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Série 3: Loi uniforme, et gaz parfait

* Exercise 1 Le gaz parfait

Part I — Une particule quantique dans une boîte
Une particule de masse m est confinée dans une enceinte cubique de dimension linéaire L et de

volume V = L3.

Q1. Donner les états propres du Hamiltonien ainsi que les énergies correspondantes.

Q2. Calculer l’énergie des 15 premiers niveaux d’énergie et donner leur dégénérescence Ω(E, V ).
À quelle propriété du système cette dégénérescence est-elle attribuable ? Comment Ω(E, V )
varie-t-elle avec E ?

On cherche à évaluer sommairement la façon dont le nombre de microétats Ω(E, V ) varie avec E et V .
Pour cela, on se place dans l’approximation des grands nombres quantiques, de telle façon que l’énergie
varie quasi continûment avec les nombres quantiques associés. On suppose donc que la fonction Ω(E, V )
est alors elle-même une fonction continue de E.

Q3. On considère tout d’abord le cas d’une particule dans une boîte à une dimension de taille L.
À partir de l’expression des niveaux d’énergie de la particule évaluer le nombre d’états Φ(E,L)
d’énergie inférieure ou égale à E. En déduire l’expression de la densité ω(E,L) d’états compris
entre les énergies E et E + δE avec δE ≪ E, ainsi que Ω(E,L). Retrouver ce résultat par un
calcul classique.

Q4. Obtenir la densité d’états ω(E,L) en deux puis en trois dimensions quantiquement et classique-
ment.

Q5. Calculer le nombre de microétats accessibles pour un atome d’argon de masse molaire M = 40
g.mol−1 d’énergie comprise entre E et E + δE, où E = 6 10−21 J et δE = 10−31 J, dans un
volume d’un litre.

Part II — Le gaz parfait quantique
L’enceinte contient N particules sans interaction et supposées discernables. Malgré cette hy-

pothèse nous allons étudier ce système dans le cadre de la mécanique quantique.

Q1. Montrer que ce gaz parfait est équivalent à une particule évoluant dans un espace à 3N dimen-
sions. Calculer Φ(E, V,N) et ω(E, V,N) en vous inspirant de la question 2-4.

Part III — Le gaz parfait classique
Le gaz parfait de N particules de masse m est traité dans l’approximation classique.

Q1. Écrire le Hamiltonien du système.

Q2. Exprimer Φ(E, V,N) comme une intégrale dans l’espace des phases et interpréter géométrique-
ment l’intégrale sur les impulsions. En déduire Φ(E, V,N) et ω(E, V,N).
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Solution of Exercise 1

Part I — Une particule quantique dans une boîte

Q1. Le problème est en géométrie cubique, il apparaît donc naturel d’utiliser les coordonnées cartési-
ennes. L’ opérateur Hamiltonien pour une particule quantique de masse m confinée dans une
boîte cubique de côté L s’écrit :

H = − ℏ2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
+ V (x, y, z) (1)

où V (x, y, z) est le potentiel de confinement, défini comme :

V (x, y, z) =

{
0 si 0 < x, y, z < L ,

∞ sinon .
(2)

On rappelle que les états propres (“valeurs propres”) sont définies comment l’ensemble des valeurs
possibles E ∈ R telle que l’on ait

Hψ = Eψ , (3)

soit dans le cas unidimensionnel (1D):

∂2ψ

∂x2
+

2mE

ℏ2
ψ = 0 (4)

qui a pour solutions
ψ(x) = Aeikxx +Be−ikxx (5)

avec kx =
√

2mE
ℏ2 . Les conditions au bord ψ(0) = 0 et ψ(L) = 0 imposent B = −A et

sin kxL = 0 respectivement. Soit

kx = nx
π

L
avec nx ∈ N . (6)

On a

ψnx(x) = C sinnx
π

L
x et E =

ℏ2π2

2mL2
n2x . (7)

La solution en 3D est séparable est prend la forme avec n = (nx, ny, nz), q = (x, y, z):

ψn(q) = C sin
(nxπx

L

)
sin
(nyπy

L

)
sin
(nzπz

L

)
avec n ∈ N3 . (8)

L’ensemble des états propres est donc {En}n∈N3 avec

En =
ℏ2π2

2mL2
(n2x + n2y + n2z) (9)

que l’on récrit sous la forme

En = ∥n∥2 · ϵ avec ϵ :=
ℏ2π2

2mL2
(10)

