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Série 7: Formalisme Grand Canonique

Le phénomeéne d’adsorption décrit le piégeage des molécules d’un gaz (a trois dimensions) sur la
surface d’un solide (& deuz dimensions) appelé substrat. A Uéquilibre thermodynamique, les molécules
du gaz passent réversiblement de la phase gazeuse & la phase adsorbée. Le nombre de molécules dans
une phase donnée n’étant pas constant, il est naturel d’utiliser le formalisme grand-canonique.

Selon le type d’interaction entre les molécules du gaz et le substrat, on distingue deux types
d’adsorption : la chimisorption et la physisorption. Dans le premier cas, une vraie liaison chimique
s’etablit entre les molécules piégées et le substrat. Dans le second cas ce sont les forces de van der
Waals qui attirent les molécules et les lient au substrat. Comme les énergies mises en jeu sont faibles,
les molécules piégées peuvent se déplacer sur le substrat.

* Exercise 1 Etude de la phase gazeuse

On considére un récipient de volume V' contenant un gaz a la température T', supposé parfait et
constitué de molécules monoatomiques de masse m et de potentiel chimique 4. Ce gaz joue le role de
réservoir.

Q1. Calculer la grande fonction de partition =4(7, V, 1) du gaz dans I’ensemble grand-canonique.
En déduire I'expression du grand potentiel J(T,V, pg).

Q2. En déduire le nombre moyen (Ng) de molécules dans la phase gazeuse et la loi des gaz parfaits.
Exprimer le potentiel chimique en fonction de la pression P du gaz sous la forme:

(1)

P
=kpT1
Ho = FBZ Py(T)

ol Py(T) est une fonction dépendant de la température de la facon suivante: Py(T) oc T°/2.

Solution of Exercise 1

Q1. La grande fonction de partition dans I’ensemble grand-canonique est définie comme:
[e.9]
2y(T,Vipg) = Y N Zn(T,V) (2)
N=0

ou Zy est la fonction de partition canonique pour N particules.
Pour un gaz parfait monoatomique, la fonction de partition canonique s’écrit:

N
ZN(T, V) = % <;L/3 (27rka)3/2> (3)



En substituant dans 'expression de Z:

=1 = N
HAAMEDSE <3 (2mmkT)*/? ﬂ) =2 5= @)
N=0 N=0
avec v
T= 4 (2mmkT)>/? ePrs (5)
ol nous avons utilisé le développement en série de ’exponentielle.
Le grand potentiel J est relié a la grande fonction de partition par:
V .
J(T,V, ug) = —kpTInE, = —kpT— (2rmkT)>* ¢Pta (6)

h3

Q2. Le nombre moyen de particules dans la phase gazeuse peut étre calculé & partir du grand

potentiel:
1 oJ V 3/2
Ny)=——|-— = — (2rmkT Bu
(No) = =15 ((%)TV o3 (2mmkT )2 et (7)
La pression est donnée par:
oJ kgT
P=_ <8V>T =5 (2mrmkT)%/? Phs (8)
M

En divisant ces deux expressions, nous retrouvons la loi des gaz parfaits:
PV = kpT(Ny) (9)
Pour exprimer 1, en fonction de P, nous isolons ePrs dans V'expression de la pression:

Ph?

Bug f— 10
‘ kT (2rmkT)3/? (10
En prenant le logarithme:
Ph3
=1 11
fug = In (/cBT(2wka)3/2> (11)
P

=kpT1 =: kTl 12
Ho = BBL <k;BT(27rmk;T)3/2/h3> S NG (12)

ou on a defini 3/2

T(2 T

Ro(T) = BT 7;:’“ NPT (13)

Cette expression montre explicitement la dépendance en T%/? de Py(T') comme demandé.

