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Série 3: Loi uniforme, et gaz parfait

* Exercise 1 Le gaz parfait

Part I —  Une particule quantique dans une boite
Une particule de masse m est confinée dans une enceinte cubique de dimension linéaire L et de
volume V = L3,

Q1. Donner les états propres du Hamiltonien ainsi que les énergies correspondantes.

Q2. Calculer 'énergie des 15 premiers niveaux d’énergie et donner leur dégénérescence Q(E,V).
A quelle propriété du systéme cette dégénérescence est-elle attribuable ? Comment Q(FE, V)
varie-t-elle avec E 7

On cherche & évaluer sommairement la fagon dont le nombre de microétats Q(E, V') varie avec E et V.
Pour cela, on se place dans I’approximation des grands nombres quantiques, de telle fagon que I’énergie
varie quasi continiment avec les nombres quantiques associés. On suppose donc que la fonction Q(E, V)
est alors elle-méme une fonction continue de F.

Q3. On considére tout d’abord le cas d’une particule dans une boite & une dimension de taille L.
A partir de expression des niveaux d’énergie de la particule évaluer le nombre d’états ®(E,L)
d’énergie inférieure ou égale & E. En déduire I'expression de la densité w(F, L) d’états compris
entre les énergies F et E 4+ 0F avec 0E < FE, ainsi que Q(F, L). Retrouver ce résultat par un
calcul classique.

Q4. Obtenir la densité d’états w(F, L) en deux puis en trois dimensions quantiquement et classique-
ment.

Q5. Calculer le nombre de microétats accessibles pour un atome d’argon de masse molaire M = 40
g.mol~! d’énergie comprise entre E et £+ §E, ot E = 610721 J et 6E = 1073! J, dans un
volume d’un litre.

Part I —  Le gaz parfait quantique
L’enceinte contient N particules sans interaction et supposées discernables. Malgré cette hy-
pothése nous allons étudier ce systéme dans le cadre de la mécanique quantique.

Q1. Montrer que ce gaz parfait est équivalent & une particule évoluant dans un espace & 3N dimen-
sions. Calculer ®(E,V, N) et w(E,V, N) en vous inspirant de la question 2-4.

Part III —  Le gaz parfait classique
Le gaz parfait de IV particules de masse m est traité dans 'approximation classique.

Q1. Ecrire le Hamiltonien du systéme.

Q2. Exprimer ®(E,V, N) comme une intégrale dans l’espace des phases et interpréter géométrique-
ment l'intégrale sur les impulsions. En déduire ®(E,V, N) et w(E,V,N).



Solution of Exercise 1
Part I —  Une particule quantique dans une boite

Q1. Le probléme est en géométrie cubique, il apparait donc naturel d’utiliser les coordonnées cartési-
ennes. L’ opérateur Hamiltonien pour une particule quantique de masse m confinée dans une
boite cubique de coté L s’écrit :

h? ( 0? 0? 0?

+ > + V(z,y,2) (1)

H= a2 Tap T a2

2m
ou V(z,y,z) est le potentiel de confinement, défini comme :

0 si0<ux,y,z<0L,

Viz,y,z) = { (2)

00 sinon.

On rappelle que les états propres (“valeurs propres”) sont définies comment 1’ensemble des valeurs
possibles F € R telle que 1'on ait

Hip = Ey, (3)
soit dans le cas unidimensionnel (1D):
0%  2mE
a2t e V=0 @
qui a pour solutions ' '
Y(x) = Ae'hs®  Bem e (5)

avec k, = \/277?2E. Les conditions au bord ¢(0) = 0 et /(L) = 0 imposent B = —A et

sin kL = 0 respectivement. Soit

ky =Ny avec n, € N. (6)

SIE

2
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U, () = Csinnm%x et E =

La solution en 3D est séparable est prend la forme avec n = (ng,ny,n.), q = (z,y, 2):

n(q) = C'sin (ngzrx) sin (ny;y) sin (nim) avecn € N3, (8)

L’ensemble des états propres est donc {Ey }hens avec

K22

n=5 73 (n? + nfj +n?) 9)
que l’on récrit sous la forme
h2 2
Eyp = |n|?-¢ avec € := WZ? (10)

Q2. Pour obtenir le dégénérescence on peut écrire le petit programme suivant:



Q3.

