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10.1 Introduction

Cas classique Pour un gaz de particules, la fonction de partition est donnée par :

1 A7 dpi _pw((zy.15)
Iy = N!/:l:[hde ( pi})

Cas quantique Dans ce cas penser le systeme avec des particules, ayant chacune une position
et une vitesse, devient erroné. A la place, on peut utiliser la quantification de 1’énergie. Ainsi
dans I'espace des énergies {¢;}, la fonction de partition peut s’écrire comme :

ZN — Z e—BZi EiMy

{ni}
>ini=N

avec n; le nombre de particules dans le niveau d’énergie ;.

Dans ce cas, le facteur d’indiscernabilité 1/N! est absent, car sommer sur les occupations
possibles rend déja compte de cela.

La contrainte ) . n; = N rend cependant le calcul de Zy compliqué. Pour remédier a ce probleme,
on décide de changer de formalisme : au lieu du formalisme canonique avec N fixé, on passe au
formalisme grand-canonique. Dans ce dernier le nombre de particules n’est pas fixé, cependant
on peut fixer p & postériori afin de retrouver en moyenne le nombre de particules du systeme. La
fonction de partition est alors :

E(ﬂ7 M) = Z e_B dieinitBur Y ng
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_ H (Z eﬁ(uai)nz) (10.1)
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Le formalisme grand-canonique nous permet donc de considérer les niveaux d’énergie indépendamment.

On factorise et on passe au produit des fonctions de partitions pour chaque niveau d’énergie. Cette
équation nous permet d’arriver a un résultat qu’on réutilisera par la suite :

logZ =) log (Z eﬁ(”—si)”i> (10.2)

La question a présent concerne les niveaux d’énergies {¢;}. En effet a partir du moment ou les {¢;}
sont connus, ainsi que leur dégénérescence et la nature des particules (bosons ou fermions), le calcul
de la fonction de partition est réalisable.

10.2 Une particule dans une boite

2 2 2
L’hamiltonien est H = £- = m avec p = hk et E =

m 2m

R HkHz

Deux types de conditions aux limites peuvent étre imposées. Si les conditions aux limites sont
périodiques, on obtient que:

271'[1'
ki=— L EZ

T €
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oui = x,y, 2, € est ’énergie et L est la longueur caractéristique de la boite. Pour des conditions
au limites fixes, on obtient:
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Cela nous permet d’écrire que,

Oe 2¢

: _z -
en notant que V = L3 est le volume. En effet, e = oV =5 avec a une constante. Lorsque ’'on dérive

. . e _ 2 21 _ 2 -2 _ 2 . . .
cette expression on obtient que 57 = —5aV 737 = —5aV 73 = —Z% qui est bien le résultat

attendu.

Maintenant on veut calculer la pression. Celle-ci est donnée par,
36
p=—D nigy = Z nie;
i

2
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Pour une particule dans une boite cubique, le nombre total d’états d’énergie inférieure & E est
obtenu & partir du volume d’une sphere dans I'espace des vecteurs d’onde k. On a ainsi :

pour CLF
~ =~

4T . 1
(I)énergieSE(E) = ?ZS(E) * g

_dm (2mE 3/2‘/*1
-3 \n2n? 8

ou V est le volume de la boite, m est la masse de la particule, et & est la constante réduite de Planck.
Le facteur % intervient dans la premiere ligne que lorsque les conditions aux limites sont fixes car il
ne faut prendre en compte que la partie positive de la sphere. Pour la deuxieme ligne, celui-ci doit
toujours étre pris en compte peu importe les conditions aux limites car %Z%LF(E) = Z%LP(E).