* Exercise 2 Chimisorption d’un gaz sur un substrat

Part I —  Modeéle de Langmuir
Dans le modéle dit de Langmuir les molécules adsorbées peuvent se fixer sur des sites réactionnels
du substrat par une liaison chimique d’énergie —eg. Ces N; sites sont discernables, indépendants,
identiques et ne peuvent accueillir chacun au plus qu’une molécule. Soit n; le nombre d’occupation du
site i: n; = 1 s’il est occupé et n; = 0, sinon. Le potentiel chimique des molécules de la phase adsorbée
est noté pg.



Q1.

Q2.

Q3.

Q4.

Q5.

Donner I'expression du nombre N, de molécules adsorbées et ’expression de I'énergie F, de la
phase adsorbée en fonction des n;.

Calculer la grande fonction de partition Z,(7}, ttq) de la phase adsorbée dans ’ensemble grand-
canonique.

En déduire le nombre moyen (N,) de molécules adsorbées ainsi que le taux d’adsorption 6
(probabilité qu’un site soit occupé) en fonction de Ty, et juiq.

Calculer 'énergie moyenne (F,) et 'entropie S, de la phase adsorbée. Retrouver ainsi ’expression
de I’entropie microcanonique.

En utilisant les conditions d’équilibre entre la phase gazeuse et la phase adsorbée, établir la loi

de Langmuir (1916):
1

b= T By Pye o

Tracer lallure de 6 en fonction de la pression a température fixée (isothermes de Langmuir).

(14)

Part II — Modéle B.E.T.
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Volume adsorbe de diazote sur des nanotubes de silice en fonction de la pression relative (d’apres G.

Roy et al, J. of Mater. Chem. 16, 1817 (2006)).

Pour certains substrats, I'isotherme d’adsorption présente un comportement plus complexe. Pour

tenir compte du phénoméne observé, on suppose maintenant que chacun des N, sites peut piéger un
nombre illimité de particules. La premiére particule adsorbée a une énergie —e; et toutes les suivantes
une énergie —eg, avec €; > €2 > 0. Ce modeéle est dit & Brunauer, Emmett et Teller (1938).

Q1.

Q2.
Q3.

Q4.

Calculer la grande fonction de partition Z, (T}, pq) de la phase adsorbée dans 1’ensemble grand-
canonique. On posera z = efla 2 = Pl et 29 = ePe2.

En déduire le nombre moyen (N,) de molécules adsorbées et le taux d’adsorption.

Utiliser les conditions d’équilibre pour exprimer (N,) en fonction de & = (P/Py(T"))z2. On
posera ¢ = eP(17€2) — 2 /2, Tracer une isotherme & partir de I'expression de 6(€).

Expliquer pourquoi le modéle B.E.T. surestime le taux d’adsorption a haute pression.



Q1.

Q2.

Solution of Exercise 2
Part I —  Modéle de Langmuir

Le nombre total de molécules adsorbées est la somme des nombres d’occupation sur tous les
sites:

Ns
Na == an (15)
i=1

ou n; vaut soit 0 soit 1.
L’énergie totale de la phase adsorbée est la somme des énergies de liaison pour chaque molécule:

Ea = —€ an = —EoNa (16)

car chaque molécule adsorbée contribue une énergie —¢p.

Dans l’ensemble grand-canonique, chaque site peut étre soit vide (n; = 0, énergie nulle) soit
occupé (n; = 1, énergie —¢g). La contribution de chaque site i a la grande fonction de partition

est:
1

Z ePpaniteoni) _ q + eP(Hateo) (17)
n;=0
Comme les sites sont indépendants, la grande fonction de partition totale est le produit des
contributions de chaque site:

N,
Ty, pta) = H(l + ePluateo)) (18)

i=1
=(1+ eﬁ(ua+6o))Ns (19)

Sinon, on peut également utiliser I'approche
Ns

Ea(TaHU/a) = Z eﬁ'uaNaZNa (Tm V) (20)

Ng=0

qui se base sur le calcul de la fonction de partition canonique. Dans le cas présent, celle-ci
s’obtient comme

