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Série 7: Formalisme Grand Canonique

Le phénomène d’adsorption décrit le piégeage des molécules d’un gaz (à trois dimensions) sur la
surface d’un solide (à deux dimensions) appelé substrat. À l’équilibre thermodynamique, les molécules
du gaz passent réversiblement de la phase gazeuse à la phase adsorbée. Le nombre de molécules dans
une phase donnée n’étant pas constant, il est naturel d’utiliser le formalisme grand-canonique.

Selon le type d’interaction entre les molécules du gaz et le substrat, on distingue deux types
d’adsorption : la chimisorption et la physisorption. Dans le premier cas, une vraie liaison chimique
s’établit entre les molécules piégées et le substrat. Dans le second cas ce sont les forces de van der
Waals qui attirent les molécules et les lient au substrat. Comme les énergies mises en jeu sont faibles,
les molécules piégées peuvent se déplacer sur le substrat.

* Exercise 1 Étude de la phase gazeuse

On considère un récipient de volume V contenant un gaz à la température T , supposé parfait et
constitué de molécules monoatomiques de masse m et de potentiel chimique µg. Ce gaz joue le rôle de
réservoir.

Q1. Calculer la grande fonction de partition Ξg(T, V, µg) du gaz dans l’ensemble grand-canonique.
En déduire l’expression du grand potentiel J(T, V, µg).

Q2. En déduire le nombre moyen ⟨Ng⟩ de molécules dans la phase gazeuse et la loi des gaz parfaits.
Exprimer le potentiel chimique en fonction de la pression P du gaz sous la forme:

µg = kBT ln
P

P0(T )
(1)

où P0(T ) est une fonction dépendant de la température de la façon suivante: P0(T ) ∝ T 5/2.

Solution of Exercise 1

Q1. La grande fonction de partition dans l’ensemble grand-canonique est définie comme:

Ξg(T, V, µg) =
∞∑

N=0

eβµgNZN (T, V ) (2)

où ZN est la fonction de partition canonique pour N particules.
Pour un gaz parfait monoatomique, la fonction de partition canonique s’écrit:

ZN (T, V ) =
1

N !

(
V

h3
(2πmkT )3/2

)N

(3)
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En substituant dans l’expression de Ξg:

Ξg(T, V, µg) =
∞∑

N=0

1

N !

(
V

h3
(2πmkT )3/2 eβµg

)N

=
∞∑

N=0

xN

N !
= ex (4)

avec
x =

V

h3
(2πmkT )3/2 eβµg (5)

où nous avons utilisé le développement en série de l’exponentielle.
Le grand potentiel J est relié à la grande fonction de partition par:

J(T, V, µg) = −kBT ln Ξg = −kBT
V

h3
(2πmkT )3/2 eβµg (6)

Q2. Le nombre moyen de particules dans la phase gazeuse peut être calculé à partir du grand
potentiel:

⟨Ng⟩ = − 1

kBT

(
∂J

∂µg

)
T,V

=
V

h3
(2πmkT )3/2 eβµg (7)

La pression est donnée par:

P = −
(
∂J

∂V

)
T,µg

=
kBT

h3
(2πmkT )3/2 eβµg (8)

En divisant ces deux expressions, nous retrouvons la loi des gaz parfaits:

PV = kBT ⟨Ng⟩ (9)

Pour exprimer µg en fonction de P , nous isolons eβµg dans l’expression de la pression:

eβµg =
Ph3

kBT (2πmkT )3/2
(10)

En prenant le logarithme:

βµg = ln

(
Ph3

kBT (2πmkT )3/2

)
(11)

µg = kBT ln

(
P

kBT (2πmkT )3/2/h3

)
=: kBT ln

P

P0(T )
(12)

où on a defini

P0(T ) :=
kBT (2πmkT )3/2

h3
∝ T 5/2 (13)

Cette expression montre explicitement la dépendance en T 5/2 de P0(T ) comme demandé.

* Exercise 2 Chimisorption d’un gaz sur un substrat

Part I — Modèle de Langmuir
Dans le modèle dit de Langmuir les molécules adsorbées peuvent se fixer sur des sites réactionnels

du substrat par une liaison chimique d’énergie −ϵ0. Ces Ns sites sont discernables, indépendants,
identiques et ne peuvent accueillir chacun au plus qu’une molécule. Soit ni le nombre d’occupation du
site i: ni = 1 s’il est occupé et ni = 0, sinon. Le potentiel chimique des molécules de la phase adsorbée
est noté µa.
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Q1. Donner l’expression du nombre Na de molécules adsorbées et l’expression de l’énergie Ea de la
phase adsorbée en fonction des ni.