from Collections import defaultdict
from itertools import product

def states and degeneracy (m):
ns = product(range(m + 1), repeat=3)
en to states = defaultdict(list)
for nl, n2, n3 in ns:
en = nl*x*2 + n2%%2 + n3xx2
en_to_states|en]|.append((nl, n2, n3))

avec ce code, on peut trouver les état d’énergie et le dégénérescences pour chaque état. Faites
attention au fait que le programme tourne avec un complexité O(m3). 1

Niveau | Energie | Dégénérescence Q(F) | Combinaisons (n, ny,n.)
1 3¢ 1 1,11
P Ge 3 2,1,1), (1.2.1), (1,1,2)
3 Oe 3 (2.2.1), (2,1,2), (1.2.2)
4 11e 3 (3,1,1), (1,3.1), (1,1,3)
5 12¢ 1 (2,2,2)
6 14e 6 (3,2,1), (3,1,2), (2,3,1), (1,3.2), (2,1,3), (1,2,3)
7 17¢ 3 (3.2.2), (2.3.2), (2,2.3)
8 18¢ 3 (4,1,1), (14,1), (1,1,4)
9 19¢ 3 (3.3.1), (3,1,3), (1,3.3)
10 e 6 (1.2.1), (4,1,2), (2,4,1), (1,4,2), (2.1.4), (1,2.4)
11 22¢ 3 (2.3.3), (3.2,3), (3.3.2)
12 2de 3 (2,2,4), (2.4,2), (4.2.2)
13 26¢ 6 (1,3.4), (1,4,3), (3,14), (3.41), (4,1,3), (4,3,1)
14 27 1 (1,15), (15,1), (3.3,3), (5,1,1)
15 20¢ 6 (2,3.4), (2,4,3), (3,2,4), (3.4.2), (4.2,3), (4,3.2)

2 ~ 2 2 . 7 2 : : z . 2
Dans le tableau précédent € = 2%722 est I'unité d’énergie. Les niveaux d’énergie sont classés par

ordre croissant, et pour chaque niveau, nous donnons ’énergie en multiples de ¢, la dégénéres-
cence, et toutes les combinaisons possibles de nombres quantiques (1, ny, n.) qui correspondent
a ce niveau d’énergie.

Pour une particule dans une boite unidimensionnelle de taille L, les niveaux d’énergie sont
donnés par

n — WTL =1 €N (11)

Le nombre d’états ®(FE, L) d’énergie inférieure ou égale & F est donné par le plus grand entier
n tel que E,, = en® < E, c’est a dire

Lth-L\/E.

®(E, L) = [(E/)'?] = (B/e)'/* = (12)

La densité d’états w(E, L) est la dérivée de ®(F, L) par rapport a F :

dd L /2m
Wb, D=5 =3\ E

Le nombre d’états Q(E, L) compris entre F et E + 0E (0E < E) est alors :

E+6E
QE,L) = / w(E',LYdE' ~ w(E,L)§E = i@w
E

'Bonus: Comment on pourrait améliorer la complexité de ’algorithme?



Approche classique : dans I'espace des phases (z,p), un état quantique occupe une "cellule" de
volume h. On a donc

O(E, L) = 1/ / dpdq = L/ _ 2 omE (13)
h )22 <p Jo<g<t h Jpr<ome N

Ce qui est cohérent avec le résultat quantique.
Ces résultats montrent que Q(F, L) o %, indiquant une augmentation du nombre d’états avec

la taille du systéme et une diminution avec ’énergie en dimension 1.

Q4. Pour généraliser a deux et trois dimensions, nous procédons de maniére similaire a la question
précédente :
En deux dimensions :

. . , . 2 2 )
e “Quantiquement” : Les niveaux d’énergie sont E,, ,, = %(ng + nf/) Le nombre d’états
E .

d’énergie < E est approximativement l'aire du quart de cercle de rayon 4/ :

7 [(E 2rmL>2

La densité d’états est donc :

e Classiquement :

1 L2 vV2mE 2 L2
B(E,L) = — /2 / dpdgadg, = 2/ dp2rp = T B (14)
h* Je2<p Jo<quq,<L h= Jo h
La densité d’états classique est donc w(F, L) = ZWIZ%LQ , cohérente avec le résultat quantique

a un facteur 2 preés.