La densité d’états v(E) représente le nombre d’états par unité d’énergie. Elle est obtenue en
dérivant ®(FE) par rapport a I’énergie E :

_ 09(B)
v(E) = 5E (10.4)
Ainsi, on obtient que,
27V (2m)3/2
vE,p+ae(E) = %Elp (10.5)

Cette relation montre que la densité d’états v(FE) croit proportionnellement & la racine carrée
de I’énergie E. En physique statistique, il est souvent plus pratique d’exprimer ces quantités en
fonction de la quantité de mouvement p que de ’énergie E. On sait que la relation entre les 2 est
donnée par,

p® =2mE (10.6)

Ainsi cela permet de réecrire le nombre d’états d’énergie comme,

4.1 p3
S(p)=-V- 10.7
) = 3Vsos (10.7)
En utilisant que v(p)dp = v(E)dE, la densité d’états sera donnée par,
Amp*V
Vp,ptdp(P) = 3 (10.8)

En dérivant la densité d’énergie, nous avons fait 'approximation que l’énergie devenait
continue, alors qu’en réalité nous sommes dans le cas d’une particule dans une boite ou
I’énergie est quantifiée. Nous sommes donc passés d’une somme discréte a une intégrale
continue. Il faut garder cette approximation a ’esprit et se rappeler que les niveaux d’énergie
sont quantifiés.
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10.3 Ensemble de Fermions

Les fermions ont une particularité : deux fermions ne peuvent pas occuper le méme état. En
cas de dégénérescence, on peut mettre le méme nombre de particules dans le "méme” état que la
dégénérescence de 1’état. Nous supposerons ici que la dégénérescence est contenue dans la somme.
Par conséquent, le principe d’exclusion de Pauli impose que le logarithme naturel de la fonction de
partition soit :

InE = Zln(l + eﬂw—fi)). (10.9)

Nous pouvons également calculer le nombre moyen de particules dans le systeme (). Par définition,
nous avons :
~ 10IlnE

B ou

(N)

® Cette formule découle du raisonnement suivant : la dérivée de In = par rapport a p donne :

a# IOgE — ZBZ’L m; e*ﬁZi Simi+6l’«zi mi 5<nz>

Nous pouvons calculer explicitement le nombre de particules :

eBu—ei)

1
<N>=Zm=2m=z<m>7

% i i

ou (n;) est le nombre moyen de particules dans 1’état i. Ce que nous avons dérivé ici est connu
comme la fonction de Fermi-Dirac pour le nombre moyen de particules dans le systeme :

Cela donne la probabilité de trouver une particule dans 1’état ¢. Nous tracons cette fonction pour
u =T et différentes valeurs de 3 sur la Fig.10.1. Si nous prenons la limite de 8 — oo, nous obtenons
une fonction indicatrice qui est égale a 1 pour ¢; < p et 0 sinon, comme le montre la Fig.10.1. En
outre, si nous prenons le cas ol €; — 1 > 1, la fonction diminue de maniére exponentielle : e=8(i=#),
C’est ce que nous appelons la limite de Maxwell-Boltzmann, qui est la limite classique dans laquelle
nous ”oublions” tous les effets quantiques.
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Figure 10.1: Fonction de Fermi-Dirac pour différentes valeurs de /.

En revenant au cas de T' = 0, nous voyons que p impose que nous ne puissions avoir que des
énergies inférieures ou égales & p. Lorsque T = 0, le nombre moyen de particules du (N) devient la

fonction ”"Heaviside” donnée par :

(Ni) =Y O(e; < ).

C’est le cas dans ’hypothese discrete. Si ’on prend le cas continu, on a :

(N) = /000 O(e; < p)v(e)gde = /OH gv(e€)de.

Cette intégrale décrit le nombre d’états par
unité d’intervalle d’énergie. Dans cette formule,
chaque niveau d’énergie peut étre dégénéré et
cette fonction g est la densité d’états. Comme
nous parlons ici d’électrons, nous avons g =
2. Cela s’explique par le fait que nous avons
deux états de spin possibles pour chaque niveau
d’énergie. Pour visualiser la situation, nous
représentons les niveaux d’énergie comme sur la
Fig. 10.2, ou les niveaux d’énergie deviennent
de plus en plus serrés au fur et a mesure que
'on monte. A une température de T' = 0, tous
les états d’énergie inférieurs a p sont occupés,
tandis que les autres restent vides.

