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La physique statistique a pour objet d’expliquer le comportement et l’évolution de systèmes macro-
scopiques sans se soucier des détails de la dynamique. Pour illustrer ceci, commençons par un petit exemple.

2.1 Exemple : N spins indépendants

Soit un système composé de N particules ayant chacune une aimantation pouvant être dirigée soit vers le
haut, soit vers le bas.
On considère :

• N particules, avec i = 1, . . . , N

• Si = ±1 pour décrire l’aimantation de la particule i.

Soit la dynamique de ce système décrite comme suit : après un temps 1
N , l’une des particules change de

direction avec une probabilité p.

Du point de vue macroscopique, on ne s’intéresse qu’à la valeur moyenne de ces spins. En effet, si toutes
les particules ont leur aimantation orientée dans le même sens, l’aimantation du système sera grande. À
l’inverse, si la moitié des particules ont leur aimantation orientée vers le haut et l’autre moitié vers le bas, le
système n’aura pas d’aimantation, peu importe l’aimantation individuelle de chaque particule.

Definition 2.1 Un micro-état est la spécification détaillée d’une configuration microscopique d’un
système.

Dans cet exemple, on compte 2N micro-états :

{±1,±1, . . . ,±1}

Pour un système réel, N peut être très grand. C’est pourquoi on ne s’intéresse qu’au macro-état du
système, qui dans cet exemple est l’aimantation moyenne. Celle-ci est caractérisée par :

m =
1

N

∑
i

Si

Exemple pour N = 3 :

2-1
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Micro-état Aimantation totale Aimantation moyenne
+++ 3 1
+ +− 1 1/3
+−+ 1 1/3
+−− -1 -1/3
−++ 1 1/3
−+− -1 -1/3
−−+ -1 -1/3
−−− -3 -1

Table 2.1: Micro-états, aimantation totale et moyenne pour N = 3

On compte 4 macro-états : m ∈ {1, 1/3,−1/3,−1}.

À chaque micro-état, on peut associer un macro-état. On note ΩN (mmacro-état) le nombre de micro-états
correspondants.

On a ici :

Ω3(1) = 1, Ω3(1/3) = 3, Ω3(−1/3) = 3, Ω3(−1) = 1

Équation Mâıtresse (Master Equation) Afin d’approfondir l’étude d’un tel système et de sa dynamique
au cours du temps, nous allons exprimer l’évolution du système à partir d’une équation différentielle utilisant
les probabilités de transition, décrites dans la partie précédente. Une telle expression se nomme l’équation
mâıtresse. On part donc de la définition suivante, de la probabilité Pt+1/N (m) de l’état m au temps t+1/N :

Pt+1/N (m) = Pt(m) · (1− p) + p

[
Pt

(
m+

2

N

)
1 +m+ 2/N

2
+ Pt

(
m− 2

N

)
1−m+ 2/N

2

]
. (2.1)

Le premier terme correspond au cas dans lequel le système se trouve déjà à l’état m au temps t et aucune
des particules ne se retourne, donc la probabilité c’est juste le produit entre la probabilité d’être déjà à l’état
m, Pt(m), et la probabilité que il y à pas des retournement, 1 − p. Les autres deux termes correspondent
respectivement au cas d’un retournement de particule vers le bas et vers le haut. Chaque terme est le produit
de trois termes : La probabilité d’être dans un certain état à l’instant t, la probabilité de retournement d’une
particule, p/N , et le nombre de particules possibles qui se peuvent retourner.

Il est ensuite possible d’exprimer la valeur moyenne ⟨m⟩t+1/N au temps t+1/N en utilisant la définition
probabiliste de l’espérance, et en y injectant l’eq.(2.1). On obtient ainsi:
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⟨m⟩t+1/N =

∫
dm ·mPt+1/N (m) (2.2)

= (1− p)

∫
mPt(m)dm+ (2.3)

+ p

∫
dm ·m

[
1 +m+ 2/N

2
Pt

(
m+

2

N

)
+

1−m+ 2/N

2
Pt

(
m− 2

N

)]
(2.4)

= (1− p)⟨m⟩t+ (2.5)

+ p

∫
dx1

(
1 + x1

2

)(
x1 −

2

N

)
Pt(x1) + p

∫
dx2

(
1− x2

2

)(
x2 +

2

N

)
Pt(x2) (2.6)

= (1− p)⟨m⟩t + p

(
1

2
− 1

N

)
⟨m⟩t −

p

N
+

⟨m2⟩t
2

+ p

(
1

2
− 1

N

)
⟨m⟩t +

p

N
− ⟨m2⟩t

2
(2.7)

= ⟨m⟩t −
2p

N
⟨m⟩t (2.8)

où on a utilisé la linéarité de l’intégrale dans la deuxième ligne, puis les changements de variable x1 = m+ 2
N

et x2 = m− 2
N (et qui préservent les bornes d’intégration) dans la troisième ligne.