N,
_ Beod ;i _ BeoNa __ _BeoNa __ _BeoNg s
ZN, = E e’eo = E 70 = ePco E 1= e (Na) (21)
conf {n;} conf {n;} conf {n;}

ol nous avons utilisé le fait que ) |, n; = N, est constant dans ’ensemble canonique. En utilisant
la formule du binéme de Newton, la grande fonction de partition est donc

N Ns N
Ea(Tmﬂa) = Z e/B’uaNaZNa (Tayv) = Z €ﬁMaNa6’860N“ <NS> (22)
a
No=0 No=0
Ns /A
_ B(pa+eo)Ns 8\ 1 Na,—B(pra+€0)(Ns—Na)
— Bluateo Z (Na>1 e PlHateo (23)
No=0
N N N,
— Blpateo)Ns (1 i e—ﬁ(ua+eo>> — (1 + eﬁ(ua+eo)> (24)

ce qui correspond a la réponse trouvée précédemment.



Q3.

Q4.

Q5.

Le nombre moyen de molécules adsorbées peut étre calculé & partir de la grande fonction de
partition:

B 181115@

(V) = 575 29
_ % BePHateo) (26)
B 1+ eflnateo)
oBliateo)
= NSW (27)

Le taux d’adsorption € est défini comme le rapport entre le nombre moyen de molécules adsorbées

et le nombre total de sites:
(N,) eB(kateo)

N, 1+ eBluateo)

(28)

L’énergie moyenne s’obtient en dérivant le logarithme de la grande fonction de partition par
rapport a f3:

dln=,
E,)) =— 29
(Ew) =~ (29)
_ oy (Ba te)ePthateo)
— _Ns 1 + eﬁ(/la+50) (30)
= —(jta + €0) (Na) (31)
L’entropie peut étre calculée a partir du grand potentiel:
Jo = —kpTIn=, = —NskBTln<1 n eﬁ(ua+60)) (32)
aJ,

— _ a — Brateo) | _
S, ( o7 )M § kp N, [1n(1 +e ) B(pa + €0)0] (33)
= —kpN,[0Inf + (1 —0)In(1 — 0)] (34)

Cette derniére expression est I’entropie de mélange pour un systéme de N; sites pouvant étre
vides ou occupés.

A T’équilibre thermodynamique entre les phases gazeuse et adsorbée, les potentiels chimiques
sont égaux:

P

o = pg = kpT'1

H l’LQ B n PO(T) (35)
En substituant cette expression dans celle de 6:

eBpateo)

1 + eB(kateo) (36)
14 (P/Ry(T))elo
1

= (38)

1+ (Po/P)eiBEO

Cette expression est la loi de Langmuir. Les isothermes (0 vs P a T fixée) ont le comportement
suivant:

- A basse pression (P < Pye 5): § ~ (P/Py)ef « P

- A haute pression (P > Pye 7))  ~ 1

- Le taux de recouvrement est § = 1/2 quand P = Pye /¢



Part II —  Modéle B.E.T.

Q1. Pour un site donné, il peut y avoir n = 0,1, 2, ... molécules adsorbées. L’énergie d’un site avec
n molécules est:
E,=—-e—(n—1)e; pourn>1 (39)

La contribution d’un site & la grande fonction de partition est:

G=1+ zePel 4 S2pBlate) 4 3 B(at2e) 4 | (40)

=1+ 212(1+ 222 + (202)% +---) (41)
z1%

=14 (42)

oll nous avons utilisé la somme de la série géométrique.
La grande fonction de partition totale est:

Ns
Ea(Tavua) = <1 + o > (43)

1 — 292

Q2. Le nombre moyen de molécules adsorbées est:

OlnZ

<Na> =z Oz . (44)
_N z12(1 — 2z92) + 212229 (45)

(1 — 22)(1 + 1flzzzz)

1%
=N, 46
s (1 — ZQZ)(I =+ 1fl;;z) ( )
Le taux d’adsorption est § = (N,)/Ns.
Q3. En utilisant les conditions d’équilibre jiq = j14 et la définition de &, nous pouvons réécrire:

9 — ¢ (47)

1=+ (c=1)¢)

Cette équation est I'isotherme B.E.T. Le paramétre ¢ représente la différence d’énergie entre la
premiére couche et les suivantes.