En trois dimensions :

. . . . 2.2
e Quantiquement : Les niveaux d’énergie sont Ey, n, n. = thsz (n2 4+ ni + n2). Le nombre

d’états d’énergie < E est approximativement le volume du huitiéme de sphére de rayon
\/E :
-

(2mE)®/?

14r (EN*?  4rL3

€
La densité d’états est donc :

dd 2rL?

T dE K3 (2m)**VE

e Classiquement :

1 3 V2mE ) 47TL3 3/2
@E,L:/ / dpdgyd dzz/ dpdmp? = omE
BB =0 £ <p Jocqaazs o TR g pAT = g )

(15)
La densité d’états classique est donc w(F, L) = 27;1—?(2”@)3/ 2\/E, cohérente avec le résultat
quantique.

Ces résultats montrent que w(F, L) oc L% en dimension d, et que la dépendance en énergie varie
selon la dimension o< %21,



Q5.

Q1.

Q1.

On sait que le nombre de micro états peut s’écrire Q(E) = w(F)JE, donc on doit trouver
I'expression de la densité w(F) pour ce probléme. Du point précédent, on sait que w(E) =

3/273
mm L7 1/2 a masse d'un atome d’argon c’est

V2h3
M 40 o6
=—=——32g~66-1 k 1
=N, T 6021087 0010 ke (16)
et donc on a que
w1077 —26Y3/2 —21\1/2 31 18
QE) =w(E)E = (6.6-107%°)"7(6-107*")"" 107 = 1-10".  (17)

V2(6.6 - 10-34)*

Part I —  Le gaz parfait quantique

Le gaz parfait est décrit par les 3N nombres quantiques {n;};=1 . 3n, et I'énergie est en posant
n=(ny,...,N3yN)

2 P’ 2
Fu =l e= -0 S0 (18)
7
Le nombre d’états d’énergie inférieure & E est égale au nombre de combinaisons (nq,...,n3y)

telles que Z?N nf < R? = 2{;‘51?. C’est-a-dire, le nombre d’hypercubes de coté 1 contenus
dans la fraction 1/ 23N de I’hypersphére de rayon R dans un espace & 3N dimensions:

v 9.2 3N/2
O(E,V,N) ~ 23N —C3vR 23N —C3N <WE>
3N/2
2m VN
_ N _amo 3N/2
=VYCsn (44&227T2E) h3NC’3N(2mE) (19)
ou
T3N/2
Csn = B3 (20)
> )!
La densité d’états: N
w(E,V,N) = ﬂV—C?,N(2m)3N/2E5”’N/2*1 (21)
b ) 2 h3N
Part III —  Le gaz parfait classique
L’Hamiltonien pour la particule i dans le gas parfait est
Ly 2 2
H; = %(pxz +pyi +pZz‘) (22)

donc vue que les particule n’interagit pas on a que pour toutes les particule du gaz I’hamiltonien
du systéme est

H—iﬂ 1 i g2y I o)
- ? pxz Yi zi) 2m
=1 7,*1

ou le vecteur p est le vecteur 3N dimensionnel de toutes le moments de toutes les particules.

Q2. Le nombre de microetats avec un energie inferieure a F est

1 VN
E,V,N / / dp*NdgPN = / dp®N 24
“ )= h3N H(p,q)=%§E 0<¢<L h3N H(p,q)=2 > <p (24)



et donc
VN 3N

2m —

L’intégrale n’est rien d’autre que le volume de I’hypershére de rayon R = v/2mFE dans un espace
a 3N dimensions. En se rappelant la formule de I’hypersphére, on obtient

VN
®(E,V,N) = hg—NC’gN@mE)?’N/Q ~ VNE3N/2, (26)
La densité d’états est donc
W(E,V,N) ~ VNE3N/2-1 (27)
* Exercise 2 Dynamique dans ’espace des phases

Une balle de masse m est lachée sans vitesse initiale d’une hauteur h.
Q1. Donner le Hamiltonien de ce systéme. Ecrire et intégrer les équations de Hamilton.

Q2. En supposant que la balle rebondit élastiquement sur le sol, dessiner le portrait de phase corre-
spondant (trajectoire dans ’espace des phases).

Des particules identiques, de masse m et sans interactions entre elles, se déplacent verticalement dans le
champ de pesanteur g. A t = 0 leurs points représentatifs dans ’espace des phases se trouvent dans un
rectangle dont les quatre sommets ont pour coordonnées A(qa,pa), B(ga+Aq,pa), C(qa+Aq, pa+Ap)
et D(qa, pa + Ap).

