PHYS-338: Physique Statistique 2024-2025

Lecture 1: Un peu de probabilités

Prof.:
Scribes:

1.1 Rappels et Définitions

1.1.1 Probabilités et distributions

On définit une variable aléatoire X comme une variable dont la valeur dépend du hasard : elle peut prendre
une valeur différente a chaque essai.

e Pour X une variable aléatoire discréte, chaque issue a une probabilité associée p; € (0,1) correspondant
a la probabilité que la variable aléatoire prenne la valeur de I'issue.

Exemple 1 Dans le cas d’un lancer de dé on peut écrire:

6 6
P(X=i) =§, i=123456; ae Y pi=) PX=i=1L "
i=1 i=1

e Pour X une variable aléatoire continue il est impossible de déterminer une probabilité pour une valeur
précise’. Néanmoins il est possible d’exprimer la probabilité de trouver la variable aléatoire dans un
certain intervalle : elle est définie par la fonction de densité de probabilité.

Définition 1.1 (Fonction de densité de probabilité px (p.d.f.))
Fonction mathématique non-négative décrivant la probabilité qu’une variable aléatoire continue X prenne
une certaine valeur x ou plus précisément appartienne a lintervalle [z, dx] pour dz un nombre réel positif
infiniment petit. On définit px (x) t.q.

o0

px(x)der =P(X € [z,z +dx]) avec px normalisée / px(x)dr = 1. (1.1)

— 00

1l est également possible de décrire le cas des variables aléatoires discrétes avec une p.d.f.
En reprenant l'exemple du jet de dé :

® Le facteur de % devant la somme de I'Eq.(1.2) correspond & la normalisation de la fonction.

1A proprement parler, chaque point a probabilité nulle, voir Prop. 1.2 ci-apres.
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Proposition 1.2 On peut élargir la définition précédente a un intervalle choisi [a,b], avec a, b € R.
La probabilité que X prenne une valeur comprise dans cet intervalle est alors :

b
P(X € [a,}]) = / px(2)da. (1.3)

a

Exemple 2 Voici un exemple de plusieurs distributions de base avec la p.d.f correspondante :

1. Distribution de Dirac : voir Fig.1(a)
Pour une moyenne c et une variance de 0, la p.d.f. s’écrit

px =6(z —¢) (1.4)

Ainsi dans le cas de variables aléatoires discretes, le graphe de la p.d.f. correspond a un ensemble de
pics placés selon les valeurs possibles de l’expérience.

2. Loi normale (ou Gaussienne) : voir Fig.1(b)
Pour une moyenne p et une variance A, la p.d.f. s’écrit
1 _(e—p)?

pX(I) = N(I,‘LL,A) = \/me B (15)

® Noter que pour A — 0 la Gaussienne tends vers une distribution de Dirac centrée en .

3. Loi uniforme : voir Fig.1(c)

1 a <<
px<x>:u(x;a,b>:{ e masost

sinon.

4. Loi exponentielle : voir Fig.1(d)

px(z) = %e*§ (1.6)

avec x > 0 et X > 0 la moyenne.

® En radioactivité, \ est nommée constante de temps (ou durée de vie moyenne) .

L]
Définition 1.3 (Espérance) L’espérance d’une variable aléatoire X est définie
E[X] :/ xpx (x)dx. (1.7

Le cas discret est défini de maniére analogue avec une somme. Pour une fonction g mesurable, on a

E[g(X)] = / o(@)px (@)da. (18)

— 00
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px| pPx

(c) (d)
Figure 1.1: Distributions: (a) de Dirac, (b) Normale, (¢) Uniforme et (d) Exponentielle.

Définition 1.4 (Moment d’ordre n)

un = E[X"] = /OO 2" px (z)dn (1.9)

—0o0

le moment d’ordren =1 : 1 = pu = ffooo xpx (x)dx est plus communément appelé la moyenne.

Définition 1.5 Soient deuzx variables X et Y:

1. Loi jointe: P(X,Y) = probabilité que X et Y soient vrais.

2. Loi conditionnelle: P(X|Y) = probabilité que X soit vrai quand Y est vrai
=P(X,Y) =P(X|Y)P(Y)

Définition 1.6 (Covariance)
E[XY] - E[X]E[Y] = Cov(X,Y) (1.10)

® (X et Y indépendants) < P(X,Y) = P(X)P(Y).

