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Lecture 1: Un peu de probabilités
Prof.:
Scribes:

1.1 Rappels et Définitions

1.1.1 Probabilités et distributions

On définit une variable aléatoire X comme une variable dont la valeur dépend du hasard : elle peut prendre
une valeur différente à chaque essai.

• Pour X une variable aléatoire discrète, chaque issue a une probabilité associée pi ∈ (0, 1) correspondant
à la probabilité que la variable aléatoire prenne la valeur de l’issue.

Exemple 1 Dans le cas d’un lancer de dé on peut écrire:

P(X = i) = 1
6 , i = 1, 2, 3, 4, 5, 6 ; avec

6∑
i=1

pi =

6∑
i=1

P(X = i) = 1. ■

• Pour X une variable aléatoire continue il est impossible de déterminer une probabilité pour une valeur
précise1. Néanmoins il est possible d’exprimer la probabilité de trouver la variable aléatoire dans un
certain intervalle : elle est définie par la fonction de densité de probabilité.

Définition 1.1 (Fonction de densité de probabilité pX (p.d.f.))
Fonction mathématique non-négative décrivant la probabilité qu’une variable aléatoire continue X prenne
une certaine valeur x ou plus précisément appartienne à l’intervalle [x, dx] pour dx un nombre réel positif
infiniment petit. On définit pX(x) t.q.

pX(x)dx = P(X ∈ [x, x+ dx]) avec pX normalisée

∫ ∞

−∞
pX(x)dx = 1. (1.1)

Il est également possible de décrire le cas des variables aléatoires discrètes avec une p.d.f.
En reprenant l’exemple du jet de dé :

pX(x) =
1

6

6∑
i=1

δ(i− x). (1.2)

R Le facteur de 1
6
devant la somme de l’Eq.(1.2) correspond à la normalisation de la fonction.

1À proprement parler, chaque point a probabilité nulle, voir Prop. 1.2 ci-après.

1-1



1-2 Lecture 1: Un peu de probabilités

Proposition 1.2 On peut élargir la définition précédente à un intervalle choisi [a,b], avec a, b ∈ R.
La probabilité que X prenne une valeur comprise dans cet intervalle est alors :

P(X ∈ [a, b]) =

∫ b

a

pX(x)dx. (1.3)

Exemple 2 Voici un exemple de plusieurs distributions de base avec la p.d.f correspondante :

1. Distribution de Dirac : voir Fig.1(a)
Pour une moyenne c et une variance de 0, la p.d.f. s’écrit

pX = δ(x− c) (1.4)

Ainsi dans le cas de variables aléatoires discrètes, le graphe de la p.d.f. correspond à un ensemble de
pics placés selon les valeurs possibles de l’expérience.

2. Loi normale (ou Gaussienne) : voir Fig.1(b)
Pour une moyenne µ et une variance ∆, la p.d.f. s’écrit

pX(x) = N (x;µ,∆) =
1√
2π∆

e−
(x−µ)2

2∆ (1.5)

R Noter que pour ∆ → 0 la Gaussienne tends vers une distribution de Dirac centrée en µ.

3. Loi uniforme : voir Fig.1(c)

pX(x) = U(x; a, b) =
{

1
b−a si a ≤ x ≤ b

0 sinon.

4. Loi exponentielle : voir Fig.1(d)

pX(x) =
1

λ
e−

x
λ (1.6)

avec x ≥ 0 et λ ≥ 0 la moyenne.

R En radioactivité, λ est nommée constante de temps (ou durée de vie moyenne) .

■

Définition 1.3 (Espérance) L’espérance d’une variable aléatoire X est définie

E[X] =

∫ ∞

−∞
xpX(x)dx. (1.7)

Le cas discret est défini de manière analogue avec une somme. Pour une fonction g mesurable, on a

E[g(X)] =

∫ ∞

−∞
g(x)pX(x)dx. (1.8)
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(a) (b)

(c) (d)

Figure 1.1: Distributions: (a) de Dirac, (b) Normale, (c) Uniforme et (d) Exponentielle.

