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10.1 Introduction

Cas classique Pour un gaz de particules, la fonction de partition est donnée par :

ZN =
1

N !

∫ ∏
i

dx⃗i dp⃗i
hd

e−βH({x⃗i},{p⃗i})

Cas quantique Dans ce cas penser le système avec des particules, ayant chacune une position
et une vitesse, devient erroné. A la place, on peut utiliser la quantification de l’énergie. Ainsi
dans l’espace des énergies {εi}, la fonction de partition peut s’écrire comme :

ZN =
∑
{ni}∑
i ni=N

e−β
∑

i εini

avec ni le nombre de particules dans le niveau d’énergie εi.

R Dans ce cas, le facteur d’indiscernabilité 1/N ! est absent, car sommer sur les occupations
possibles rend déjà compte de cela.

La contrainte
∑

i ni = N rend cependant le calcul de ZN compliqué. Pour remédier à ce problème,
on décide de changer de formalisme : au lieu du formalisme canonique avec N fixé, on passe au
formalisme grand-canonique. Dans ce dernier le nombre de particules n’est pas fixé, cependant
on peut fixer µ à postériori afin de retrouver en moyenne le nombre de particules du système. La
fonction de partition est alors :

Ξ(β, µ) =
∑
{ni}

e−β
∑

i εini+βµ
∑

i ni

=
∑
{ni}

∏
i

eβ(µ−εi)ni

=
∏
i

(∑
ni

eβ(µ−εi)ni

)
(10.1)
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Le formalisme grand-canonique nous permet donc de considérer les niveaux d’énergie indépendamment.
On factorise et on passe au produit des fonctions de partitions pour chaque niveau d’énergie. Cette
équation nous permet d’arriver à un résultat qu’on réutilisera par la suite :

log Ξ =
∑
i

log

(∑
ni

eβ(µ−εi)ni

)
(10.2)

La question à présent concerne les niveaux d’énergies {εi}. En effet à partir du moment où les {εi}
sont connus, ainsi que leur dégénérescence et la nature des particules (bosons ou fermions), le calcul
de la fonction de partition est réalisable.

10.2 Une particule dans une boite

L’hamiltonien est H = p2

2m =
p2
x+p2

y+p2
z

2m , avec p⃗ = h̄k⃗ et E =
h̄2∥k∥2

2

2m .

Deux types de conditions aux limites peuvent être imposées. Si les conditions aux limites sont
périodiques, on obtient que: 

ki =
2πli
L

, li ∈ Z

ϵ =
4π2h̄2

2mL2
(l2x + l2y + l2z)

où i = x, y, z, ϵ est l’énergie et L est la longueur caractéristique de la bôıte. Pour des conditions
au limites fixes, on obtient: 

ki =
πli
L

, li ∈ N

ϵ =
π2h̄2

2mL2
(l2x + l2y + l2z)

Cela nous permet d’écrire que,

∂ϵ

∂V
= − 2ϵ

3V
(10.3)

en notant que V = L3 est le volume. En effet, ϵ = αV − 2
3 avec α une constante. Lorsque l’on dérive

cette expression on obtient que ∂ϵ
∂V = − 2

3αV
− 2

3−1 = − 2
3V αV − 2

3 = − 2ϵ
3V qui est bien le résultat

attendu.

Maintenant on veut calculer la pression. Celle-ci est donnée par,

p = −
∑
i

ni
∂ϵi
∂V

=
2

3V

∑
i

niϵi

⇔ pV =
2

3
⟨E⟩
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Pour une particule dans une bôıte cubique, le nombre total d’états d’énergie inférieure à E est
obtenu à partir du volume d’une sphère dans l’espace des vecteurs d’onde k. On a ainsi :

Φénergie≤E(E) =
4π

3
l3(E) ∗

pour CLF︷︸︸︷
1

8

=
4π

3

(
2mE

π2h̄2

)3/2

V ∗ 1

8

où V est le volume de la bôıte, m est la masse de la particule, et h̄ est la constante réduite de Planck.
Le facteur 1

8 intervient dans la première ligne que lorsque les conditions aux limites sont fixes car il
ne faut prendre en compte que la partie positive de la sphère. Pour la deuxième ligne, celui-ci doit
toujours être pris en compte peu importe les conditions aux limites car 1

8 l
3
CLF (E) = l3CLP (E).