La valeur (T = 0) est appelée énergie de
Fermi ep. Le niveau d’énergie de Fermi est im-
plicitement défini par la fonction :

er
N:/ gv(e)de,
0

30 \ ] ep=p(T=0)

e lau.]

z [a.u.]

Figure 10.2: Puits de potentiel montrant le niveau
d’énergie de Fermi ep.
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ot N est donné par le nombre de particules dans le systeme.

Ainsi, en utilisant la Fig.10.2 il est utile de définir la température de Fermi, donnée par:
€
Tr = k—F Tant que la température du systeme T reste inférieure Tr, la particule considérée

B
restera immobile. Illustrons ces principes par deux exemples importants.

er—>1 ‘—H(T) ~e; — Cstefrl |

73

T[u.a]

Figure 10.3: Evolution du potentiel chimique u en fonction de la température T

Ex.1 : Electrons dans une solide
Considérons un systeme d’électrons dans une solide sans interactions entre eux, ainsi un gaz
d’électrons indépendant mais qui peut intéragir avec la solide. La température de Fermi typique
d’un tel systeme est de I'ordre de Tr ~ 60000K, ce qui implique que la température du systeme
peut étre approximée comme nulle.
Ainsi, les seules particules qui réagissent & un flux rentrant d’énergie sont celles qui se trouvent au

seuil d’énergie donnée par er. Les électrons qui peuvent réagir se trouvent dans ce qui est appelé
la ”Mer de Fermi”.

Pour illustrer ’aspect fondamental du concept du niveau de fermi, il faut s’intéresser a la théorie
des bandes d’énergies. Dans la figure 10.4, le premier cas de peuplement permet de faire bouger
les électrons en leur envoyant de ’énergie. Dans le second cas, le peuplement est a la fin de la
bande d’énergie autorisée et la seule maniere pour les électrons de bouger est de sauter les bandes
d’énergies interdites. Pour cela, il faut leur envoyer une grande quantité énergie et ainsi selon la
largeur de la bande interdite étre soit dans le cas d’un isolant ou d’un conducteur.



Lecture 10: Un soupcon de physique statistique quantique 10-7

zzzzz7/

D000 g

bandes interdites
V) / or D bandes autorisées
Cas de peuplement n1

/ / D Cas de peuplement n2

Figure 10.4: Diagramme de bandes d’énergie d’un systéme de particules en fonction de 2 niveaux
de Fermi ep.

Ex.2 : Gaz parfait de fermions avec spin %

Considérons un systéme de gaz parfait de fermions avec la densité d’énergie donnée par les particules
dans une boite sans interactions. Il est important de noter que la contrainte que deux fermions ne
puissent pas se trouver au méme niveau d’énergie impliquera une interaction de quelque sorte. Le
nombre de particules est donnée par:

EF 2 3/2
N = / 2. 27V /2 - % de (10.10)
0
En supposant que l'on se trouve avec I’énergie de Fermi ep et qu’ainsi 7' = 0, ’Eq.(10.10) se réduit:
27TV 3/2 2
Ainsi, on trouve I’énergie de Fermi pour ce systéme:
52 N\ 2/3
=_—(3r= 10.12
T~ om ( T V) ( )

On trouve donc qu’a température nulle, ’énergie des fermions n’est pas nulle. Ainsi, il y a une
énergie résiduelle non nulle pour un systeme de fermions a température nulle. Ce résultat a des
conséquences physiques fondamentales.

Rappelons la relation entre pression et énergie pour un systeme classique, pV = %E = %%N kpT.

Pour un gaz de fermions, on peut définir la pression de Fermi: pp = %EF, autrement appelée la
pression de dégénérescence. Un gaz d’électrons est completement dégénéré quand tous les électrons
sont a l’énergie ep.