Définition 1.4 (Moment d’ordre n)

µn = E[Xn] =

∫ ∞

−∞
xnpX(x)dn (1.9)

le moment d’ordre n = 1 : µ1 = µ =
∫∞
−∞ xpX(x)dx est plus communément appelé la moyenne.

Définition 1.5 Soient deux variables X et Y:

1. Loi jointe: P(X,Y ) ≡ probabilité que X et Y soient vrais.

2. Loi conditionnelle: P(X|Y ) ≡ probabilité que X soit vrai quand Y est vrai

⇒ P(X,Y ) = P(X|Y )P(Y )

Définition 1.6 (Covariance)
E[XY ]− E[X]E[Y ] = Cov(X,Y ) (1.10)

R (X et Y indépendants) ⇔ P(X,Y ) = P(X)P(Y ).

R Attention, (X et Y indépendants) ⇒ Cov(X,Y ) = 0, mais la réciproque est fausse en général.
L’équivalence tient pour X,Y gaussiennes.
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1.1.2 Propriétés de base

Proposition 1.7 (Changement de variable)
Soit X distribuée selon pX et une autre variable Y t.q. Y = g(X), on trouve:

pY (y) =

∫ ∞

−∞
pX(x)δ(y − g(x))dx (1.11)

En utilisant le résultat de la fonction de Dirac ∀xi t.q. f(xi) = 0

δ(f(x)) =
δ(x− xi)

|f ′(xi)|
, (1.12)

on obtient alors ∀xi solutions de g(xi) = y:

pY (y) =
∑
i

∫
dxpX(x)

δ(x− xi)

|g′(xi)|
=

∑
i

1

|g′(xi)|
pX(xi). (1.13)

Pour g une fonction monotone, la p.d.f. de Y peut donc être écrite :

pY (y) = pX(x)

∣∣∣∣dxdy
∣∣∣∣ (1.14)

tirée également de l’égalité des probabilités pY (y)dy = pX(x)dx.

R Attention à ne pas oublier le jacobien | dx
dy

| dans les calculs!

Exemple 3 Soit une variable aléatoire X ∼ U [0, 1]. On définit Y = − ln(X) (⇔ e−y = x)

La distribution de Y est donc donnée par pY (y) = pX(x)|dxdy |= |dxdy |= e−y. ■

1.2 Bornes de bases

Proposition 1.8 (Inégalité de Markov) - Soit X une variable aléatoire non-négative, et a > 0, alors

P[X ≥ a] ≤ E[X]

a
(1.15)

Preuve 1

P(X ≥ a) =

∫ +∞

a

pX(x)dx

≤
∫ +∞

a

x

a
pX(x)dx

≤ 1

a

∫ +∞

0

xpX(x)dx

=
E[X]

a
,

(1.16)
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en utilisant que x ≥ a, et ensuite que xpX(x) ≥ 0.

Proposition 1.9 (Inégalité de Chebyshev) - Soit X une variable aléatoire qui admet une variance non-nulle
σ2 ainsi qu’une moyenne. Alors pour tout k > 0,

P(|X − E[X]| ≥ kσ) ≤ 1

k2
. (1.17)

Preuve 2

Considérons la variable aléatoire (X − E[X])2 de variance σ2

P(|X − E[X]| ≥ kσ) = P((X − E[X])2 ≥ k2σ2)

≤ E[(X − E[X])2]

k2σ2
=

E[X2]− E[X]2

k2σ2
=

σ2

k2σ2
en utilisant l’inégalité de Markov

=
1

k2

(1.18)

R Cette inégalité permet de borner la probabilité qu’une variable aléatoire dévie de la moyenne, et ce en
utilisant la variance de cette variable.

Exemple 4 Soit Yn = 1
n

∑n
i=1 Xi la moyenne empirique, avec Xi des variables aléatoires i.i.d. d’espérance

µ et de variance ∆.