Une relation de proportionnalité peut être notée pour l’état moyenm entre les temps t et t+ 1
N à l’eq.(2.8).

Cette équation, une fois réarrangée, peut être écrite sous la forme d’une équation différentielle pour la limite
N → ∞ :

⟨m⟩t+1/N = ⟨m⟩t −
2p

N
⟨m⟩t ⇔

⟨m⟩t+1/N − ⟨m⟩t
1/N

= −2p⟨m⟩t (2.9)

Et en prenant la limite lorsque N tends vers l’infini:

d⟨m⟩t
dt = −2p⟨m⟩t (2.10)

Une telle équation différentielle est caractéristique d’une décroissance exponentielle dont la solution générale
est de la forme :

⟨m⟩t = m0e
−t/τ (2.11)

avec τ = 1/2p la constante de décroissance [1]. De façon similaire, on peut déterminer une expression de la
variance de m au temps t, ∆t+1/N = ⟨m2⟩t+1/N − ⟨m⟩2t+1/N . Le deuxième terme est obtenu par l’eq.(2.8).
Pour le premier, il vient :

⟨m2⟩t+1/N =

∫
dm ·m2Pt+1/N (m) (2.12)

= (1− p)

∫
m2 · Pt(m)dm+ (2.13)

+ p

∫
dm ·m2

[
1 +m+ 2/N

2
· Pt(m+

2

N
) +

1−m+ 2/N

2
· Pt(m− 2

N
)

]
(2.14)

= (1− p)⟨m2⟩t+ (2.15)

+ p

∫
dx1

(
1 + x1

2

)(
x1 −

2

N

)2

Pt(x1) + p

∫
dx2

(
1− x2

2

)(
x2 +

2

N

)2

Pt(x2) (2.16)

= ⟨m2⟩t(1−
4p

N
) +

4p

N2
(2.17)

On a utilisé les mêmes changements de variable que dans l’eq.(2.8). Par des manipulations simples, on
obtient une équation similaire à l’eq.(2.9):

∆t+ 1
N

= ∆t(1−
4p

N
) +

4p

N2
(p⟨m⟩2t + 1) ⇔

∆t+ 1
N
−∆t

1/N
= −4p∆t +

4p

N
(p⟨m⟩2t + 1). (2.18)
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Et en reprenant la limite quant N tend vers l’infini:

d∆t

dt
= −4p∆t ⇔ ∆t = ∆0e

−2t/τ . (2.19)

Au final, on trouve que la valeur moyenne et la variance de m sont

⟨m⟩t = m0e
−t/τ ,∆t = ∆0e

−2t/τ . (2.20)

Or on remarque que à t = 0, ⟨m⟩t=0 = m0, donc ∆t=0 = 0, et donc que ∆t = 0 ∀t. Alors, cela implique que

Pt(m) = δ(m− ⟨m⟩t). (2.21)

Ce qui veut dire qu’à tout moment, le macro-état du système est complètement déterministe et vaut ⟨m⟩t.
Il n’y a plus de notion d’aléatoire. La dynamique peut alors être décrite seulement par le macro-état du
système, et comme ce macro-état est déterministe, on sait exactement comment se comporte le système.
Après un temps très grand, ⟨m⟩ vaut 0, et l’équilibre est atteint (c’est-à-dire que le macro-état ne change
plus).
En physique statistique, on espère alors pouvoir utiliser cette approche pour tous les systèmes, c’est-à-
dire avoir une description du système seulement en fonction de son macro-état, en oubliant le détail des
micro-états. La question est alors de savoir comment obtenir cette description sans faire de calculs (ici, le
système était relativement simple, mais on pourrait penser à rajouter des interactions entre les particules,
des mouvements de celles-ci, ce qui compliquerait énormément les calculs).
Une première solution est d’étudier le système à temps grand, c’est-à-dire proche de l’équilibre, ce qui évite
de s’intéresser aux détails de la dynamique.

Système à temps long (t >> τ) Afin de savoir pourquoi cette valeur moyenne est toujours nulle pour
des temps longs (i.e quand t >> τ), une supposition va être faite :

Proposition 2.2 (Hypothèse d’ergodicité uniforme)
À temps long, la dynamique est ergodique et uniforme. Cela veut dire que le système visite tous les micro-états
possibles avec la même probabilité. En somme, aucun micro-état n’est plus probable qu’un autre.