Q2. Pour obtenir le dégénérescence on peut écrire le petit programme suivant:
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from Co l l e c t i o n s import d e f a u l t d i c t
from i t e r t o o l s import product

def states_and_degeneracy (m) :
ns = product ( range (m + 1) , r epeat=3)
en_to_states = d e f a u l t d i c t ( l i s t )
for n1 , n2 , n3 in ns :

en = n1∗∗2 + n2∗∗2 + n3∗∗2
en_to_states [ en ] . append ( ( n1 , n2 , n3 ) )

avec ce code, on peut trouver les état d’énergie et le dégénérescences pour chaque état. Faites
attention au fait que le programme tourne avec un complexité O

(
m3
)
. 1

Niveau Énergie Dégénérescence Ω(E) Combinaisons (nx, ny, nz)

1 3ϵ 1 (1,1,1)
2 6ϵ 3 (2,1,1), (1,2,1), (1,1,2)
3 9ϵ 3 (2,2,1), (2,1,2), (1,2,2)
4 11ϵ 3 (3,1,1), (1,3,1), (1,1,3)
5 12ϵ 1 (2,2,2)
6 14ϵ 6 (3,2,1), (3,1,2), (2,3,1), (1,3,2), (2,1,3), (1,2,3)
7 17ϵ 3 (3,2,2), (2,3,2), (2,2,3)
8 18ϵ 3 (4,1,1), (1,4,1), (1,1,4)
9 19ϵ 3 (3,3,1), (3,1,3), (1,3,3)
10 21ϵ 6 (4,2,1), (4,1,2), (2,4,1), (1,4,2), (2,1,4), (1,2,4)
11 22ϵ 3 (2,3,3), (3,2,3), (3,3,2)
12 24ϵ 3 (2,2,4), (2,4,2), (4,2,2)
13 26ϵ 6 (1,3,4), (1,4,3), (3,1,4), (3,4,1), (4,1,3), (4,3,1)
14 27ϵ 4 (1,1,5), (1,5,1), (3,3,3), (5,1,1)
15 29ϵ 6 (2,3,4), (2,4,3), (3,2,4), (3,4,2), (4,2,3), (4,3,2)

Dans le tableau précèdent ϵ = ℏ2π2

2mL2 est l’unité d’énergie. Les niveaux d’énergie sont classés par
ordre croissant, et pour chaque niveau, nous donnons l’énergie en multiples de ϵ, la dégénéres-
cence, et toutes les combinaisons possibles de nombres quantiques (nx, ny, nz) qui correspondent
à ce niveau d’énergie.

Q3. Pour une particule dans une boîte unidimensionnelle de taille L, les niveaux d’énergie sont
donnés par

En =
ℏ2π2

2mL2
n2 =: ϵn2 (11)

Le nombre d’états Φ(E,L) d’énergie inférieure ou égale à E est donné par le plus grand entier
n tel que En = ϵn2 ≤ E, c’est à dire

Φ(E,L) = ⌊(E/ϵ)1/2⌋ ≈ (E/ϵ)1/2 =
2
√
2m

h
· L

√
E . (12)

La densité d’états ω(E,L) est la dérivée de Φ(E,L) par rapport à E :

ω(E,L) =
dΦ

dE
=
L

h

√
2m

E

Le nombre d’états Ω(E,L) compris entre E et E + δE (δE ≪ E) est alors :

Ω(E,L) =

∫ E+δE

E
ω(E′, L)dE′ ≈ ω(E,L)δE =

L

h

√
2m

E
δE

1Bonus: Comment on pourrait améliorer la complexité de l’algorithme?
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Approche classique : dans l’espace des phases (x, p), un état quantique occupe une "cellule" de
volume h. On a donc

Φ(E,L) =
1

h

∫
p2

2m
≤E

∫
0≤q≤L

dpdq =
L

h

∫
p2≤2mE

=
2L

h

√
2mE (13)

Ce qui est cohérent avec le résultat quantique.
Ces résultats montrent que Ω(E,L) ∝ L√

E
, indiquant une augmentation du nombre d’états avec

la taille du système et une diminution avec l’énergie en dimension 1.

Q4. Pour généraliser à deux et trois dimensions, nous procédons de manière similaire à la question
précédente :
En deux dimensions :

• “Quantiquement” : Les niveaux d’énergie sont Enx,ny = ℏ2π2

2mL2 (n
2
x+n

2
y). Le nombre d’états

d’énergie ≤ E est approximativement l’aire du quart de cercle de rayon
√

E
ϵ :

Φ(E,L) ≈ π

4

(
E

ϵ

)
=

2πmL2

h2
E

La densité d’états est donc :

ω(E,L) =
dΦ

dE
=

2πmL2

h2

• Classiquement :

Φ(E,L) =
1

h2

∫
p2

2m
≤E

∫
0≤qxqy≤L

dpdqxdqy =
L2

h2

∫ √
2mE

0
dp2πp =

2πmL2

h2
E (14)

La densité d’états classique est donc ω(E,L) = 2πmL2

h2 , cohérente avec le résultat quantique
à un facteur 2 près.