Alors E[Yn] =
1
n

∑n
i=1 E[Xi] =

1
n · nµ = µ tandis que V ar[Yn] =

1
n2 · n∆ = ∆

n . Appliquant l’inégalité de

Chebyshev, nous obtenons P(|Yn − µ| ≥ ϵ) ≤ ∆
nϵ2 . Cette probabilité tend vers 0 lorsque n → ∞. Ce résultat

mène à la loi des grands nombres, qui est énoncée maintenant. ■

Définition 1.10 (Convergence en probabilité) - Soient X,X1, X2, ... des variables aléatoires. On dit que

Xn tend vers X en probabilité, Xn
P−→ X, si pour tout ϵ > 0,

lim
n→∞

P(|Xn −X| > ϵ) = 0 (1.19)

Définition 1.11 (Convergence en distribution) - Soient X,X1, X2, ... des variables aléatoires, ayant une

fonction de répartition FX , FX1 , FX2 , .... On dit que Xn tend vers X en distribution, Xn
D−→ X, si

lim
n→∞

FXn
(x) = FX(x) (1.20)

en tout x où FX(x) est continue.

Théorème 1.12 (Loi des grands nombres) - Soit (Xn) une suite de variables aléatoires i.i.d d’espérance µ.
Alors la moyenne empirique Yn = 1

n

∑n
k=1 Xk converge en probabilité vers l’espérance µ

Yn
P−→ µ (1.21)

Ainsi, ∀ϵ > 0, P[|X − µ| ≥ ϵ] → 0.
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Théorème 1.13 (Théorème Central Limite) - Soit (Xn) une suite de variables aléatoires i.i.d. de moyenne
µ et de variance ∆. On considère également la moyenne empirique Yn = 1

n

∑n
i=1 Xi, alors la variable

aléatoire

Sn =

√
n(Yn − µ)√

∆
(1.22)

converge en distribution vers une loi normale de moyenne 0 et de variance 1 : Sn
D−→ X ∼ N (0, 1).

1.3 Fonctions génératrices

Définition 1.14 (Fonction génératrice des moments, MGF)

Soit X une variable aléatoire de densité pX(x) et de support S. La MGF MX(t) est définie comme

MX(t) = E[etX ] =

∫
S

dxpX(x)etx. (1.23)

Le cas discret est analogue en remplaçant l’intégrale par une somme.

R La MGF est la transformée de Laplace de la densité, et n’existe pas ∀t en général (il faut que la densité
décroisse ”assez vite” quand x → ∞).

Par construction la proposition suivante est vraie :

Proposition 1.15
∂nMX(t)

∂tn

∣∣∣∣
t=0

= µn = E[Xn], (1.24)

où µn est le n-ieme moment.

On peut définir de manière analogue la fonction caractéristique en utilisant la transformée de Fourier et non
celle de Laplace :

Définition 1.16 (Fonction caractéristique)

Soit X une variable aléatoire de densité pX(x) et de support S. La fonction caractéristique ϕX(t) est
définie comme

ϕX(t) = E[eitX ] =

∫
S

dxpX(x)eitx. (1.25)

R Dans ce cas, la transformée est toujours bien définie pour l’intégrale de Lebesgue puisque eitx est
dominé en module par 1, et que la densité est normalisée (théorème d e convergence dominée).

On a de la même manière que pour la MGF:

Proposition 1.17
∂nϕX(t)

∂tn

∣∣∣∣
t=0

= inµn. (1.26)
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Définition 1.18 (Fonction génératrice des cumulants, CGF)

Soit X une variable aléatoire de densité pX(x) et de support S. La CGF KX(t) est définie comme

KX(t) = ln(MX(t)) = ln(E[etX ]). (1.27)

Les cumulants sonts alors définis κn = ∂nKX(t)
∂tn

∣∣∣
t=0

.

Exemple 5 Les deux premiers cumulants sont donnés par

κ1 =
∂ ln(MX(t))

∂t

∣∣∣∣
0

=

1︷ ︸︸ ︷
1

MX(0)

µ︷ ︸︸ ︷
∂

∂t
MX(t)

∣∣∣∣
0

= µ, (1.28)

κ2 =
∂2 ln(MX(t))

∂t2

∣∣∣∣
0

= −

1︷ ︸︸ ︷
1

M2
X(0)

µ2
1︷ ︸︸ ︷(

∂MX(t)

∂t

)2
∣∣∣∣∣
0

+

1︷ ︸︸ ︷
1

MX(0)

µ2︷ ︸︸ ︷
∂2

∂t2
MX(t)

