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Série 1: Laplace et Legendre

Pierre-Simon Laplace (1749-1827), mathématicien et astronome français, est célèbre pour ses
travaux en mécanique céleste et en théorie des probabilités. Il fut brièvement ministre de l’Intérieur
sous Napoléon, puis fait marquis sous la Restauration, illustrant sa capacité à naviguer les change-
ments politiques de son époque. Adrien-Marie Legendre (1752-1833), également mathématicien
français, est connu pour ses contributions en analyse et en théorie des nombres. Lorsqu’il découvrit
que Gauss travaillait sur des théories similaires, il publia précipitamment ses résultats pour établir
sa priorité, montrant que la compétition scientifique existait déjà à cette époque! Leurs travaux se
révèlent fondamentaux en physique statistique.

* Exercise 1 Formule de Stirling

Avant de parler de Laplace, nous allons nous intéresser à James Stirling (1692-1770), un math-
ématicien écossais connu pour ses contributions significatives à l’analyse et à la théorie des nombres.
On veut démontrer la célèbre formule de Stirling donnant le comportement asymptotique de la fonction
factoriel dont on rappelle la définition:

N ! := N · (N − 1) · · · · 2 · 1 =
N∏
i=1

i . (1)

cette formule s’écrit
formule de Stirling: N ! ≈

N≫1
NNe−N

√
2πN , (2)

qu’il faut entendre comme la formulation informelle de la limite suivante:

lim
N→∞

N !

NNe−N
√
2πN

= 1 . (3)

Pour la démontrer, on va utiliser la représentation intégrale de la fonction Gamma, qui est la continu-
ation analytique de la fonction factorielle:

N ! = Γ(N + 1) =

∫ ∞

0
e−t tN dt . (4)

Q1. En utilisant un changement de variable, montrer que l’on peut écrire N ! sous la forme:

N ! = eN lnNN

∫ ∞

0
eNf(t) dt (5)

où f(t) est une fonction que l’on précisera.

Q2. Comment se comporte la fonction eNf(t) pour N ≫ 1 ? Justifier que l’on peut approximer f(t)
par un développement de Taylor au second ordre autour de son maximum.
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Q3. On rappelle la formule de l’intégrale Gaussienne

I =

∫ ∞

−∞
e−

x2

2∆ dx =
√
2π∆ (6)

Montrez alors la formule de Stirling pour l’approximation (2) de N !. Quelle est son erreur ab-
solue et relative (numérique) pour N = 10, 50? Et avez vous un idée pour l’évaluer numérique-
ment pour N = 1023?

Solution of Exercise 1
La formule de Stirling Eq. (2) que l’on souhaite prouver a une interprétation simple: si l’on se

réfère à la définition de N !, le terme en NN correspond à remplacer dans le produit de l’équation (1),
chacun des termes (N − k) avec k > 1, par N . Chacun de ces termes est plus petit que N est donc on
s’attend à ce qu’il faut “contre-balancer" le terme NN par des termes décroissant avec N pour espérer
avoir une bonne estimation de N !. La démonstration qui suit montre que ces termes décroissants sont
donnés comme le produit de 2 termes: un décroissance exponentiel e−N et un terme sous-dominant en
O(

√
N). Pour illustrer ceci, prenons par exemple N = 10, la valeur (exacte) de la factorielle donne

10! = 3628800 dont l’ordre de grandeur est 106 et l’approximation crue NN = 1010 est donc assez
loin de la véritable valeur. Si l’on utilise maintenant l’approximation de Stirling (terme de droite dans
Eq. (2)), on tombe sur 3, 59 ·106, ce qui est beaucoup plus proche de la valeur réelle et pourtant N n’est
pas très grand !

Q1. Le changement de variable a considéré est t = Nt′. on a donc

N ! =

∫ ∞

0
e−t tN dt =

∫ ∞

0
e−t eN log t dt =

∫ ∞

0
e−Nt′ eN logNt′ Ndt′ = eN logNN

∫ ∞

0
e−Nt′ eN log t′ dt′

(7)
et donc f(t) = log(t)− t.

Q2. eNf(t) prend la valeur maximale eNf(1) = e−N . Comme f < 0, pour N ≫ 1 et n’importe quelle
autre valeur t ̸= 1, eNf(t) se retrouve être “ exponentiellement plus petit" que sa valeur max (en
valeur relative). C’est à dire que l’intégrale devient très piquée autour de son maximum. Cela
justifie l’approximation de f(t) par un développement de Taylor au second ordre autour de ce
maximum.
Le graphique de la fonction est

Le maximum de f(t) = ln(t) − t se trouve à t = 1 (f ′(1) = 0). Autour de ce point, le
développement de Taylor donne :

f(t) = f(1) +
1

2
f ′′(1)(t− 1)2 +

1

6

2

ξ(t)3
(t− 1)3 = −1− 1

2
(t− 1)2 +

1

6

2

ξ(t)3
(t− 1)3 (8)
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pour quelque ξ(t) ∈ [1, t] Cette approximation capture le comportement essentiel de la fonction
près de son pic, ce qui est crucial pour l’intégrale quand N est grand.