La probabilité d’être dans un macro-état m dépend de ΩN (mmacro-état).

Proposition 2.3 Pour un N assez grand, nous avons que

ΩN (m) ≍ e−N [ 1+m
2 log( 1+m

2 )+ 1−m
2 log( 1−m

2 )] (2.22)

Cela nous amène donc à dire que

1

N
log ΩN (m) = H

(
1 +m

2

)
(2.23)

où H(x) ≡ −x log x− (1− x) log(1− x) est la fonction d’entropie binaire.

Après avoir fait ces suppositions, nous allons introduire un objet fondamental en physique statistique:
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Definition 2.4 (Entropie micro-canonique (ou de Boltzmann)) L’entropie associé au macro-état “m”
est donnée par :

S(m) = kB log ΩN (m) (2.24)

R La constante de Boltzmann kB = 1.38110−23J.K−1 a été ajoutée afin de pouvoir interpréter cet objet
comme étant l’entropie définie en thermodynamique (avec la bonne dimension physique), car elle
donne la ”bonne” échelle de température. Les mathématiciens préfèrent souvent utiliser le logarithme
naturel, sans la constante, comme dans la proposition 2.3. En informatique, on utilise par contre le
logarithme en base 2 (on pense en bit 0/1). Toutes ces définitions sont équivalentes a une constante
multiplicative près!

Il est intéressant de travailler avec un nouvel objet quand N est assez grand.

Definition 2.5 (Densité d’entropie)

s(m) =
1

N
kB log ΩN (m) (2.25)

R Nous avons que S(m) ∝ N , ce qui veut dire que l’entropie de Bolzamn est “extensive”. A l’inverse, la
densité d’entropie s(m) est dite “intensive” car elle possède une limite quand N → ∞.

Maintenant, une question se pose: quelle est l’évolution du système avec le temps?
On a vu que, peu importe le temps de départ, l’expression (2.20) pour ⟨m⟩t montre une décroissance au fil
du temps. En ce qui concerne la densité d’entropie de Boltzmann (2.5), celle-ci a la forme suivante:

-1 -0.5 0.5 1
m

0.5

log(2)

s (m)

kB

Figure 2.1: Densité d’entropie s(m)/kB en fonction de la valeur moyenne m.

Comme m décrôıt au fil du temps, on remarque donc que, peu importe le macro-état initial m0, le système
va évoluer vers une configuration qui maximise la densité d’entropie. Ceci indique que l’entropie augmente
avec le temps, c’est-à-dire :

∂S
∂t ≥ 0 (2.26)
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Ce raisonnement n’est pas seulement valable dans ce système en particulier, mais c’est une trivialité physique:
si les micro-états sont équiprobables et la dynamique du système touche tous les micro-états au fil du temps,
le système va sûrement se retrouver dans le macro-état avec le plus de micro-états possibles. L’entropie qui
n’est autre que le logarithme du comptage du nombre de micro-états correspondants va donc augmenter au
cours du temps. Le génie de Boltzmann réside donc dans l’explication du concept d’entropie de Clausius,
mesurant le “désordre” et l’irréversibilité dans les processus thermodynamiques, comme l’augmentation avec
le temps du nombre de micro-états correspondants à l’état du système.

Résolution avec les grandes déviations Il est très important de remarquer que le système présenté ici
peut aussi être compris avec le formalisme des grandes déviations présenté au chapitre précédent.

Tout d’abord, en supposant la dynamique de notre système comme uniforme, on peut imaginer que
nos particules se retrouvent dans la bôıte s = +1 ou s = −1 avec une probabilité de 1/2. Ensuite, pour
calculer l’entropie du système on peut se demander quelle serait la probabilité d’observer empiriquement
une probabilité avec valeur moyenne m différente de 1/2. Celle-ci serait donc une loi de probabilité de type
{m}={P (s = +1) = (1 +m)/2, P (s = −1) = (1−m)/2}. Le théorème de Sanov (cf. Cours 1) nous donne
une réponse:

P ({m}) ≍ e−NDKL({m}, U), (2.27)

où U est la loi uniforme avec P (s = 1) = P (s = −1) = 1/2. En développant l’exposant on obtient:

P ({m}) ≍ e−N
∑2

i=1 mi ln(mi/(1/2)) = e−N
∑2

i=1 mi ln(mi)−
∑2

i=1 mi ln(1/2) (2.28)

= e−N
∑2

i=1 mi ln(mi)−ln(1/2) ∝ eNH({m}). (2.29)

On en déduit qu’il est exponentiellement rare d’observer une moyenne de magnétisation qui n’est pas celle
plus probable. La probabilité de trouver une distribution différente devient donc extrêmement piquée vers 0
lorsque N diverge et, comme le système va tendre à se stabiliser à m = 0, l’entropie (voir Fig. 2.1) va être
à nouveau maximisée.