Attention, (X et Y indépendants) = Cov(X,Y) = 0, mais la réciproque est fausse en général.
L’équivalence tient pour X, Y gaussiennes.
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1.1.2 Propriétés de base

Proposition 1.7 (Changement de variable)

Soit X distribuée selon px et une autre variable Y t.q. Y = g(X), on trouve:

py(y) = / " px(@)8(y — g(a))da

En utilisant le résultat de la fonction de Dirac Vx; t.q. f(x;) =0

O(x — x;)

0(f(2)) = ——
| (i)

on obtient alors Vx; solutions de g(x;) = y:

Z/dﬂﬁpx Z |g ) pX x;).

Pour g une fonction monotone, la p.d.f. de'Y peut donc étre écrite :

dx

py (y) = px () o

tirée également de 1’égalité des probabilités py (y)dy = px (x)dx.

® Attention & ne pas oublier le jacobien \dz| dans les calculs!

Exemple 3 Soit une variable aléatoire X ~ U[0,1]. On définit Y = —In(X) (& e ¥ =1)

La distribution de Y est donc donnée par py (y) = px ()% = |4z L=V

1.2 Bornes de bases

(1.11)

(1.12)

(1.13)

(1.14)

Proposition 1.8 (Inégalité de Markov) - Soit X une variable aléatoire non-négative, et a > 0, alors

Preuve 1

(1.15)

(1.16)
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en utilisant que x > a, et ensuite que xpx (x) > 0.

Proposition 1.9 (Inégalité de Chebyshev) - Soit X une variable aléatoire qui admet une variance non-nulle

o? ainsi qu’une moyenne. Alors pour tout k > 0,

1
P(1X — E[X]| > ko) < . (1.17)
Preuve 2

Considérons la variable aléatoire (X — E[X])? de variance o®
P(|X — E[X]| > ko) = B((X — E[X])? > K%0?)

E[(X —E[X])?] E 72 >
< ( k202[ D = X 11202[ ] k(2702 en utilisant l'inégalité de Markov (1.18)

1
T k2

Cette inégalité permet de borner la probabilité qu'une variable aléatoire dévie de la moyenne, et ce en
utilisant la variance de cette variable.

Exemple 4 SoitY, = %Z?:l X, la moyenne empirique, avec X; des variables aléatoires i.i.d. d’espérance
et de variance A.

Alors E[Y,] = 2 37 | E[X;] = 2 - np = p tandis que Var[Y,] = % - nA = 2. Appliquant l'inégalité de
Chebyshev, nous obtenons P(|Y,, — p| > €) < néZ Cette probabilité tend vers 0 lorsque n — oco. Ce résultat
mene a la loi des grands nombres, qui est énoncée maintenant. [

Définition 1.10 (Convergence en probabilité) - Soient X, X1, Xs, ... des variables aléatoires. On dit que
X, tend vers X en probabilité, X, Ei X, si pour tout € > 0,

lim P(|X,, — X|>¢)=0 (1.19)
n—oo
Définition 1.11 (Convergence en distribution) - Soient X, X1, Xo, ... des variables aléatoires, ayant une
fonction de répartition Fx, Fx,, Fx,,.... On dit que X,, tend vers X en distribution, X, D, X, si
lim Fx, (z) = Fx(z) (1.20)
n—oo

en tout © ol Fx(x) est continue.

Théoréme 1.12 (Loi des grands nombres) - Soit (X,,) une suite de variables aléatoires i.i.d d’espérance .
Alors la moyenne empirique Y, = %22:1 Xy converge en probabilité vers l'espérance p

Y, & u (1.21)

Ainsi, Ve > 0, P[|X — p| > ¢] = 0.
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Théoréme 1.13 (Théoréme Central Limite) - Soit (X,,) une suite de variables aléatoires i.i.d. de moyenne
w et de variance A. On considére également la moyenne empirique Y, = %22;1 X, alors la variable
aléatoire

o \/ﬁ(Yn - M)
Sp = 7\/3 (1.22)

converge en distribution vers une loi normale de moyenne 0 et de variance 1 : Sy, Lox~ N(0,1).