La densité d’états ν(E) représente le nombre d’états par unité d’énergie. Elle est obtenue en
dérivant Φ(E) par rapport à l’énergie E :

ν(E) =
∂Φ(E)

∂E
(10.4)

Ainsi, on obtient que,

νE,E+dE(E) =
2πV (2m)3/2

h̄3 E1/2 (10.5)

Cette relation montre que la densité d’états ν(E) crôıt proportionnellement à la racine carrée
de l’énergie E. En physique statistique, il est souvent plus pratique d’exprimer ces quantités en
fonction de la quantité de mouvement p que de l’énergie E. On sait que la relation entre les 2 est
donnée par,

p2 = 2mE (10.6)

Ainsi cela permet de réecrire le nombre d’états d’énergie comme,

Φ(p) =
4

3
V
1

8

p3

π2h̄3 (10.7)

En utilisant que ν(p)dp = ν(E)dE, la densité d’états sera donnée par,

νp,p+dp(p) =
4πp2V

h̄3 (10.8)

R En dérivant la densité d’énergie, nous avons fait l’approximation que l’énergie devenait
continue, alors qu’en réalité nous sommes dans le cas d’une particule dans une bôıte où
l’énergie est quantifiée. Nous sommes donc passés d’une somme discrète à une intégrale
continue. Il faut garder cette approximation à l’esprit et se rappeler que les niveaux d’énergie
sont quantifiés.
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10.3 Ensemble de Fermions

Les fermions ont une particularité : deux fermions ne peuvent pas occuper le même état. En
cas de dégénérescence, on peut mettre le même nombre de particules dans le ”même” état que la
dégénérescence de l’état. Nous supposerons ici que la dégénérescence est contenue dans la somme.
Par conséquent, le principe d’exclusion de Pauli impose que le logarithme naturel de la fonction de
partition soit :

ln Ξ =
∑
i

ln
(
1 + eβ(µ−εi)

)
. (10.9)

Nous pouvons également calculer le nombre moyen de particules dans le système ⟨N⟩. Par définition,
nous avons :

⟨N⟩ = 1

β

∂ ln Ξ

∂µ
.

R Cette formule découle du raisonnement suivant : la dérivée de lnΞ par rapport à µ donne :

∂µ log Ξ =

∑
β
∑

i mi

Ξ
e−β

∑
i εimi+βµ

∑
i mi = β⟨ni⟩

Nous pouvons calculer explicitement le nombre de particules :

⟨N⟩ =
∑
i

eβ(µ−εi)

eβ(µ−εi) + 1
=
∑
i

1

eβ(εi−µ) + 1
=
∑
i

⟨ni⟩,

où ⟨ni⟩ est le nombre moyen de particules dans l’état i. Ce que nous avons dérivé ici est connu
comme la fonction de Fermi-Dirac pour le nombre moyen de particules dans le système :

⟨ni⟩ =
1

eβ(εi−µ) + 1
.

Cela donne la probabilité de trouver une particule dans l’état i. Nous traçons cette fonction pour
µ = 7 et différentes valeurs de β sur la Fig.10.1. Si nous prenons la limite de β → ∞, nous obtenons
une fonction indicatrice qui est égale à 1 pour εi ≤ µ et 0 sinon, comme le montre la Fig.10.1. En
outre, si nous prenons le cas où ϵi−µ ≫ 1, la fonction diminue de manière exponentielle : e−β(εi−µ).
C’est ce que nous appelons la limite de Maxwell-Boltzmann, qui est la limite classique dans laquelle
nous ”oublions” tous les effets quantiques.
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Figure 10.1: Fonction de Fermi-Dirac pour différentes valeurs de β.

En revenant au cas de T = 0, nous voyons que µ impose que nous ne puissions avoir que des
énergies inférieures ou égales à µ. Lorsque T = 0, le nombre moyen de particules du ⟨N⟩ devient la
fonction ”Heaviside” donnée par :

⟨Ni⟩ =
∑

Θ(εi ≤ µ).