∣∣∣∣
0

= µ2 − µ1
2 = ∆. (1.29)

■

Proposition 1.19 (Additivité des fonctions génératrices)

Soient X,Y deux variables aléatoires indépendantes. En général

MX+Y (t) = MX(t)MY (t), (1.30)

KX+Y (t) = KX(t) +KY (t). (1.31)

Preuve 3
MX+Y (t) = E[et(X+Y )] = E[etXetY ] = E[etX ]E[etY ] = MX(t)MY (t) (1.32)

en utilisant l’indépendance pour factoriser les espérances. En prenant le logarithme de 1.32 prouvée ci-
dessus, il vient la relation 1.31.

R Cela signifie en particulier que pour Y =
∑n

i=1 Xi, où les {Xi}i=1,...,n sont i.i.d, MY (t) = (MX1(t))
n

et KY (t) = nKX1(t).

R Il suit en dérivant la relation 1.31 que pour deux variables aléatoires indépendantes, les cumulants des sommes
sont les sommes des cumulants.

1.4 Grandes déviations

Si l’on a vu à l’aide du CLT que les écarts à la moyenne d’une variable aléatoire du type Y =
∑n

i=1 Xi

avec {Xi}i=1,...,n i.i.d. sont répartis comme une gaussienne d’écart type
√

∆/n, il est aussi intéressant de
considérer les événements beaucoup plus rares lors desquels une valeur extrême est atteinte. Pour ce faire,
les quelques résultats suivants sont utiles.
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Proposition 1.20 (Borne de Chernof)

Soient X, X1, ..., Xn i.i.d, a ∈ R. Alors

P

[
1

n

n∑
i=1

Xi ≥ a

]
≤ e−n(λa−KX(λ)) ∀λ > 0. (1.33)

Preuve 4

P[
1

n

n∑
i=1

Xi ≥ a] =P[
n∑

i=1

Xi ≥ na]
λ>0
= P[λ

n∑
i=1

Xi ≥ λna] = P[

>0︷ ︸︸ ︷
eλ

∑n
i=1 Xi ≥ eλna]

Markov
≤

E[eλ
∑n

i=1 Xi ]

eλna
i.i.d
=

E[eλX ]n

eλna
= en[ln(E[e

λx])−λa] = e−n(λa−KX(λ))

(1.34)

Puisque l’inégalité 1.33 est valide pour toute valeur de λ, il est naturel de chercher à trouver une valeur
minimisant la borne, i.e. prendre le supremum sur λ de la valeur absolue de l’exponant. Le résultat suivant
indique que cette borne optimale est saturée pour n → ∞ :

Théorème 1.21 (Théorème de Cramér)

1

n
lnP

[
1

n

n∑
i=1

Xi ≥ a

]
n→∞−−−−→ − sup

λ>0
(λa−KX(λ)) (1.35)

On définit alors la fonction de grande déviation

I(a) := sup
λ>0

(λa−KX(λ)) . (1.36)

R Le théorème peut se reformuler P
[
1
n

∑n
i=1 Xi ≥ a

]
≍ e−nI(a), où ≍ se lit ”se comporte, quand n est

grand, comme”.

R Il est intéressant de noter que la fonction I(a) est la transformée de Legendre de la fonction génératrice
des cumulants.

Exemple 6 Soit Xi des v.a. iid selon la loi de probabilité Rademacher, i.e. que Xi = ±1 avec probabilité
1
2 . Définissons alors la v.a. Yn: =

1
n

∑n
i Xi. L’esperance des Xi est de 0, leur variance est de 1. On voit

donc que Yn ≈ 0± 1√
n
. Intéressons nous maintenant aux grandes déviations de Yn. Pour cela, calculons la

fonction de grande déviation I(a):

MX(t) = E[etX ] =
1

2

(
et + e−t

)
= cosh(t). (1.37)

