.45)

Le théoreme de Liouville permet donc de savoir ce qu’il se passe dans l’espace des phases, car il énonce
I’évolution d’un systeme physique, de maniére analogue au formalisme d’Hamilton ou de Newton.

En physique quantique, le crochet de Poisson sera remplacé par le commutateur.

En admettant que la densité de probabilité est une fonction ne dépendant que de ’énergie :

pe(t, %) = fi(H(Z)), (2.46)

il en suit que le crochet de Poisson est nul. Or, une densité physique qui ne dépend que de I'énergie est
constante. A énergie fixée, la densité sera ainsi a 1’équilibre et n’évoluera pas dans le temps.

En conclusion, supposer l'ergodicité dans 'espace des phases en appliquant le principe de Boltzmann est
mathématiquement cohérent avec le théoreme de Liouville.

Attention cependant, le théoréeme de Liouville n’implique PAS l'ergodite! Demontrer I'ergodicte a partir
des équations de Newton reste un probleme ouvert en physique mathematique en general.



2-10 Lecture 2: Principes fondamentaux: Micro & Macro-états, et Ergodjcjté

References

[1] Décroissance exponentielle, Wikipédia- https://fr.wikipedia.org/wiki/DC3%A9croissance_
exponentielle Consulté le 21.09.24

[2] F. Mila et P. De Los Rios, Mécanique Analytique, (2006-2007)


https://fr.wikipedia.org/wiki/D%C3%A9croissance_exponentielle
https://fr.wikipedia.org/wiki/D%C3%A9croissance_exponentielle