C’est le cas dans l’hypothèse discrète. Si l’on prend le cas continu, on a :

⟨N⟩ =
∫ ∞

0

Θ(εi ≤ µ)ν(ε)gdε =

∫ µ

0

gν(ϵ)dϵ.

Figure 10.2: Puits de potentiel montrant le niveau
d’énergie de Fermi εF .

Cette intégrale décrit le nombre d’états par
unité d’intervalle d’énergie. Dans cette formule,
chaque niveau d’énergie peut être dégénéré et
cette fonction g est la densité d’états. Comme
nous parlons ici d’électrons, nous avons g =
2. Cela s’explique par le fait que nous avons
deux états de spin possibles pour chaque niveau
d’énergie. Pour visualiser la situation, nous
représentons les niveaux d’énergie comme sur la
Fig. 10.2, où les niveaux d’énergie deviennent
de plus en plus serrés au fur et à mesure que
l’on monte. À une température de T = 0, tous
les états d’énergie inférieurs à µ sont occupés,
tandis que les autres restent vides.

La valeur µ(T = 0) est appelée énergie de
Fermi εF . Le niveau d’énergie de Fermi est im-
plicitement défini par la fonction :

N =

∫ εF

0

gν(ε)dε,
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où N est donné par le nombre de particules dans le système.

Ainsi, en utilisant la Fig.10.2 il est utile de définir la température de Fermi, donnée par:

TF =
εF
kB

. Tant que la température du système T reste inférieure TF , la particule considérée

restera immobile. Illustrons ces principes par deux exemples importants.

Figure 10.3: Évolution du potentiel chimique µ en fonction de la température T

Ex.1 : Electrons dans une solide
Considérons un système d’électrons dans une solide sans interactions entre eux, ainsi un gaz
d’électrons indépendant mais qui peut intéragir avec la solide. La température de Fermi typique
d’un tel système est de l’ordre de TF ≈ 60000K, ce qui implique que la température du système
peut être approximée comme nulle.
Ainsi, les seules particules qui réagissent à un flux rentrant d’énergie sont celles qui se trouvent au
seuil d’énergie donnée par εF . Les électrons qui peuvent réagir se trouvent dans ce qui est appelé
la ”Mer de Fermi”.

Pour illustrer l’aspect fondamental du concept du niveau de fermi, il faut s’intéresser à la théorie
des bandes d’énergies. Dans la figure 10.4, le premier cas de peuplement permet de faire bouger
les électrons en leur envoyant de l’énergie. Dans le second cas, le peuplement est à la fin de la
bande d’énergie autorisée et la seule manière pour les électrons de bouger est de sauter les bandes
d’énergies interdites. Pour cela, il faut leur envoyer une grande quantité énergie et ainsi selon la
largeur de la bande interdite être soit dans le cas d’un isolant ou d’un conducteur.
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Figure 10.4: Diagramme de bandes d’énergie d’un système de particules en fonction de 2 niveaux
de Fermi ϵF .

Ex.2 : Gaz parfait de fermions avec spin 1
2

Considérons un système de gaz parfait de fermions avec la densité d’énergie donnée par les particules
dans une bôıte sans interactions. Il est important de noter que la contrainte que deux fermions ne
puissent pas se trouver au même niveau d’énergie impliquera une interaction de quelque sorte. Le
nombre de particules est donnée par:

N =

∫ εF

0

2 · 2πV
√
ε · (2m)3/2

h3
dε (10.10)

En supposant que l’on se trouve avec l’énergie de Fermi εF et qu’ainsi T = 0, l’Eq.(10.10) se réduit:

N =
2πV

h3
(2m)3/2

2

3
εF · 2 (10.11)

Ainsi, on trouve l’énergie de Fermi pour ce système:

εF =
h̄2

2m

(
3π2N

V

)2/3

(10.12)

On trouve donc qu’à température nulle, l’énergie des fermions n’est pas nulle. Ainsi, il y a une
énergie résiduelle non nulle pour un système de fermions à température nulle. Ce résultat a des
conséquences physiques fondamentales.
Rappelons la relation entre pression et énergie pour un système classique, pV = 2

3E = 2
3
3
3NkBT .