1.3 Fonctions génératrices
Définition 1.14 (Fonction génératrice des moments, MGF')

Soit X une variable aléatoire de densité px(x) et de support S. La MGF Mx(t) est définie comme
M (t) = E[e'¥] = / dopx (z)et. (1.23)
S

Le cas discret est analogue en remplacant l’intégrale par une somme.

La MGF est la transformée de Laplace de la densité, et n’existe pas Vt en général (il faut que la densité
décroisse "assez vite” quand x — 00).

Par construction la proposition suivante est vraie :

Proposition 1.15
O"Mx (1)

= pun = E[X"], 1.24
o pin = E[X"] (1.24)

t=0
ou p, est le n-ieme moment.

On peut définir de maniere analogue la fonction caractéristique en utilisant la transformée de Fourier et non
celle de Laplace :

Définition 1.16 (Fonction caractéristique)

Soit X une variable aléatoire de densité px (x) et de support S. La fonction caractéristique ¢x (t) est
définie comme

ox(t) = Ele™] = [ dapx()et, (1.25)

Dans ce cas, la transformée est toujours bien définie pour l'intégrale de Lebesgue puisque e est
dominé en module par 1, et que la densité est normalisée (théoreme d e convergence dominée).

On a de la méme maniere que pour la MGF:

Proposition 1.17
" px(t) )
I =y, 1.26
o |, (1.26)



Lecture 1: Un peu de probabilités 1-7

Définition 1.18 (Fonction génératrice des cumulants, CGF)
Soit X une variable aléatoire de densité px(x) et de support S. La CGF Kx(t) est définie comme
Kx(t) = In(Mx(t)) = In(E[e!™]). (1.27)

Les cumulants sonts alors définis k, = 9 gtif @)

t=0

Exemple 5 Les deux premiers cumulants sont donnés par

OIn(Mx(t)) ; 0 :
n(Mx
= = —Mx(t)| = 1.28
" g |, k() o X W) = (1.28)
1 #% 1 Ho
——
L PmWMx()| T 1 (oMx(1)) L0 ol w2 =a (1.20)
2T |, Moy U ot Mx(0) g2 X \W| TR =S '
]
Proposition 1.19 (Additivité des fonctions génératrices)
Soient XY deux variables aléatoires indépendantes. En général
M1y (t) = Mx (t) My (t), (1.30)
Kxyiv(t) = Kx(t) + Ky (t). (1.31)
Preuve 3
Mx 1y (t) = E[efX ] = E[etXetY] = E[etX|E[e!Y] = Mx (t) My (t) (1.32)

en utilisant lindépendance pour factoriser les espérances. En prenant le logarithme de 1.32 prouvée ci-
dessus, il vient la relation 1.31.

® Cela signifie en particulier que pour ¥ = Z?:l X, ot les {X;}i=1
et Ky(t) =nKx, (t)

n sont iid, My (t) = (Mx, (t))"

,,,,,

® Il suit en dérivant la relation 1.31 que pour deux variables aléatoires indépendantes, les cumulants des sommes
sont les sommes des cumulants.

1.4 Grandes déviations

Si 'on a vu & l'aide du CLT que les écarts & la moyenne d’une variable aléatoire du type ¥ = Y " | X,
avec {X;};=1,. n 1.1.d. sont répartis comme une gaussienne d’écart type \/A/n, il est aussi intéressant de
considérer les événements beaucoup plus rares lors desquels une valeur extréme est atteinte. Pour ce faire,
les quelques résultats suivants sont utiles.
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Proposition 1.20 (Borne de Chernof)
Soient X, X1, ..., X,, i.i.d, a € R. Alors

1 n
P|=S "X, >a|l <emPa-Ex()  yys . a3
l” 2%z a] = > (1.33)
Preuve 4
>0 .
- n > Markov
ZX = d] ZX > nal 2 ]P)[)‘ZXZ' > Ana| = P[ekzizl X > eAna} <
izl (1.34)
[8/\21:1 1] “:d ]E[e/\X]n _ en[ln(]E[eM])_/\a] _ e_”(/\a—Kx(k))
6)\na 6)\na