En trois dimensions :

• Quantiquement : Les niveaux d’énergie sont Enx,ny ,nz = ℏ2π2

2mL2 (n
2
x + n2y + n2z). Le nombre

d’états d’énergie ≤ E est approximativement le volume du huitième de sphère de rayon√
E
ϵ :

Φ(E,L) ≈ 1

8

4π

3

(
E

ϵ

)3/2

=
4πL3

3h3
(2mE)3/2

La densité d’états est donc :

ω(E,L) =
dΦ

dE
=

2πL3

h3
(2m)3/2

√
E

• Classiquement :

Φ(E,L) =
1

h3

∫
p2

2m
≤E

∫
0≤qxqyqz≤L

dpdqxdqydqz =
L3

h2

∫ √
2mE

0
dp4πp2 =

4πL3

3h3
(2mE)3/2

(15)
La densité d’états classique est donc ω(E,L) = 2πL3

h3 (2m)3/2
√
E, cohérente avec le résultat

quantique.

Ces résultats montrent que ω(E,L) ∝ Ld en dimension d, et que la dépendance en énergie varie
selon la dimension ∝ Ed/2−1.
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Q5. On sait que le nombre de micro états peut s’écrire Ω(E) = ω(E)δE, donc on doit trouver
l’expression de la densité ω(E) pour ce problème. Du point précédent, on sait que ω(E) =
πm3/2L3
√
2h3 E1/2. La masse d’un atome d’argon c’est

m =
M

NA
=

40

6.02 · 1023
g ≈ 6.6 · 10−26kg (16)

et donc on à que

Ω(E) = ω(E)δE =
π · 10−3

√
2 (6.6 · 10−34)3

(
6.6 · 10−26

)3/2 (
6 · 10−21

)1/2
10−31 ≈ 1 · 1018 . (17)

Part II — Le gaz parfait quantique

Q1. Le gaz parfait est décrit par les 3N nombres quantiques {ni}i=1,...,3N , et l’énergie est en posant
n = (n1, . . . , n3N )

En = ∥n∥2 · ϵ = ℏ2π2

2mL2
·
3N∑
i

n2i . (18)

Le nombre d’états d’énergie inférieure à E est égale au nombre de combinaisons (n1, . . . , n3N )

telles que
∑3N

i n2i ≤ R2 = 2mL2

ℏ2π2 E. C’est-à-dire, le nombre d’hypercubes de coté 1 contenus
dans la fraction 1/23N de l’hypersphère de rayon R dans un espace à 3N dimensions:

Φ(E, V,N) ≃ 1

23N
C3NR

3N =
1

23N
C3N

(
2mL2

ℏ2π2
E

)3N/2

= V NC3N

(
2m

4 h2

4π2π2
E

)3N/2

=
V N

h3N
C3N (2mE)3N/2 (19)

où

C3N =
π3N/2(
3N
2

)
!
. (20)

La densité d’états:

ω(E, V,N) =
3N

2

V N

h3N
C3N (2m)3N/2E3N/2−1 (21)

Part III — Le gaz parfait classique

Q1. L’Hamiltonien pour la particule i dans le gas parfait est

Hi =
1

2m

(
p2xi

+ p2yi + p2zi
)

(22)

donc vue que les particule n’interagit pas on a que pour toutes les particule du gaz l’hamiltonien
du système est

H =

N∑
i=1

Hi =
1

2m

N∑
i=1

(
p2xi

+ p2yi + p2zi
)
=

∥p∥2

2m
(23)

ou le vecteur p est le vecteur 3N dimensionnel de toutes le moments de toutes les particules.

Q2. Le nombre de microetats avec un energie inferieure a E est

Φ(E, V,N) =
1

h3N

∫
H(p,q)= p2

2m
≤E

∫
0≤q≤L

dp3Ndq3N =
V N

h3N

∫
H(p,q)= p2

2m
≤E

dp3N (24)
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et donc

Φ(E, V,N) =
V N

h3N

∫
p2

2m
≤E

dp3N . (25)

L’intégrale n’est rien d’autre que le volume de l’hypershère de rayon R =
√
2mE dans un espace

à 3N dimensions. En se rappelant la formule de l’hypersphère, on obtient

Φ(E, V,N) =
V N

h3N
C3N (2mE)3N/2 ∼ V NE3N/2 . (26)

La densité d’états est donc
ω(E, V,N) ∼ V NE3N/2−1 . (27)

* Exercise 2 Dynamique dans l’espace des phases
Une balle de masse m est lâchée sans vitesse initiale d’une hauteur h.

Q1. Donner le Hamiltonien de ce système. Écrire et intégrer les équations de Hamilton.