Pour un gaz de fermions, on peut définir la pression de Fermi: pF = 2N
3V εF , autrement appelée la

pression de dégénérescence. Un gaz d’électrons est complètement dégénéré quand tous les électrons
sont à l’énergie εF .

pF =
2

3

h̄2

2m
(3π2)2/3

N5/3

V 5/3
(10.13)

Par l’Eq.(10.13) on peut constater, en rassemblant les termes constants sous x, que la pression de
dégénérescence pour une bôıte de rayon R se comporte comme:

pF ≃ x
N5/3

R5
,
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Dans le cas où il y a beaucoup d’électrons dans un gaz dans une bôıte, la masse commence
à compter. Il en découle la question suivante: est-ce que la pression pF devient assez forte pour
contrebalancer la gravité?
On peut étudier ce cas de figure en prenant en exemple des étoiles très denses. On peut procéder
par analyse dimensionnelle; comparons la pression due à la force de gravitation avec la pression de
Fermi:

pgrav =
F

A
≃ M2G

R4
, pF ≃

(
N

V

)5/3

≃ M5/3

R5

Il s’avère qu’en admettant que la densité de l’étoile n’est pas trop grande, la pression est en effet
suffisante pour contrebalancer les forces gravitationnelles agissantes sur l’étoile.

Figure 10.5: Évolution de la pression en fonction de la température T dans les cas classique et
quantique

10.4 Ensemble de Bosons

Les bosons possèdent une caractéristique fondamentale qui les distingue des fermions : ils peuvent
occuper le même état quantique sans restriction. Cette propriété est à l’origine de phénomènes
uniques tels que la condensation de Bose-Einstein, où un grand nombre de bosons se trouvent dans
le même état fondamental à basse température. En cas de dégénérescence, le nombre de particules
pouvant occuper un état donné est théoriquement illimité. Dans ce contexte, nous supposerons que
la dégénérescence est incluse dans la somme des états considérés.
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La fonction de partition grand canonique pour un ensemble de bosons est donnée par :

log Ξ = −
∑
i

log
(
1− eβ(µ−εi)

)
où β = 1

kBT , µ est le potentiel chimique, et εi sont les énergies des états accessibles.

Le nombre moyen de particules est :

⟨N⟩ = 1

β

∂ log Ξ

∂µ
=
∑
i

1

eβ(εi−µ) − 1
=
∑
i

⟨ni⟩

La fonction de distribution de Bose-Einstein, qui donne le nombre moyen de bosons occupant l’état
i, est :

⟨ni⟩ =
1

eβ(εi−µ) − 1

10.4.1 Comparaison des Distributions

Le graphique ci-dessous montre la distribution de Bose-Einstein en fonction de (ε− µ)/kT :

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

(ε− µ)/kT

⟨n
⟩

Bose-Einstein

Figure 10.6: Distribution de Bose-Einstein en fonction de (ε− µ)/kT .

Le graphique suivant compare les distributions de Bose-Einstein, de Maxwell-Boltzmann et de
Fermi-Dirac :
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Figure 10.7: Comparaison des distributions de Bose-Einstein, Maxwell-Boltzmann et Fermi-Dirac.

On peut faire aussi la comparaison du potentiel chimique des fermoins et bosons en fonction de
la température:

Figure 10.8: Potentiel chimique en fonction de la température.
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Ce graphique présente une comparaison entre les comportements thermodynamiques des fermions
et des bosons en fonction de la température réduite T/T0. L’axe vertical représente le rapport du
potentiel chimique µ ou de l’énergie de Fermi εF à une température de référence T0. L’axe horizontal
indique la température réduite.

• Courbe rouge (fermions) : Cette courbe montre comment l’énergie de Fermi ( εF ) diminue
progressivement avec l’augmentation de la température. Cela reflète le comportement des
fermions qui, en raison du principe d’exclusion de Pauli, conservent une énergie non nulle
même à basse température.

• Courbe bleue (bosons) : Cette courbe représente le potentiel chimique des bosons. À
basse température, le potentiel chimique reste proche de zéro, ce qui indique la formation
d’un condensat de Bose-Einstein. À la température critique Tc, marquée par une flèche, le
potentiel chimique commence à diminuer rapidement à mesure que la température augmente.