Puisque l'inégalité 1.33 est valide pour toute valeur de ), il est naturel de chercher a trouver une valeur
minimisant la borne, i.e. prendre le supremum sur A de la valeur absolue de I’exponant. Le résultat suivant
indique que cette borne optimale est saturée pour n — oo :

Théoreme 1.21 (Théoréme de Cramér)

ln]P’[ ZX > ]H—Oo>—i1;,g (M — Kx(N) (1.35)

On définit alors la fonction de grande déviation

I(a) := ig}g (Aa—Kx(\). (1.36)

® Le théoréme peut se reformuler P [% TXi > a] = e (@) o4 < se lit “se comporte, quand n est
grand, comme”.

® 11 est intéressant de noter que la fonction I(a) est la transformée de Legendre de la fonction génératrice
des cumulants.

Exemple 6 Soit X; des v.a. iid selon la loi de probabilité Rademacher, i.e. que X; = 1 avec probabilité
%, Définissons alors la v.a. YVy:= 2 Z"X L’esperance des X; est de 0, leur variance est de 1. On voit
donc que Y, =0+ \F Interessons nous maintenant aux grandes déviations de Y,. Pour cela, calculons la

fonction de grande déviation I(a):

(e +e7") = cosh(t). (1.37)

M\H

Pour obtenir I(a), il reste & trouver supycgp(Aa —In

—

cosh(A))) = supyer ga(A)-

dg,
d\

(A*) = a — tanh(\*) = 0 = X\* = atanh(a), a € [0;1]. (1.38)



Lecture 1: Un peu de probabilités 1-9

La seconde dérivée étant strictement négative, \* correspond bien au mazimum de g, pour a € [0;1].
Sia =1, supyer(A — In(cosh(N))) = In(2), si a > 1, supycrp(Aa — In(cosh(X))) = +oo, et sia < 0, le
supremum de g, est 0.

Ainsi,
(In(v1 — a?) 4+ aatanh(a)) , si a € ]—1;1]
I(a) =< In(2), sia=—1,1 (1.39)
+o0, silal> 1,
ot on a utilisé cosh(atanh(a)) = \/11_7 Enfin, en utilisant le théoréme de Cramér sur X; et —X;, on

obtient que
_n(llﬂ(\/1—112)-'“1afcanh(a))7 siae€ [071[

2%, sta=1 (140)
0, sia>1.

lEH:XZ- >aq = e (@) =

En utilisant le théoréeme de Cramér seulement sur les X;, on utilise le supremum sur les A > 0, et on
trouve que le supremum pour a < 0 est 0. La probabilité que la moyenne empirique soit supérieure a
a < 0 est alors d’exactement 1. Ceci est surprenant si on compare aux probabilités trés petite mais
approximées pour a € [0;1] qui restent vraies. C’est comme s’il ne pouvait pas y avoir de déviations
inférieures a la moyenne. Cela est surement di & un manque d’information donné par I'inégalité de
Chernof, qui pour Va < 0 donne P [% TXi> a] < 1. Ceci est corrigé en appliquant le théoréme de
Cramér aussi aux —X;, ce qui permet de trouver la déviation par rapport a la moyenne, par symétrie
de la loi de Rademacher autour de son espérance.

Théoréme 1.22 (Théoréme de Sanov)

Soient X1, Xa, ..., Xy des variables aléatoires i.i.d. suivant une distribution de probabilité P, ou P = {pi}le
désigne les probabzlztes théoriques associées a chaque X;.

La probabilité d’observer une distribution empirique P = {p;}¥_, aprés n observations est donnée par
l’expression suivante :

P[P] < e~ Dxz(PIIP), (1.41)
on DKL(PHP) désigne la divergence de Kullback-Leibler (aussi appelée entropie relative) définie par :

Dyer(P||P) : Zpl In (“) (1.42)

et ou le symbole < signfie que c’est - = fois le logarithme des deux expressions qui est égal dans la mesure ot
n tend vers linfini (ze an < b, & lzmn_>C>O ~In(a,) = limy,— oo —In(by, ))

En probabilité et en théorie de I'information, le théoréme de Sanov est un peu différent, il traite de la
probabilité de trouver la loi empirique a l’intérieur d’un ensemble A, plutdt que de trouver exactement
une loi empirique p. Le théoréeme prend alors un forme un peu différente avec des préfacteurs qui
apparaissent devant ’exponentielle. Nous nous contenterons dans ce cours de la forme donnée ci-
dessus.