Q3. Calculer les coordonnées des points A’, B’ et C' et D’ représentant, a 'instant ¢, les particules
qui se trouvaient initialement aux points A, B, C et D. Calculer les aires des domaines ABC' D
et A/B’C'D’. Conclusion ?

Solution of Exercise 2

Q1. L’Hamiltonien du systéme pour une balle de masse m lachée d’une hauteur h sans vitesse initiale

s’écrit :
P2
H=2" 28
5 + mgy (28)

ou p est 'impulsion, g 'accélération de la pesanteur, y la position verticale (avec y = 0 au sol).
Les équations de Hamilton sont donc donne par

OH p
y _ —_—— T — 29
= T m (29)
OH
)= —— = — 30
p=—p, =" (30)
ou on rappelle que p = p(t) et y = y(1).
L’intégration de ces équations donne :
p(t) = —mgt + po (31)
L o Do
t) = —=gt —t 32
y(t) = 598"+ 1+ 4o (32)
Avec les conditions initiales yg = h et pg = 0, on obtient :
p(t) = —mgt (33)
1
y(t) = —§gt2 +h (34)



Q2. Pour dessiner le portrait de phase, nous considérons que la balle rebondit élastiquement sur le
sol. Dans I'espace des phases (y,p), la trajectoire forme une parabole :

e La balle part du point (h,0) dans I'espace des phases.

e Elle suit une courbe parabolique jusqu’au point (0, —m+/2gh) (impact au sol).

e Au rebond, I'impulsion change de signe instantanément : (0, m+/2gh).

e La balle remonte en suivant une courbe parabolique symétrique jusqu’au point (h,0).
e Le cycle se répéte indéfiniment.

On peut trouver I'équation de cette parabole dans I'espace des phases si on résoud pour ¢ dans
eq. (33) et on substitue dans eq. (34). On a que la parabole est
2

Yy p
J -1
h + 2mZ2gh (35)

Ce portrait de phase illustre la conservation de I’énergie mécanique totale du systéme, représen-
tée par l'aire constante & U'intérieur de I’ellipse.
On a que dans l'espace de phase

Phase Space Trajectory of a Bouncing Ball

Q3. Avec le méme raisonnement que dans Q1 on a que

Po 1
q(t) = qo + Et - §gt2 (36)

p(t) = po — mgt (37)

ou (qo,po) sont les coordonnées initiales dans l'espace des phases.
Donc les coordonnées des points & l'instant ¢ :

1

Al PAL 2082 pa — mgt 38

(qA+m 59t Pa mgt) (38)
1

B':(qa+ Aq+ ‘%t - §gt2,pA — mgt) (39)

+ A 1

C': (qa+ Aq+ 2ATZEy igtg,pA + Ap — mgt) (40)
+ A 1

D' (qa+2AT2E §gt2,pA + Ap — mgt) (41)



Pour visualiser on a que

Phase Space Trajectory of a Rectangle

1 1 I 1 I 1 ylt)
0.0 a1 0.2 0.3 0.4 0.5 0.6

On procéde avec le calcul des aires. L’aire initiale du rectangle (ABCD) est donnée par Ag- Ap.
Pout I'aire finale on a que les point A’B’C’D’ sont toujours les point de un parallélogramme ou
les bases ont longueur A’B’ = D’C" = Agq et la hauteur c’est toujour Ap et donc 'aire A’B’C’D’
= Agq - Ap est la méme.
Donc on a vu dans cette exemple que 'aire du domaine dans ’espace des phases reste constante
au cours du temps. Ceci est une illustration du théoréme de Liouville, qui stipule que le volume
occupé par un ensemble de points dans I’espace des phases reste constant au cours de 1’évolution
du systéme hamiltonien.
En général le théoréme de Liouville dit que I’évolution temporelle de cette densité de probabilité
p(q,p)? on obtient

dp _9p [dp. p.

TR DY R (12
donc la variation totale de la densité dans un petite volume est constante.
Cette conservation de l'aire (ou du volume en dimensions supérieures) dans l'espace des phases
est une propriété fondamentale des systémes hamiltoniens et a des implications importantes en
mécanique statistique.

20u ¢ et p sont le les coordonnées généralisées du systeme