10.4.2 Nombre de Particules en Fonction de la Température

Le nombre total de particules dans un gaz de bosons est donné par :

N =

∫ ∞

0

dε ν(ε) g
1

eβ(ε−µ) − 1
(10.14)

où ν(ε) est la densité des états, g est la dégénérescence, et h est la constante de Planck.

Dans le cas où µ = 0, cette expression devient :

N =
2πgV

h3
(2m)3/2(kBT )

3/2

∫ ∞

0

dx

√
x

ex − 1
(10.15)

avec
∫∞
0

dx
√
x

ex−1 = ζ(3/2) ·
√
π/2 où ζ dénote la fonction Zeta de Riemann. Le graphique ci-dessous

illustre la relation entre le nombre de particules N et la température T pour un gaz de bosons :
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Figure 10.9: Relation entre le nombre de particules N et la température T pour un gaz de bosons.

Où nous pouvons voir que l’expression de T correspond à:

T ∗ = cst. N
3
2 (10.16)

À présent, fixons le nombre de particules à N∗. Quel µ satisfait cette contrainte ? Autrement
dit, pour quel µ(T ) a-t-on un nombre moyen de particules ⟨N⟩ = N∗ ? Comme vu plut tôt, à la
température de Bose TB , µ = 0. Pour conserver le même ⟨N⟩ = N∗ à une température T > TB , il
faut diminuer µ (qui devient donc négatif). À l’inverse, pour des températures T < TB , on voudrait
augmenter µ pour conserver le nombre de particules, mais on aurait alors µ > 0 ce qui n’est pas
possible : à quoi ressemble la courbe µ(T )|⟨N⟩=N∗ pour T < TB ?

Rappelons que la forme intégrale (10.15) n’est valable qu’à la condition que la distance ∆ε entre
les niveaux d’énergie sur lequels on intègre soient suffisamment petite. Or dans le cas de petites
températures, les bosons sont en majorité dans l’état fondamental (ou le premier, deuxième état
excité, jamais vraiment plus haut). Au lieu de calculer le nombre de particules à partir de (10.15),
on écrit à la place

N∗ = N0 +

∫ ∞

0+
dε gν(ε)

1

eβ(ε−µ) − 1
, (10.17)

où N0 désigne le nombre de particules dans l’état fondamental. L’intégrale (10.15) calcule donc
en réalité le nombre d’états excités. Simplement dans le cas ∆ε ≪ 1 (quand les niveaux d’énergie
peuvent être traités comme un continuum), la frontière ε = 0 du domaine d’intégration, c’est-à-dire
le nombre de particules dans l’état fondamental, peut-être négligée. Mais pas ici : quand T < TB

N0 devient grand par rapport à l’intégrale ci-dessus. Appelons N(µ, T ) cette intégrale. Alors on a

N0 = N∗ −N(µ, T ). (10.18)
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On s’intéresse à la proportion des particules qui sont dans l’état fondamental : N0/N
∗ dans le cas

µ = 0. Substituant (10.16) dans (10.18) on a

N0

N∗ = 1−
(

T

TB

)3/2

. (10.19)

On observe ainsi le phénomène suivant : pour tout T > TB , le nombre de bosons dans l’état
fondamental en proportion du nombre total de bosons est nul (bien que dans l’absolu, il ne le soit
pas). Mais aussitôt que la température descend en dessous de Bose (T < TB), une fraction finie du
nombre total de bosons occupe l’état fondamental. Cette transition de phase s’appelle condensation
de Bose-Einstein. Elle s’observe expérimentalement et est même à l’origine d’un certain nombre de
phénomènes physiques bien connues : superfluidité, superconductivité...

La quantification de l’énergie (propriété quantique) et l’apparition brusque (transition de phase)
de bosons en proportion de N∗ occupant l’état fondamental donne donc à voir des phénomènes non-
triviaux même dans un système à priori simple tel un gaz de bosons libres.

10.5 Rayonement du corps noir

Le corps noir est un objet idéal qui absorbe toute l’énergie électromagnétique incidente.Cette énergie
est après émise en forme de radiation thermique. Le corps noir est à l’équilibre thermique.