Q2. Calculer la grande fonction de partition Ξa(Ta, µa) de la phase adsorbée dans l’ensemble grand-
canonique.

Q3. En déduire le nombre moyen ⟨Na⟩ de molécules adsorbées ainsi que le taux d’adsorption θ
(probabilité qu’un site soit occupé) en fonction de Ta et µa.

Q4. Calculer l’énergie moyenne ⟨Ea⟩ et l’entropie Sa de la phase adsorbée. Retrouver ainsi l’expression
de l’entropie microcanonique.

Q5. En utilisant les conditions d’équilibre entre la phase gazeuse et la phase adsorbée, établir la loi
de Langmuir (1916):

θ =
1

1 + (P0/P )e−βϵ0
(14)

Tracer l’allure de θ en fonction de la pression à température fixée (isothermes de Langmuir).

Part II — Modèle B.E.T.

Volume adsorbe de diazote sur des nanotubes de silice en fonction de la pression relative (d’apres G.
Roy et al, J. of Mater. Chem. 16, 1817 (2006)).

Pour certains substrats, l’isotherme d’adsorption présente un comportement plus complexe. Pour
tenir compte du phénomène observé, on suppose maintenant que chacun des Ns sites peut piéger un
nombre illimité de particules. La première particule adsorbée a une énergie −ϵ1 et toutes les suivantes
une énergie −ϵ2, avec ϵ1 > ϵ2 > 0. Ce modèle est dû à Brunauer, Emmett et Teller (1938).

Q1. Calculer la grande fonction de partition Ξa(Ta, µa) de la phase adsorbée dans l’ensemble grand-
canonique. On posera z = eβµa , z1 = eβϵ1 et z2 = eβϵ2 .

Q2. En déduire le nombre moyen ⟨Na⟩ de molécules adsorbées et le taux d’adsorption.

Q3. Utiliser les conditions d’équilibre pour exprimer ⟨Na⟩ en fonction de ξ = (P/P0(T ))z2. On
posera c = eβ(ϵ1−ϵ2) = z1/z2. Tracer une isotherme à partir de l’expression de θ(ξ).

Q4. Expliquer pourquoi le modèle B.E.T. surestime le taux d’adsorption à haute pression.
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Solution of Exercise 2

Part I — Modèle de Langmuir

Q1. Le nombre total de molécules adsorbées est la somme des nombres d’occupation sur tous les
sites:

Na =

Ns∑
i=1

ni (15)

où ni vaut soit 0 soit 1.
L’énergie totale de la phase adsorbée est la somme des énergies de liaison pour chaque molécule:

Ea = −ϵ0

Ns∑
i=1

ni = −ϵ0Na (16)

car chaque molécule adsorbée contribue une énergie −ϵ0.

Q2. Dans l’ensemble grand-canonique, chaque site peut être soit vide (ni = 0, énergie nulle) soit
occupé (ni = 1, énergie −ϵ0). La contribution de chaque site i à la grande fonction de partition
est:

1∑
ni=0

eβ(µani+ϵ0ni) = 1 + eβ(µa+ϵ0) (17)

Comme les sites sont indépendants, la grande fonction de partition totale est le produit des
contributions de chaque site:

Ξa(Ta, µa) =

Ns∏
i=1

(1 + eβ(µa+ϵ0)) (18)

= (1 + eβ(µa+ϵ0))Ns (19)

Sinon, on peut également utiliser l’approche

Ξa(Ta, µa) =

Ns∑
Na=0

eβµaNaZNa(Ta, V ) (20)

qui se base sur le calcul de la fonction de partition canonique. Dans le cas présent, celle-ci
s’obtient comme

ZNa =
∑

conf {ni}

eβϵ0
∑

i ni =
∑

conf {ni}

eβϵ0Na = eβϵ0Na
∑

conf {ni}

1 = eβϵ0Na

(
Ns

Na

)
(21)

où nous avons utilisé le fait que
∑

i ni = Na est constant dans l’ensemble canonique. En utilisant
la formule du binôme de Newton, la grande fonction de partition est donc