2.2 Formalisme d’Hamilton et Espace des Phases

Afin de généraliser la démarche précédente à un système de N particules ayant des interactions quelconques,
on peut utiliser le formalisme d’Hamilton. Un système physique de N particules en D dimensions peut être
modélisé par les coordonnées généralisées {q⃗i ∈ RD, i = 1, 2, ..., N} et impulsions généralisées {p⃗i ∈ RD, i =
1, 2, ..., N} de chacune des particules. En physique classique les interactions sont décrites par les équations
de Lagrange,

ṗi ≡
d

dt
(pi) =

∂L

∂qi
,

pi =
∂L

∂q̇i
.

(2.30)

Definition 2.6 On appelle H l’hamiltonien du système, qui, pour un système composé d’un potentiel
indépendant des vitesses représente l’énergie totale du système.

En performant une transformée de Legendre ([2]) sur les eq.(2.30) on obtient les équations d’Hamilton,
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ṗi = −∂H

∂qi
,

q̇i =
∂H

∂pi
.

(2.31)

R On obtient ainsi des équations du mouvement symétriques à un signe près.

Proof 1 On peut facilement vérifier que ces équations sont équivalentes à celles de Newton. Prenons par
exemple, un système composé d’une particule de masse m, soumise à un potentiel V (q) avec une quantité
de mouvement p, l’hamiltonien du système est donc donné par,

H =
p2

2m
+ V (q), (2.32)

En injectant cet hamiltonien dans les équations d’Hamilton eq. 2.31 on obtient alors,

q̇ =
p

m
, ṗ = mq̈ = −∇⃗qV (q), (2.33)

On retrouve ainsi les équations du mouvement du formalisme de Newton.

La symétrie des équations d’Hamilton permet de représenter la dynamique de l’ensemble du système
comme un seul objet x⃗ ∈ R2·D·N pour un système de N particules en D dimensions.

Definition 2.7 (Espace de phases) On appelle cet espace à 2 ·D ·N dimensions représentant la dy-
namique du système l’Espace de phases et on écrit un vecteur de cet espace,

x =



q1

...
qN

p1

...
pN


tel que qi,pi ∈ RN (2.34)

Proposition 2.8 L’équation d’évolution dans cet espace est donnée par :

dx

dt
= J

∂H

∂x
tel que J =

(
0 1N

−1N 0

)
(2.35)

Ainsi on peut voir notre système de multiples particules comme un seul point dans l’espace de phases
dont la dynamique est simplement décrite par une équation d’Hamilton. La question que l’on peut se poser
c’est pourquoi utiliser un tel espace ? On peut justifier son utilisation de deux façons :

1. Mécanique quantique : L’un des principes fondamentaux de la mécanique quantique est le principe
d’incertitude d’Heisenberg. En mécanique quantique, la mesure d’un observable se fait toujours avec une
certaine probabilité et donc une certaine incertitude. Disons que l’on veut mesurer la position x et l’impulsion
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p d’une même particule, chacun avec une incertitude respectivement de ∆x et ∆p. Si on cherche à connâıtre
simultanément ces 2 quantités, on ne peut pas dépasser une certaine précision dans la mesure, donnée par :

∆x∆p ≥ h̄

2
(2.36)

Autrement dit, si l’on veut connâıtre la position exacte d’une particule avec une précision infinie, c’est-à-
dire ∆x = ϵ ≪ h̄/2, alors on perd toute l’information qu’on a sur la mesure de p car son incertitude devient
très grande ∆p ≥ h̄/2∆x ≫ 1. Pour revenir à l’espace des phases, cette limite fondamentale permet de
discrétiser l’espace des phases par de petits carrés de volume proche de cette limite fondamentale, h, ce qui
s’avère être très utile quand il s’agit de compter les micro-états associés à un macro-état car cela revient à
compter des hypercubes dans l’espace des phases (Fig.2.2).

Figure 2.2: Discrétisation de l’espace des phases pour une particule unidimensionnelle.