_2 h? 2v2/3 IV 5/8
=32 ) Vs
Par I'Eq.(10.13) on peut constater, en rassemblant les termes constants sous z, que la pression de
dégénérescence pour une boite de rayon R se comporte comme:

N5/3
R’

(10.13)

PF

PFr =X
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Dans le cas ou il y a beaucoup d’électrons dans un gaz dans une boite, la masse commence
a compter. Il en découle la question suivante: est-ce que la pression pr devient assez forte pour
contrebalancer la gravité?
On peut étudier ce cas de figure en prenant en exemple des étoiles tres denses. On peut procéder
par analyse dimensionnelle; comparons la pression due a la force de gravitation avec la pression de
Fermi:

F  M2G (N)5/3 M?5/3
ad 9 PF = ~

Pgrav =4 = g1 Vv RS

Il s’avere qu’en admettant que la densité de 1’étoile n’est pas trop grande, la pression est en effet
suffisante pour contrebalancer les forces gravitationnelles agissantes sur 1’étoile.

12 ‘
—cas classique
——cas quantique

10

T[u.a]

Figure 10.5: Evolution de la pression en fonction de la température T dans les cas classique et
quantique

10.4 Ensemble de Bosons

Les bosons possedent une caractéristique fondamentale qui les distingue des fermions : ils peuvent
occuper le méme état quantique sans restriction. Cette propriété est a l'origine de phénomenes
uniques tels que la condensation de Bose-Einstein, ot un grand nombre de bosons se trouvent dans
le méme état fondamental & basse température. En cas de dégénérescence, le nombre de particules
pouvant occuper un état donné est théoriquement illimité. Dans ce contexte, nous supposerons que
la dégénérescence est incluse dans la somme des états considérés.



Lecture 10: Un soupcon de physique statistique quantique 10-9

La fonction de partition grand canonique pour un ensemble de bosons est donnée par :
log= = — Zlog (1 - eB(’“Ei))
i

ou g = kB%, 1 est le potentiel chimique, et ¢; sont les énergies des états accessibles.

Le nombre moyen de particules est :

_ 10log= 1 B
<N> *B alu *Zeﬁ(si_u)_l 7Z<nl>

[ %

La fonction de distribution de Bose-Einstein, qui donne le nombre moyen de bosons occupant ’état
%, est :

1
eBlei—p) — 1

(ni) =

10.4.1 Comparaison des Distributions
Le graphique ci-dessous montre la distribution de Bose-Einstein en fonction de (¢ — p)/kT :

3 | | |
Bose-Einstein ‘

0 T T T T T \ \
0 0.5 1 1.5 2 2.5 3 3.5 4

(e —pw)/kT

Figure 10.6: Distribution de Bose-Einstein en fonction de (¢ — p)/kT.

Le graphique suivant compare les distributions de Bose-Einstein, de Maxwell-Boltzmann et de
Fermi-Dirac :
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Figure 10.7: Comparaison des distributions de Bose-Einstein, Maxwell-Boltzmann et Fermi-Dirac.

On peut faire aussi la comparaison du potentiel chimique des fermoins et bosons en fonction de
la température:

“r 5 g fermions
T, 6 ey

T/IT,

Figure 10.8: Potentiel chimique en fonction de la température.
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Ce graphique présente une comparaison entre les comportements thermodynamiques des fermions
et des bosons en fonction de la température réduite T/Ty. L’axe vertical représente le rapport du
potentiel chimique p ou de ’énergie de Fermi e & une température de référence Ty. L’axe horizontal
indique la température réduite.

e Courbe rouge (fermions) : Cette courbe montre comment 1’énergie de Fermi ( e ) diminue
progressivement avec l'augmentation de la température. Cela reflete le comportement des
fermions qui, en raison du principe d’exclusion de Pauli, conservent une énergie non nulle
méme a basse température.

e Courbe bleue (bosons) : Cette courbe représente le potentiel chimique des bosons. A
basse température, le potentiel chimique reste proche de zéro, ce qui indique la formation
d’un condensat de Bose-Einstein. A la température critique 7,, marquée par une fleche, le
potentiel chimique commence & diminuer rapidement a mesure que la température augmente.

10.4.2 Nombre de Particules en Fonction de la Température

Le nombre total de particules dans un gaz de bosons est donné par :

e 1

ol v(e) est la densité des états, g est la dégénérescence, et h est la constante de Planck.