Pour obtenir I(a), il reste à trouver supλ∈R(λa− ln(cosh(λ))) = supλ∈R ga(λ):

dga
dλ

(λ∗) = a− tanh(λ∗) = 0 ⇒ λ∗ = atanh(a), a ∈ [0 ; 1[. (1.38)
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La seconde dérivée étant strictement négative, λ∗ correspond bien au maximum de ga pour a ∈ [0 ; 1[.
Si a = 1, supλ∈R(λ − ln(cosh(λ))) = ln(2), si a > 1, supλ∈R(λa − ln(cosh(λ))) = +∞, et si a < 0, le
supremum de ga est 0.
Ainsi,

I(a) =


(
ln(

√
1− a2) + a atanh(a)

)
, si a ∈ ]−1 ; 1[

ln(2), si a = −1, 1

+∞, si |a|> 1,

(1.39)

où on a utilisé cosh(atanh(a)) = 1√
1−a2

. Enfin, en utilisant le théorème de Cramér sur Xi et −Xi, on

obtient que

P

[∣∣∣∣∣ 1n
n∑

i=1

Xi

∣∣∣∣∣ ≥ a

]
≍ e−nI(a) =


e−n(ln(

√
1−a2)+a atanh(a)), si a ∈ [0 ; 1[

1
2n , si a = 1

0, si a > 1.

(1.40)

■

R En utilisant le théorème de Cramér seulement sur les Xi, on utilise le supremum sur les λ > 0, et on
trouve que le supremum pour a ≤ 0 est 0. La probabilité que la moyenne empirique soit supérieure à
a ≤ 0 est alors d’exactement 1. Ceci est surprenant si on compare aux probabilités très petite mais
approximées pour a ∈ [0 ; 1] qui restent vraies. C’est comme s’il ne pouvait pas y avoir de déviations
inférieures à la moyenne. Cela est surement dû à un manque d’information donné par l’inégalité de
Chernof, qui pour ∀a ≤ 0 donne P

[
1
n

∑n
i=1 Xi ≥ a

]
≤ 1. Ceci est corrigé en appliquant le théorème de

Cramér aussi aux −Xi, ce qui permet de trouver la déviation par rapport à la moyenne, par symétrie
de la loi de Rademacher autour de son espérance.

Théorème 1.22 (Théorème de Sanov)
Soient X1, X2, . . . , Xk des variables aléatoires i.i.d. suivant une distribution de probabilité P , où P = {pi}ki=1

désigne les probabilités théoriques associées à chaque Xi.
La probabilité d’observer une distribution empirique P̂ = {p̂i}ki=1 après n observations est donnée par
l’expression suivante :

P[P̂ ] ≍ e−n·DKL(P̂ ||P ), (1.41)

où DKL(P̂ ||P ) désigne la divergence de Kullback-Leibler (aussi appelée entropie relative) définie par :

DKL(P̂ ||P ) :=

k∑
i=1

p̂i ln

(
p̂i
pi

)
. (1.42)

et où le symbole ≍ signfie que c’est 1
n fois le logarithme des deux expressions qui est égal dans la mesure où

n tend vers l’infini
(
ie an ≍ bn ↔ limn→∞

1
n ln(an) = limn→∞

1
n ln(bn)

)

R En probabilité et en théorie de l’information, le théorème de Sanov est un peu diffèrent, il traite de la
probabilité de trouver la loi empirique a l’intérieur d’un ensemble A, plutôt que de trouver exactement
une loi empirique p̂. Le théorème prend alors un forme un peu différente avec des préfacteurs qui
apparaissent devant l’exponentielle. Nous nous contenterons dans ce cours de la forme donnée ci-
dessus.

Exemple 7 Pour illustrer le théorème, on peut s’imaginer la situation suivante : Munis de n boules, on
considère un ensemble de k bôıtes où lors d’un lancée d’une boule, la probabilité que cette dernière tombe
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dans la bôıte k est de pk.
Maintenant, on fixe nos distributions de probabilités P et P̂ . On va supposer que P correspond à la distri-
bution de probabilité réelle qui dépend de la taille des bôıtes les unes par rapport aux autres tandis que P̂
correspond à la distribution de probabilité étudiée par le lanceur.

Dans notre exemple, faisons l’hypothèse que le lanceur cherche à déterminer la probabilité d’observer une
distribution uniforme au bout de n lancers, ie P̂ ∼ U([1, k]).
En ce qui concerne la distribution de probabilité réelle P, on va considérer 2 cas de figures :

• Distribution conforme : les bôıtes sont de tailles identiques donc la distribution de probabilité réelle P
est aussi uniforme ie P ∼ U([1, k]).