Ξa(Ta, µa) =

Ns∑
Na=0

eβµaNaZNa(Ta, V ) =

Ns∑
Na=0

eβµaNaeβϵ0Na

(
Ns

Na

)
(22)

= eβ(µa+ϵ0)Ns

Ns∑
Na=0

(
Ns

Na

)
1Nae−β(µa+ϵ0)(Ns−Na) (23)

= eβ(µa+ϵ0)Ns

(
1 + e−β(µa+ϵ0)

)Ns

=
(
1 + eβ(µa+ϵ0)

)Ns

(24)

ce qui correspond à la réponse trouvée précédemment.
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Q3. Le nombre moyen de molécules adsorbées peut être calculé à partir de la grande fonction de
partition:

⟨Na⟩ =
1

β

∂ ln Ξa

∂µa
(25)

=
Ns

β

βeβ(µa+ϵ0)

1 + eβ(µa+ϵ0)
(26)

= Ns
eβ(µa+ϵ0)

1 + eβ(µa+ϵ0)
(27)

Le taux d’adsorption θ est défini comme le rapport entre le nombre moyen de molécules adsorbées
et le nombre total de sites:

θ =
⟨Na⟩
Ns

=
eβ(µa+ϵ0)

1 + eβ(µa+ϵ0)
(28)

Q4. L’énergie moyenne s’obtient en dérivant le logarithme de la grande fonction de partition par
rapport à β:

⟨Ea⟩ = −∂ ln Ξa

∂β
(29)

= −Ns
(µa + ϵ0)e

β(µa+ϵ0)

1 + eβ(µa+ϵ0)
(30)

= −(µa + ϵ0)⟨Na⟩ (31)

L’entropie peut être calculée à partir du grand potentiel:

Ja = −kBT ln Ξa = −NskBT ln
(
1 + eβ(µa+ϵ0)

)
(32)

Sa = −
(
∂Ja
∂T

)
µa,V

= kBNs[ln
(
1 + eβ(µa+ϵ0)

)
− β(µa + ϵ0)θ] (33)

= −kBNs[θ ln θ + (1− θ) ln(1− θ)] (34)

Cette dernière expression est l’entropie de mélange pour un système de Ns sites pouvant être
vides ou occupés.

Q5. À l’équilibre thermodynamique entre les phases gazeuse et adsorbée, les potentiels chimiques
sont égaux:

µa = µg = kBT ln
P

P0(T )
(35)

En substituant cette expression dans celle de θ:

θ =
eβ(µa+ϵ0)

1 + eβ(µa+ϵ0)
(36)

=
(P/P0(T ))e

βϵ0

1 + (P/P0(T ))eβϵ0
(37)

=
1

1 + (P0/P )e−βϵ0
(38)

Cette expression est la loi de Langmuir. Les isothermes (θ vs P à T fixée) ont le comportement
suivant:
- À basse pression (P ≪ P0e

−βϵ0): θ ≈ (P/P0)e
βϵ0 ∝ P

- À haute pression (P ≫ P0e
−βϵ0): θ ≈ 1

- Le taux de recouvrement est θ = 1/2 quand P = P0e
−βϵ0
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Part II — Modèle B.E.T.

Q1. Pour un site donné, il peut y avoir n = 0, 1, 2, . . . molécules adsorbées. L’énergie d’un site avec
n molécules est:

En = −ϵ1 − (n− 1)ϵ2 pour n ≥ 1 (39)

La contribution d’un site à la grande fonction de partition est:

ξ1 = 1 + zeβϵ1 + z2eβ(ϵ1+ϵ2) + z3eβ(ϵ1+2ϵ2) + · · · (40)

= 1 + z1z(1 + z2z + (z2z)
2 + · · · ) (41)

= 1 +
z1z

1− z2z
(42)

où nous avons utilisé la somme de la série géométrique.
La grande fonction de partition totale est:

Ξa(Ta, µa) =

(
1 +

z1z

1− z2z

)Ns

(43)

Q2. Le nombre moyen de molécules adsorbées est:

⟨Na⟩ = z
∂ ln Ξa

∂z
(44)

= Ns
z1z(1− z2z) + z1z

2z2
(1− z2z)(1 +

z1z
1−z2z

)
(45)

= Ns
z1z

(1− z2z)(1 +
z1z

1−z2z
)

(46)

Le taux d’adsorption est θ = ⟨Na⟩/Ns.