Dans le cas ou u = 0, cette expression devient :

2 (o]
N = 7;L%V(2771)3/2(kBT)‘°’/2/ dz ezﬁl (10.15)
| -

avec fooo e (3/2)-\/7/2 ou ¢ dénote la fonction Zeta de Riemann. Le graphique ci-dessous

er—1
illustre la relation entre le nombre de particules N et la température 7" pour un gaz de bosons :
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Relation entre N et T pour un gaz de Bosons
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Figure 10.9: Relation entre le nombre de particules N et la température 7" pour un gaz de bosons.

Ou nous pouvons voir que I'expression de T correspond a:
T* = cst. N* (10.16)

A présent, fixons le nombre de particules & N*. Quel 1 satisfait cette contrainte 7 Autrement
dit, pour quel u(T) a-t-on un nombre moyen de particules (N) = N* ? Comme vu plut tot, a la
température de Bose T, u = 0. Pour conserver le méme (N) = N* & une température T > T, il
faut diminuer p (qui devient donc négatif). A I'inverse, pour des températures T' < Tz, on voudrait
augmenter u pour conserver le nombre de particules, mais on aurait alors g > 0 ce qui n’est pas
possible : & quoi ressemble la courbe p(T)|(nyy=n+ pour T' < Tp ?

Rappelons que la forme intégrale (10.15) n’est valable qu’a la condition que la distance Ae entre
les niveaux d’énergie sur lequels on intégre soient suffisamment petite. Or dans le cas de petites
températures, les bosons sont en majorité dans ’état fondamental (ou le premier, deuxieme état
excité, jamais vraiment plus haut). Au lieu de calculer le nombre de particules & partir de (10.15),
on écrit a la place

o 1

N*™ = No + . dﬁgV(E)m,

(10.17)

ou Ny désigne le nombre de particules dans 1'état fondamental. L’intégrale (10.15) calcule donc
en réalité le nombre d’états excités. Simplement dans le cas Ae < 1 (quand les niveaux d’énergie
peuvent étre traités comme un continuum), la frontiere € = 0 du domaine d’intégration, c’est-a-dire
le nombre de particules dans I’état fondamental, peut-étre négligée. Mais pas ici : quand T < T
Ny devient grand par rapport a lintégrale ci-dessus. Appelons N(u,T) cette intégrale. Alors on a

No = N* — N(p, T). (10.18)
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On s’intéresse & la proportion des particules qui sont dans 1’état fondamental : Ny/N* dans le cas
= 0. Substituant (10.16) dans (10.18) on a

No 7\ %2
=1—(— . 10.19
A (TB) (10.19)

On observe ainsi le phénomene suivant : pour tout 7' > Tg, le nombre de bosons dans 1’état
fondamental en proportion du nombre total de bosons est nul (bien que dans ’absolu, il ne le soit
pas). Mais aussitot que la température descend en dessous de Bose (T < Tg), une fraction finie du
nombre total de bosons occupe I’état fondamental. Cette transition de phase s’appelle condensation
de Bose-Finstein. Elle s’observe expérimentalement et est méme a l’origine d’un certain nombre de
phénomenes physiques bien connues : superfluidité, superconductivité...

La quantification de I’énergie (propriété quantique) et ’apparition brusque (transition de phase)
de bosons en proportion de N* occupant I’état fondamental donne donc a voir des phénomenes non-
triviaux méme dans un systéme a priori simple tel un gaz de bosons libres.

10.5 Rayonement du corps noir

Le corps noir est un objet idéal qui absorbe toute ’énergie électromagnétique incidente.Cette énergie
est apres émise en forme de radiation thermique. Le corps noir est a I’équilibre thermique.