• Distribution biasée : les bôıtes ne sont pas de la même taille. On suppose que les bôıtes impaires sont
deux fois plus grandes que les bôıtes paires ce qui peut se modéliser par la loi de probabilité suivante :

pi = P (Xi = m) =

{
4
3k si m est impaire
2
3k si m est paire

(1.43)

Sanity check :
∑

i pi =
k
2 · (ppaire + pimpaire) =

k
2 · ( 2

3k + 4
3k ) =

k
2 · 2

k = 1

À présent, on calcule la divergence de Kullbach-Leibler DKL(P̂ ||P ) dans les deux cas de figures :

• Dans le premier cas où P est uniforme, ⇒ DKL(P̂ ||P ) =
∑k

i=1 pi ln
(

pi

pi

)
= 0

• Dans le deuxième cas où P est biaisée, ⇒ DKL(P̂ ||P ) =
∑k

i=1
1
k ln

(
1/k
pi

)
=

∑
ppaire

1

k
ln

(
1/k

ppaire

)
+

∑
pimpaire

1

k
ln

(
1/k

pimpaire

)
=

1

2

[
ln

(
1

k
· 3k
2

)
+ ln

(
1

k
· 3k
4

)]
=

1

2
ln

(
9

8

)
= ln

(
3

2
√
2

)
≈ 0.0257

À partir de ces coefficients, on va pouvoir illustrer notre exemple, à savoir la probabilité d’observer une
certaine distribution P̂ , ici uniforme, en fonction d’une distribution donnée P (en supposant n assez grand
pour que le théorème s’applique), ici conforme et biasée.

De cette exemple, on peut conclure que lorsque la distribution réelle P est uniforme, la probabilité
d’observer une distribution P̂ uniforme vaut logiquement 1 tandis que pour la distribution P̂ biasée, la
probabilité de l’observer tend vers zéro à mesure que le nombre de lancers n augmente. ■

Avant de prouver le théorème de Sanov, il est nécessaire de s’intéresser à la notion d’entropie, en
présentant l’entropie de Gibbs-Shannon et l’entropie relative.

1.5 Entropie de Gibbs-Shannon

Définition 1.23 (Entropie de Gibbs-Shannon)

Cas discret Soit {p1, ..., pn} avec 0 ≤ pi ≤ 1, Σn
i=1pi = 1

H(p) = −Σn
i=1pi ln pi. (1.44)
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Figure 1.2: Probabilité d’observation d’une distribution P̂ uniforme selon de la distribution réelle P en
fonction du nombre de lancers n

Cas continu Soit 0 ≤ pX(x) avec
∫ +∞
−∞ pX(x)dx = 1

H(p) = −
∫ +∞

−∞
dxpX(x) ln pX(x). (1.45)

Théorème 1.24 Soit le coefficient binomial Ck
n =

(
n
k

)
= n!

k!(n−k)! , alors ce coefficient est borné inférieurement

et supérieurement tel que

exp(nH(p = k
n ))

n+ 1
≤

(
n

k

)
≤ exp(nH(p =

k

n
)) (1.46)

On établit ainsi que
(
n
k

)
≍ exp(nH(p = k

n )).

Preuve 5 On se concentre d’abord sur la borne supérieure.

On utilise la propriété
∑n

i=0

(
n
i

)
( kn )

i(1− k
n )

n−i = 1 (binôme de Newton), et en particulier(
n

k

)
(
k

n
)k(1− k

n
)n−k ≤ 1(

n

k

)
exp(n[

k

n
ln(

k

n
) +

n− k

n
ln(1− k

n
)]) ≤ 1(

n

k

)
≤ exp(nH(p =

k

n
))

(1.47)

Pour la borne inférieure, en reprenant le terme du binôme i = k, on a cette fois ci

(n+ 1)

(
n

k

)
(
k

n
)k(1− k

n
)n−k ≥ 1(

n

k

)
≥

exp(nH(p = k
n ))

n+ 1

(1.48)
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Le comportement du coefficient binomial lorsque n devient grand s’étend aux coefficients multinomiaux:(
n

k1k2...kn

)
=

n!