Exemple 7 Pour illustrer le théoréme, on peut s’imaginer la situation suivante : Munis de n boules, on
considere un ensemble de k boites ou lors d’un lancée d’une boule, la probabilité que cette derniére tombe
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dans la boite k est de py.

Maintenant, on fixe nos distributions de probabilités P et P. On va supposer que P correspond a la distri-
bution de probabilité réelle qui dépend de la taille des boites les unes par rapport aux autres tandis que p
correspond a la distribution de probabilité étudiée par le lanceur.

Dans notre exemple, faisons ’hypothése que le lanceur cherche a déterminer la probabilité d’observer une
distribution uniforme au bout de n lancers, ie P ~ U([1,k]).
En ce qui concerne la distribution de probabilité réelle P, on va considérer 2 cas de figures :

e Distribution conforme : les boites sont de tailles identiques donc la distribution de probabilité réelle P
est aussi uniforme ie P ~ U([1,k]).

e Distribution biasée : les boites ne sont pas de la méme taille. On suppose que les boites impaires sont
deuz fois plus grandes que les boites paires ce qui peut se modéliser par la loi de probabilité suivante :

4 . . .
35 St m est impaire

pi=P(X;=m)=1{% ) (1.43)
s;  Stm est paire
Sa’n/bty ChGCk : 21 Pi = g : (ppaire +pimpaire) - g : (372k + 3%1@) = g . % = ].

A présent, on calcule la divergence de Kullbach-Leibler Dy (P||P) dans les deuz cas de figures :

e Dans le premier cas ot P est uniforme, = Dgp(P||P) =" p;In (%) =0

. 1 1/k
e Dans le deuziéme cas ot P est biaisée, = Dy (P||P)= Zle +1In (1;]“) = Z Z In < / ) +
’ Ppaire

Ppaire

1 1/k 1 1 3k 1 3k 1. (9 3
| —— )=z |n(--Z )4+ (—-=) === ) =In(-—=) ~002
X 1 Gonr) 3 7) 0 (T 30 () () =00

Pimpaire

A partir de ces coefficients, on va pouvoir illustrer notre exemple, a savoir la probabilité d’observer une
certaine distribution P, ici uniforme, en fonction d’une distribution donnée P (en supposant n assez grand
pour que le théoréme s’applique), ici conforme et biasée.

De cette exemple, on peut conclure que lorsque la distribution réelle P est uniforme, la probabilité
d’observer une distribution P uniforme vaut logiquement 1 tandis que pour la distribution P biasée, la
probabilité de l’observer tend vers zéro a mesure que le nombre de lancers n augmente. [

Avant de prouver le théoreme de Sanov, il est nécessaire de s’intéresser a la notion d’entropie, en
présentant ’entropie de Gibbs-Shannon et ’entropie relative.

1.5 Entropie de Gibbs-Shannon

Définition 1.23 (Entropie de Gibbs-Shannon)

Cas discret Soit {p1,....,pn} avec 0 <p; <1, " 1p; =1

H(p) = =i piInp;. (1.44)
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1
Distribution P conforme
Distribution P biasee
0.8
06
&
Ry 0.4+
0.2
0 I I I
0 50 100 150 200

n

Figure 1.2: Probabilité d’observation d’une distribution P uniforme selon de la distribution réelle P en
fonction du nombre de lancers n

Cas continu Soit 0 < px(x) avec fjoooo px(x)dr =1

“+oo
Hp) =~ [ dopx(a) lupx (o). (1.45)

— 00

Théoréme 1.24 Soit le coefficient binomial CF = (Z) = ﬁlk),, alors ce coefficient est borné inférieurement
et supérieurement tel que

expin = k n
e =2)) < (k) < exp(nH(p = 1)) (1.46)

On établit ainsi que (Z) < exp(nH(p = %))

Preuve 5 On se concentre d’abord sur la borne supérieure.