Q2. En supposant que la balle rebondit élastiquement sur le sol, dessiner le portrait de phase corre-
spondant (trajectoire dans l’espace des phases).

Des particules identiques, de masse m et sans interactions entre elles, se déplacent verticalement dans le
champ de pesanteur g. À t = 0 leurs points représentatifs dans l’espace des phases se trouvent dans un
rectangle dont les quatre sommets ont pour coordonnées A(qA, pA), B(qA+∆q, pA), C(qA+∆q, pA+∆p)
et D(qA, pA +∆p).

Q3. Calculer les coordonnées des points A′, B′ et C ′ et D′ représentant, à l’instant t, les particules
qui se trouvaient initialement aux points A, B, C et D. Calculer les aires des domaines ABCD
et A′B′C ′D′. Conclusion ?

Solution of Exercise 2

Q1. L’Hamiltonien du système pour une balle de masse m lâchée d’une hauteur h sans vitesse initiale
s’écrit :

H =
p2

2m
+mgy (28)

où p est l’impulsion, g l’accélération de la pesanteur, y la position verticale (avec y = 0 au sol).
Les équations de Hamilton sont donc donne par

ẏ =
∂H

∂p
=

p

m
(29)

ṗ = −∂H
∂y

= −mg (30)

ou on rappelle que p = p(t) et y = y(t).
L’intégration de ces équations donne :

p(t) = −mgt+ p0 (31)

y(t) = −1

2
gt2 +

p0
m
t+ y0 (32)

Avec les conditions initiales y0 = h et p0 = 0, on obtient :

p(t) = −mgt (33)

y(t) = −1

2
gt2 + h (34)
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Q2. Pour dessiner le portrait de phase, nous considérons que la balle rebondit élastiquement sur le
sol. Dans l’espace des phases (y, p), la trajectoire forme une parabole :

• La balle part du point (h, 0) dans l’espace des phases.
• Elle suit une courbe parabolique jusqu’au point (0,−m

√
2gh) (impact au sol).

• Au rebond, l’impulsion change de signe instantanément : (0,m
√
2gh).

• La balle remonte en suivant une courbe parabolique symétrique jusqu’au point (h, 0).
• Le cycle se répète indéfiniment.

On peut trouver l’équation de cette parabole dans l’espace des phases si on résoud pour t dans
eq. (33) et on substitue dans eq. (34). On a que la parabole est

y

h
+

p2

2m2gh
= 1 (35)

Ce portrait de phase illustre la conservation de l’énergie mécanique totale du système, représen-
tée par l’aire constante à l’intérieur de l’ellipse.
On a que dans l’espace de phase

Q3. Avec le même raisonnement que dans Q1 on a que

q(t) = q0 +
p0
m
t− 1

2
gt2 (36)

p(t) = p0 −mgt (37)

où (q0, p0) sont les coordonnées initiales dans l’espace des phases.
Donc les coordonnées des points à l’instant t :

A′ : (qA +
pA
m
t− 1

2
gt2, pA −mgt) (38)

B′ : (qA +∆q +
pA
m
t− 1

2
gt2, pA −mgt) (39)

C ′ : (qA +∆q +
pA +∆p

m
t− 1

2
gt2, pA +∆p−mgt) (40)

D′ : (qA +
pA +∆p

m
t− 1

2
gt2, pA +∆p−mgt) (41)
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Pour visualiser on a que

On procède avec le calcul des aires. L’aire initiale du rectangle (ABCD) est donnée par ∆q ·∆p.
Pout l’aire finale on a que les point A’B’C’D’ sont toujours les point de un parallélogramme ou
les bases ont longueur A′B′ = D′C ′ = ∆q et la hauteur c’est toujour ∆p et donc l’aire A’B’C’D’
= ∆q ·∆p est la même.
Donc on a vu dans cette exemple que l’aire du domaine dans l’espace des phases reste constante
au cours du temps. Ceci est une illustration du théorème de Liouville, qui stipule que le volume
occupé par un ensemble de points dans l’espace des phases reste constant au cours de l’évolution
du système hamiltonien.
En général le théorème de Liouville dit que l’évolution temporelle de cette densité de probabilité
ρ(q, p)2 on obtient

dρ

dt
=
∂ρ

∂t
+

N∑
i=1

[
∂ρ

∂qi
q̇i +

∂ρ

∂pi
ṗi

]
= 0 (42)

donc la variation totale de la densité dans un petite volume est constante.
Cette conservation de l’aire (ou du volume en dimensions supérieures) dans l’espace des phases
est une propriété fondamentale des systèmes hamiltoniens et a des implications importantes en
mécanique statistique.

2ou q et p sont le les coordonnées généralisées du systeme
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