2. Hypothèse Ergodique : La deuxième raison pour laquelle on utilise cet espace est que l’hypothèse
ergodique est valable dans ce dernier, ce qui n’est pas forcément le cas d’autres espaces. Comme le stipule
la Prop.2.2, la physique statistique est fondée sur cette hypothèse. On va effectivement supposer qu’à temps
long, la dynamique étudiée sera équiprobablement distribuée entre tous les états. Par exemple, supposons
le cas d’un système de N particules identiques, à énergie constante, dont on peut écrire l’Hamiltonien :

H({qi}Ni=1, {pi}Ni=1) =

N∑
i=1

p2
i

2m
+ V ({qi}Ni=1) = E (2.37)

L’hypothèse ergodique nous garantit que tous les états x définis comme à l’eq.(2.34), et qui satisfont la
contrainte H(x, t) = E sont tous équiprobables à temps long. La validité de cette hypothèse nous vient d’un
théorème bien plus général sur l’espace des phases :

Théorème de Liouville

Proposition 2.9 Considérons la densité de probabilité ρ d’avoir des points en x⃗ au temps t dans l’espace
des phases :

ρ(t, x⃗(t)) = ρ(t, {q⃗i(t)}, {p⃗i(t)}). (2.38)

Le théorème de Liouville affirme que
d

dt
ρ(t, x⃗(t)) = 0. (2.39)



Lecture 2: Principes fondamentaux: Micro & Macro-états, et Érgodicité 2-9

Proof 2 Afin de prouver cela, explicitons la dérivée temporelle de la densité de probabilité :

d

dt
ρ(t, x⃗(t)) =

∂ρ

∂t
+

N∑
i=1

( ∂ρ

∂qi
q̇i +

∂ρ

∂pi
ṗi

)
, (2.40)

avec N le nombre de particules. La conservation des lois de probabilité est valable et nous permet d’écrire
:

∂ρ

∂t
+ ∇⃗ · (ρ ˙⃗x) = 0, (2.41)

qui représente l’équation de conservation dans l’espace des phases. L’intégration de cette équation sur un
volume nous montre la variation, sur ce volume, de la densité de probabilité.
En dérivant les différents termes :

∂ρ

∂t
+ ∇⃗ · (ρ ˙⃗x) = ∂ρ

∂t
+

N∑
i=1

(∂(ρq̇i)
∂qi

+
∂(ρṗi)

∂pi

)
=

∂ρ

∂t
+

N∑
i=1

( ∂ρ

∂qi
q̇i +

∂ρ

∂pi
ṗi

)
+

N∑
i=1

ρ
(∂q̇i
∂qi

+
∂ṗi
∂pi

)
. (2.42)

Afin de prouver le théorème de Liouville, il nous suffira de montrer que le dernier terme de l’équation
précédente est nul.

Les équations d’Hamilton, qui ont été énoncées précédemment, permettent d’écrire :

N∑
i=1

ρ
(∂q̇i
∂qi

+
∂ṗi
∂pi

)
=

N∑
i=1

ρ
( ∂2H

∂qi∂pi
− ∂2H

∂pi∂qi

)
= 0. (2.43)

Nous avons ainsi montré que d
dtρ(t, x⃗(t)) = 0, ce qui conclut la preuve et permet de remarquer que le

théorème de Liouville est une conséquence des équations de conservation.

Une deuxième façon d’énoncer le théorème de Liouville est :

∂ρ

∂t
+

N∑
i=1

( ∂ρ

∂qi

∂H

∂pi
− ∂ρ

∂pi

∂H

∂qi

)
=

∂ρ

∂t
+ {ρ,H} = 0. (2.44)

Avec {ρ,H} le crochet de Poisson, pouvant être défini comme :

{A,B} =

N∑
i=1

(∂A
∂qi

∂B

∂pi
− ∂A

∂pi

∂B

∂qi

)
. (2.45)

Le théorème de Liouville permet donc de savoir ce qu’il se passe dans l’espace des phases, car il énonce
l’évolution d’un système physique, de manière analogue au formalisme d’Hamilton ou de Newton.
En physique quantique, le crochet de Poisson sera remplacé par le commutateur.
En admettant que la densité de probabilité est une fonction ne dépendant que de l’énergie :

ρt(t, x⃗) = ft(H(x⃗)), (2.46)

il en suit que le crochet de Poisson est nul. Or, une densité physique qui ne dépend que de l’énergie est
constante. À énergie fixée, la densité sera ainsi à l’équilibre et n’évoluera pas dans le temps.
En conclusion, supposer l’ergodicité dans l’espace des phases en appliquant le principe de Boltzmann est
mathématiquement cohérent avec le théorème de Liouville.

Attention cependant, le théorème de Liouville n’implique PAS l’ergodite! Demontrer l’ergodicte a partir
des équations de Newton reste un probleme ouvert en physique mathematique en general.
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