k1! k2! ...kn!
≍ exp(nH({pi =

ki
n
})). (1.49)

Même si la preuve si dessus s’adapate bien au cas multinomial, une esquisse de preuve alternative est présentée
ci-dessous en utilisant la formule de Stirling pour n et {ki}i=1,...,n ≫ 1:

n!

k1! k2! ...kn!
≍ nn

Πn
i k

ki
i

1︷ ︸︸ ︷
e−n

e−
∑n

i ki
= e

−n(
∑n

i
ki
n ln(ki)−

1︷ ︸︸ ︷∑n
i ki
n

ln(n))
= enH({pi=

ki
n }), (1.50)

en utilisant que
∑n

i ki

n = 1 et que les termes en
√
n,

√
ki de la formule de Stirling sont exponentiellement

négligeables asymptotiquement.

1.6 Entropie relative

Définition 1.25 (Entropie relative, ou divergence de Kullback-Leibler)
L’entropie relative est définie entre deux distributions de probabilités, p et q, discrètes ou continues.
Cas discret Soient p = {pi}, q = {qi} avec 0 ≤ pi, qi ≤ 1, Σn

i=1pi = 1 et Σn
i=1qi = 1,

DKL(p||q) =
n∑

i=1

pi ln

(
pi
qi

)
. (1.51)

Cas continu Soient pX(x) et qX(x) les fonctions de densité de probabilité associées à respectivement p et q,

DKL(p||q) =
∫
R
dxpX(x) ln

(
pX(x)

qX(x)

)
= E

[
ln

(
pX(x)

qX(x)

)]
. (1.52)

R Noter que pour q = { 1
n
} une distribution uniforme sur n valeurs discrètes, DKL(p||q) = −H(p)−ln( 1

n
),

i.e. la divergence de Kullback-Leibler se comporte alors à une constante près comme l’entropie de
Gibbs-Shannon.

Proposition 1.26 (Propriété de Gibbs)
Soient deux distributions de probabilités, p et q. Alors la divergence de Kullback-Leibler respecte

DKL(p||q) ≥ 0, avec DKL(p||q) = 0 ssi p = q. (1.53)

Preuve 6 Puisque ln(x) ≤ x− 1 ∀x > 0 , en particulier

ln

(
qi
pi

)
≤ qi

pi
− 1 ⇒

∑
i

pi ln

(
qi
pi

)
≤

∑
i

pi

(
qi
pi

− 1

)
=

∑
i

pi −
∑
i

qi = 1− 1 = 0 (1.54)

en utilisation la normalisation des deux lois. Il apparâıt ensuite que le cas d’égalité est bien donné par
qi = pi ∀i puisque l’inégalité sur le logarithme est saturée seulement en 1. Le cas continu se traite de
manière similaire, à la différence qu’il est possible d’exiger uniquement p = q presque partout pour le cas
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d’égalité.

R La divergence de Kullback-Leibler exprime en quelque sorte à quel point deux lois de probabilité sont
différentes l’une de l’autre puisqu’elle vaut 0 seulement quand les deux lois sont identiques. Cependant
puisque elle n’est pas symétrique (et ne respecte pas l’inégalité triangulaire) on ne peut pas parler de
distance au sens mathématique du terme, mais plutôt de divergence.

À partir de cela, montrons notre version du théorème de Sanov.

Preuve 7 (Théorème de Sanov) La probabilité d’observer la distribution empirique p̂ = {pi}ki=1 à partir
de N observations suivant la distribution ”réelle” p est:

P [{p̂1, ..., p̂k}] = pNp̂1

1 ...pNp̂k

k

(
N

Np̂1, ..., Np̂k

)
=

(
N

Np̂1, ..., Np̂k

)
eN

∑
i p̂i ln(pi).

(1.55)

Et en utilisant l’approximation des coefficients multinomiaux :

P [{p̂1, ..., p̂k}] ≍ eN
∑

i p̂i ln(pi)−N
∑

i p̂i ln(p̂i) = e−NDKL(p̂||p). (1.56)