Q4. Le modéle B.E.T. surestime le taux d’adsorption & haute pression car: 1. Il suppose un nombre
illimité de couches adsorbées, ce qui n’est pas physiquement réaliste 2. Il néglige les interactions
entre molécules adsorbées qui deviennent importantes & haute densité 3. L’hypothése que toutes
les couches aprés la premiére ont la méme énergie n’est pas réaliste car I'influence du substrat
diminue avec la distance

* Exercise 3 Physisorption d’un gaz sur un substrat

On s’intéresse enfin au cas oul les molécules du gaz sont liées au substrat par des interactions de
type van der Waals qui leur permettent de se déplacer a la surface du solide. On considére alors la
phase adsorbée comme un gaz parfait & deux dimensions. L’énergie de chaque molécule adsorbée est:

p2

€p)=5-—¢e (48)

2m
ou p est I'impulsion & deux dimensions d’une molécule adsorbée.

Q1. Calculer la fonction de partition canonique d’un gaz parfait de N, molécules a deux dimensions
en fonction de la surface S du substrat.



Q2.

Q3.

Q1.

Q2.

Q3.

En déduire la grande fonction de partition Z, de la phase adsorbée dans l’ensemble grand-
canonique.

Exprimer le nombre moyen (N,) de molécules adsorbées et le taux d’adsorption que 'on tracera
en fonction de la pression.

Solution of Exercise 3

Pour calculer la fonction de partition canonique d’un gaz parfait a deux dimensions, nous devons
intégrer sur toutes les positions et impulsions possibles:

1

Zn,(T,5) = N 12N

/drl---drNa dp; ---dpn, e PH (49)

L’hamiltonien total est la somme des énergies individuelles:

H = N (pf — 60) (50)

L’intégrale sur les positions donne simplement S™@. Pour les impulsions, nous avons a deux

dimensions:
00 27
/dpe‘ﬁpz/Qm _/0 /0 pdpdf e PP’ /2m (51)

o0
- 27‘(‘/ pePP*/2m 4 (52)
0
=2mm/S = 2rmkpT (53)
La fonction de partition canonique est donc:

1

Zn,(T,5) = WsNa(%kaT)NaeﬁeoNa (54)
1 /S Na

= m <h2(27rkaT)€BEO> (55)

La grande fonction de partition s’obtient en sommant sur tous les nombres possibles de partic-
ules:

Eo= Y eMeNezy (T,9) (56)
No=0
0o 1 Na
= Z A <;(27kaBT)eﬁ(““+eo)) (57)
Na=0""
5 Blpa-+eo)
= exp ﬁ(%rkaT)e (58)

ou nous avons utilisé le développement en série de 'exponentielle.

Le nombre moyen de molécules adsorbées est:

10InE,
Ny) = —
WNa) B Opa

= %(2wkaT)eB(““+€°) (60)

(59)



A Téquilibre, pg = pg = kgT In(P/Py(T)). En substituant:

S
N,) = (2 T Beo 1
(Ng) h2( mmkp )PO(T)e (61)
Le taux d’adsorption peut étre défini comme:
<Na> B
¢ N, Nsh2( mmks )PO(T)e (62)

Cette isotherme est linéaire en pression (loi de Henry), contrairement a l'isotherme de Langmuir
qui sature a haute pression. Cette différence provient du fait qu’ici les molécules peuvent se
déplacer librement sur la surface (gaz parfait 2D) plutot que d’étre localisées sur des sites.