On va se demander quelle est la distribution des fréquences des photons.
Selon Planck, l’énergie d’un photon en fonction de sa fréquence est: E = h̄ω = hν
On reprend l’expression de ν obtenue avant, parce que on ne peut pas utiliser celle avec la masse
(les photons n’ont pas de masse):

νp(p) = g
4πp2

h3
V =

8πp2

h3
V (10.20)

Avec g = 2. Les photons ont seulement spin ±1 dû à des effets relativistes.(*Il n’y a pas de
potentiel chimique (µ): le photon n’est pas vraiment une particule)
Pour cette raison ont utilise expresion relativiste de l’energie. Cette energie est lie avec l’energie
classique de la façon suivante:

E =
√

p2c2 +m2c4 = mc2
√

p2

m2c2
+ 1 ≈ mc2(1 +

p2

2m2c2
) = mc2 +

p2

2m
+ ... (10.21)

On prends dans cette approximation p2 << mc2. Finalement on obtien l’energie du photon et
sa fréquence: E(photon) = pc, donc ω = p c

h̄
Avec cette expresion et celle de ν(p) on arrive a trouver νω(ω):

νω(ω)dω = νp(p)dp (10.22)

νω(ω) =
8π

h3
V
ω2h̄3

c3
=

V ω2

π2c3
(10.23)
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Nombre des photons vient donné par l’expresion pour les bosons:

Nphotons =
V ω2

π2c3
1

e
h̄ω
kbT − 1

(10.24)

Si on prend l’energie d’un photon (h̄ω) on arrive a la formule de Planck:

E(ω) = Nphotons · h̄ω =
V ω3h̄

π2c3
1

e
h̄ω
kbT − 1

(10.25)

Avec l’approximation de Rayleigh-Jeans (h̄ω << kbT )

E(ω) =
V ω2kbT

π2c3
(10.26)

Energie totale:

ET =

∫ ∞

0

dω
V ω3h̄

π2c3
1

e
h̄ω
kbT − 1

=
V k4bT

4

π2c3h̄3

∫ ∞

0

h̄3ω3

k3
bT

3

e
h̄ω
kbT − 1

h̄

kbT
dω =

V k4bT
4

π2c3h̄3

∫ ∞

0

x3

ex − 1
dx (10.27)

Et on finit avec V
π2c3h̄3

π4

15 k
4
bT

4

10.5.1 Example

Le rayonnement du corps noir est utile afin d’observer les raies d’absorptions de l’atmosphère d’une
planète. Voici un exemple dans lequel on peut déterminer la présence d’eau et de dyoxide de
carbone dans l’atmosphère terrestre. La terre absorbe le rayonnement solaire et le réémet sous
forme d’infrarouge correspondant au spectre d’un corps noir à une température moyenne de 288
K. Ce rayonnement va ensuite interagir avec les gaz présents dans l’atmosphère et une partie
du rayonnement sera absorbé à des longueurs d’ondes caractéristiques permettant d’identifier les
molécules présentes dans l’atmosphère.
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Figure 10.10: Comparaison entre le rayonnement de corps noir émis par la terre à température
T=288 K et une modélisation de l’absorption par l’atmosphère du rayonnement terrestre en utilisant
des données de l’HITRAN [Data] pour l’isotope le plus abondant de chaque molécule suivante:
H2O,CO2, O3, N2O,CO,CH4; ainsi que les coefficients d’absorption α des molécules de H20 et
C02.

Dans le premier graphe, la courbe bleue représente le spectre du corps noir tel qu’il serait
émis par la surface terrestre à 288 K sans aucune atmosphère pour l’absorber. La courbe rouge
montre ce qui reste du rayonnement après avoir traversé l’atmosphère, en ne tenant compte que de
l’absorption(loi de Beer-Lambert). La courbe verte montre ce qui se passe quand on tient compte à
la fois de l’absorption et de la réémission infrarouge par l’atmosphère. Le deuxième graphe montre
le coefficient d’absorption pour les molécules de H20 et C02 en fonction de la longueur d’onde. Ce
coefficient α exprime à quel point une molécule absorbe à une longueur d’onde λ donnée
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