On va se demander quelle est la distribution des fréquences des photons.
Selon Planck, I’énergie d’un photon en fonction de sa fréquence est: £ = hw = hv
On reprend Pexpression de v obtenue avant, parce que on ne peut pas utiliser celle avec la masse
(les photons n’ont pas de masse):

A7p? Smp?
vp(p) =g % V= % Vv (10.20)

Avec g = 2. Les photons ont seulement spin +1 dit & des effets relativistes.(*Il n’y a pas de
potentiel chimique (p): le photon n’est pas vraiment une particule)
Pour cette raison ont utilise expresion relativiste de I’energie. Cette energie est lie avec 1’energie
classique de la fagon suivante:

2 2 2
E:\/;mzmcﬂ/ngcz+1zmc2(1+ P y—mey 2y (10.21)

2m2c? 2m

On prends dans cette approximation p? << mc?. Finalement on obtien I’energie du photon et
sa fréquence: FE(photon) = pc, donc w = py
Avec cette expresion et celle de v(p) on arrive a trouver v, (w):

vy (w)dw = vp(p)dp (10.22)

_ 87 w2k _ Vw?

l/w((U) = ﬁ 073 7'['203 (1023)
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Nombre des photons vient donné par ’expresion pour les bosons:

Vw? 1
Nohotons = —5—=—7———— 10.24
phot m2e3 i _q ( )
Si on prend ’energie d’un photon (Aw) on arrive a la formule de Planck:
Vw3h 1
E(w) = Nphotons * hw = 23 76% ] (10.25)
Avec Papproximation de Rayleigh-Jeans (hw << kyT')
VkabT
Bw)=—7335— (10.26)
Energie totale:
3 Arpd LA 4rpd 3
< Vw'h 1 VkT* [ &3 h Vk:T* [
ET:/ do? ¥ = % 3/ kT2 R gy = % 3/ T _dr (10.27)
0 w23 our 1 m23h’ Jo emr _ 1 kT w23k Jo et —1

; _V_xlpaga
Et on finit avec ——z75 Tk, T

10.5.1 Example

Le rayonnement du corps noir est utile afin d’observer les raies d’absorptions de ’atmosphere d’une
planete. Voici un exemple dans lequel on peut déterminer la présence d’eau et de dyoxide de
carbone dans ’atmosphere terrestre. La terre absorbe le rayonnement solaire et le réémet sous
forme d’infrarouge correspondant au spectre d’un corps noir a une température moyenne de 288
K. Ce rayonnement va ensuite interagir avec les gaz présents dans ’atmospheére et une partie
du rayonnement sera absorbé a des longueurs d’ondes caractéristiques permettant d’identifier les
molécules présentes dans I’atmosphere.
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Spectre du corps noir terrestre avec absorption et réémission

—— Corps noir sol (T=288 K)
---- Aprés absorption (Beer-Lambert)
—-— Avec réémission de I'atmosphére (T=220 K)
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Figure 10.10: Comparaison entre le rayonnement de corps noir émis par la terre a température
T=288 K et une modélisation de ’absorption par ’atmosphere du rayonnement terrestre en utilisant
des données de 'HITRAN [Data] pour l'isotope le plus abondant de chaque molécule suivante:
H>0,C045,03, N2O,CO,CHy; ainsi que les coefficients d’absorption o des molécules de H-0 et
CO0s.

Dans le premier graphe, la courbe bleue représente le spectre du corps noir tel qu’il serait
émis par la surface terrestre a 288 K sans aucune atmosphere pour l'absorber. La courbe rouge
montre ce qui reste du rayonnement apres avoir traversé I’atmosphere, en ne tenant compte que de
Pabsorption(loi de Beer-Lambert). La courbe verte montre ce qui se passe quand on tient compte a
la fois de ’absorption et de la réémission infrarouge par ’atmosphére. Le deuxieéme graphe montre
le coefficient d’absorption pour les molécules de H50 et C0s5 en fonction de la longueur d’onde. Ce
coefficient v exprime a quel point une molécule absorbe & une longueur d’onde A donnée



10-16 Lecture 10: Un soupcon de physique statistique quantique

References

[1] Données de 'Hitran, https://hitran.org/lbl/


https://hitran.org/lbl/

	Introduction
	Une particule dans une boite
	Ensemble de Fermions
	Ensemble de Bosons
	Comparaison des Distributions
	Nombre de Particules en Fonction de la Température

	Rayonement du corps noir
	Example