On utilise la propriété > (7)(£){(1 — £)"=" =1 (binéme de Newton), et en particulier

%

(1) Era-Er+<

n n

(Z) eXp(n[%ln(%) + 2= kln(l — E)]) <1 (1.47)

n n

(’;) < exp(nH(p= ")

Pour la borne inférieure, en reprenant le terme du binéme i = k, on a cette fois ci
n\ k k
1 L L |
(1) (B = Byt >
n\  exp(nH(p = £)
k) — n+1

(1.48)

~—
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Le comportement du coefficient binomial lorsque n devient grand s’étend aux coefficients multinomiaux:

n n! k;
=~ expnH({p; = 2})). 1.49
(klkg...kn> Tl PnH i = ) (1.49)

Meéme si la preuve si dessus s’adapate bien au cas multinomial, une esquisse de preuve alternative est présentée
ci-dessous en utilisant la formule de Stirling pour n et {k;}i=1,.. n > 1:

1

1 —
| n =) n ki ZZL k
e = € — = ein( 24 ) n " () = enﬁ’({pi:%})7 (1.50)
en utilisant que % =1 et que les termes en \/n, Vk; de la formule de Stirling sont exponentiellement

négligeables asymptotiquement.

1.6 Entropie relative

Définition 1.25 (Entropie relative, ou divergence de Kullback-Leibler)
L’entropie relative est définie entre deux distributions de probabilités, p et q, discrétes ou continues.
Cas discret Soient p={p;}, ¢ ={q} avec 0<p;,¢; <1, ¥ 1p;=1et X" 1q; =1,

Drr(pllg) = sz In (p1> (1.51)

Cas continu Soient px () et qx (x) les fonctions de densité de probabilité associées d respectivement p et g,

Dx1(pllg) = /Rdacpx(x) In (Z;‘Ei;) =E {m (Zﬁg)] . (1.52)

® Noter que pour ¢ = {1} une distribution uniforme sur n valeurs discrétes, Dx(p||q) = —H (p) —In(3),
i.e. la divergence de Kullback-Leibler se comporte alors & une constante pres comme l’entropie de
Gibbs-Shannon.

Proposition 1.26 (Propriété de Gibbs)
Soient deux distributions de probabilités, p et q. Alors la divergence de Kullback-Leibler respecte

Dkr(pllg) =0, avec Dgr(pllg) =0 ssip=q. (1.53)

Preuve 6 Puisque In(x) < x —1Va >0, en particulier
In <——1:> i In < i——l 5 i =1—1=0 1.54
(£)<L-1-Fon (L) <Sn (L -1)-En-To e

en utilisation la normalisation des deuz lois. Il apparait ensuite que le cas d’égalité est bien donné par
¢ = p; Vi puisque l'inégalité sur le logarithme est saturée seulement en 1. Le cas continu se traite de
maniére similaire, a la différence qu’il est possible d’exiger uniquement p = q presque partout pour le cas
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d’égalité.

® La divergence de Kullback-Leibler exprime en quelque sorte & quel point deux lois de probabilité sont

différentes I'une de 'autre puisqu’elle vaut 0 seulement quand les deux lois sont identiques. Cependant

puisque elle n’est pas symétrique (et ne respecte pas l'inégalité triangulaire) on ne peut pas parler de
distance au sens mathématique du terme, mais plutét de divergence.

A partir de cela, montrons notre version du théoréeme de Sanov.

Preuve 7 (Théoréme de Sanov) La probabilité d’observer la distribution empirique p = {pi}le a partir
de N observations suivant la distribution "réelle” p est:

A X . 3 N
P[{p177pk}] :pi\[plpfcvpk (Np/i NpAk>

= < N . >6N21ﬁ1 ln(pi).
NpAlv aNpk

Et en utilisant ’approximation des coefficients multinomiaux :

(1.55)

P[{p1,.... px}] =< eN 2 Piln(pi) =N 32, pi In(ps) — —NDxr(pllp) (1.56)