Q3. En utilisant les conditions d’équilibre µa = µg et la définition de ξ, nous pouvons réécrire:

θ =
cξ

(1− ξ)(1 + (c− 1)ξ)
(47)

Cette équation est l’isotherme B.E.T. Le paramètre c représente la différence d’énergie entre la
première couche et les suivantes.

Q4. Le modèle B.E.T. surestime le taux d’adsorption à haute pression car: 1. Il suppose un nombre
illimité de couches adsorbées, ce qui n’est pas physiquement réaliste 2. Il néglige les interactions
entre molécules adsorbées qui deviennent importantes à haute densité 3. L’hypothèse que toutes
les couches après la première ont la même énergie n’est pas réaliste car l’influence du substrat
diminue avec la distance

* Exercise 3 Physisorption d’un gaz sur un substrat

On s’intéresse enfin au cas où les molécules du gaz sont liées au substrat par des interactions de
type van der Waals qui leur permettent de se déplacer à la surface du solide. On considère alors la
phase adsorbée comme un gaz parfait à deux dimensions. L’énergie de chaque molécule adsorbée est:

ϵ(p) =
p2

2m
− ϵ0 (48)

où p est l’impulsion à deux dimensions d’une molécule adsorbée.

Q1. Calculer la fonction de partition canonique d’un gaz parfait de Na molécules à deux dimensions
en fonction de la surface S du substrat.
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Q2. En déduire la grande fonction de partition Ξa de la phase adsorbée dans l’ensemble grand-
canonique.

Q3. Exprimer le nombre moyen ⟨Na⟩ de molécules adsorbées et le taux d’adsorption que l’on tracera
en fonction de la pression.

Solution of Exercise 3

Q1. Pour calculer la fonction de partition canonique d’un gaz parfait à deux dimensions, nous devons
intégrer sur toutes les positions et impulsions possibles:

ZNa(T, S) =
1

Na!h2Na

∫
dr1 · · · drNa dp1 · · · dpNa e

−βH (49)

L’hamiltonien total est la somme des énergies individuelles:

H =

Na∑
i=1

(
p2i
2m

− ϵ0

)
(50)

L’intégrale sur les positions donne simplement SNa . Pour les impulsions, nous avons à deux
dimensions: ∫

dp e−βp2/2m =

∫ ∞

0

∫ 2π

0
p dpdθ e−βp2/2m (51)

= 2π

∫ ∞

0
pe−βp2/2m dp (52)

= 2πm/β = 2πmkBT (53)

La fonction de partition canonique est donc:

ZNa(T, S) =
1

Na!h2Na
SNa(2πmkBT )

Naeβϵ0Na (54)

=
1

Na!

(
S

h2
(2πmkBT )e

βϵ0

)Na

(55)

Q2. La grande fonction de partition s’obtient en sommant sur tous les nombres possibles de partic-
ules:

Ξa =
∞∑

Na=0

eβµaNaZNa(T, S) (56)

=
∞∑

Na=0

1

Na!

(
S

h2
(2πmkBT )e

β(µa+ϵ0)

)Na

(57)

= exp

(
S

h2
(2πmkBT )e

β(µa+ϵ0)

)
(58)

où nous avons utilisé le développement en série de l’exponentielle.

Q3. Le nombre moyen de molécules adsorbées est:

⟨Na⟩ =
1

β

∂ ln Ξa

∂µa
(59)

=
S

h2
(2πmkBT )e

β(µa+ϵ0) (60)
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À l’équilibre, µa = µg = kBT ln(P/P0(T )). En substituant:

⟨Na⟩ =
S

h2
(2πmkBT )

P

P0(T )
eβϵ0 (61)

Le taux d’adsorption peut être défini comme:

θ =
⟨Na⟩
Ns

=
S

Nsh2
(2πmkBT )

P

P0(T )
eβϵ0 (62)

Cette isotherme est linéaire en pression (loi de Henry), contrairement à l’isotherme de Langmuir
qui sature à haute pression. Cette différence provient du fait qu’ici les molécules peuvent se
déplacer librement sur la surface (gaz parfait 2D) plutôt que d’être localisées sur des sites.
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