Q3. En utilisant le développement de Taylor de f(t) autour de t = 1, nous avons :

N ! = eN lnNN

∫ ∞

0
e
N(−1− 1

2
(t−1)2)+ 1

6
2
ξ3

(t−1)3
dt (9)

on peut oublier le reste pour nous simplifier le calcul. En effectuant le changement de variable
x =

√
N(t− 1), on obtient

N ! ≈ eN lnNNe−N 1√
N

∫ ∞

−
√
N
e−x2/2 dx (10)

Pour N grand, on peut étendre la borne inférieure à −∞ sans introduire d’erreur significative.
En utilisant la formule de l’intégrale gaussienne, on obtient :

N ! ≈ eN lnNNe−N 1√
N

√
2π = NNe−N

√
2πN (11)

Ce qui démontre la formule de Stirling.
On montre la difference entre le vrai valuer de N ! et l’approximation

* Exercise 2 Méthode de Laplace

La méthode de l’exercice précédent est en fait très générale, et se nomme méthode de Laplace,
formellement ette méthode se résume au résultat suivant, si l’on dénote par

IN :=

∫ b

a
eNf(x) dx (12)

alors on a

IN ≍ eNf(x⋆) pour N ≫ 1 , (13)

où x⋆ est la valeur maximisant la fonction f(x) et ≍ désigne (formellement) l’équivalence “à l’échelle
logarithmique” 1 dont on donne la formulation rigoureuse à l’équation (19).

Cette technique (qui permet de remplacer une intégration a priori difficile par une simple max-
imisation) est tellement fondamentale en physique statistique que nous allons devoir la démontrer
proprement: Pour simplifier le problème, on suppose dans la suite du problème l’hypothèse suivante:

Hyp: f ∈ C2([a, b])2, ∃!x∗ ∈]a, b[ tel que f ′(x∗) = 0 et de plus on suppose que f ′′(x∗) ̸= 0.
1c’est à dire que pour deux séquences (aN )N , (bN )N , on écrit aN ≍ bN si limN→∞

1
N

log(aN ) = limN→∞
1
N

log(bN ).
2On rappelle que Ck(I) est le sous-ensemble de l’ensemble des fonctions de I vers R qui sont k fois dérivables constitué

des fonctions dont la k-ième dérivée est continue.
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Pour obtenir le résultat voulu, considérons l’intégrale suivante :

IN :=
IN

eNf(x∗)
=

∫ b

a
eN(f(x)−f(x⋆)) dx =

∫ b−x⋆

a−x⋆

eN(g(x)−g(0)) dx (14)

avec g(x) = f(x+ x⋆) qui a son maximum en 0.

Q1. Justifiez que l’on peut toujours, pour une certaine valeur de γ, diviser l’intervalle d’intégration en
ne conservant qu’un intervalle [−δ, δ] autour duquel la fonction g(x) admet une dérivée seconde
négative.

∃γ, δ > 0 :

∫ δ

−δ
eN(g(x)−g(0)) ≤ IN ≤ (b− a)e−γN +

∫ δ

−δ
eN(g(x)−g(0)) (15)

Q2. Justifier (par exemple graphiquement) que l’on peut toujours écrire, dans l’intervalle [−δ, δ],
que

x2

2
g′′(0)(1 + ϵ) ≤ g(x)− g(0) ≤ x2

2
g′′(0)(1− ϵ) (16)

avec ϵ > 0 arbitrairement petit quand l’on rétrécie l’intervalle [−δ, δ].

Q3. Montrez que l’on peut par ailleurs écrire, en utilisant la borne de Hoeffding pour l’intégrale
Gaussienne3 ∫ δ

−δ
e−NC x2

2 dx =

√
2π

NC
+O(e−N ) (17)

Q4. Finalement montrer que cela implique que pour tout ϵ on a:

O(e−N ) +

√
2π

−Ng′′(0)(1 + ϵ)
≤ IN ≤ O(e−N ) +

√
2π

−Ng′′(0)(1− ϵ)

Q5. Cela nous permet d’écrire plus rigoureusement la signification de la méthode de Laplace, que
l’on peut formuler de deux façons : la première, la plus precise

Méthode de Laplace (2nd ordre): lim
N→∞

√
−Nf ′′(x⋆)√

2π

∫ b
a eNf(x) dx

eNf(x⋆)
= 1 (18)

et la seconde, plus utile en physique statistique, étant

Méthode de Laplace (1er ordre): lim
N→∞

1

N
log

∫ b

a
eNf(x) dx = f(x⋆) = maxxf(x) (19)

Prouvez la version précise et donnez l’intuition pour la version que on va utiliser en physique.

Q6. Argumenter pourquoi si le maximum x∗ n’est plus unique mais qu’il existe un nombre fini de
MAXIMUM, on peut écrire a la place, en somment sur tout les supremum x∗i , que

IN =

∫ b

a
eNf(x) dx ≈

∑
i

√
2π

f ′′(x⋆i )
eNf(x⋆

i ) quand N → ∞ (20)

et que

lim
N→∞

1

N
log

∫ b

a
eNf(x) dx = supxf(x) (21)

3Nous verrons en effet dans le prochain cours une formule très utile pour une variable Gaussienne de moyenne nulle
on a que pour tout k ≥ 0:

P(X > k) =
1

2π∆

∫ ∞

k

e−x2/2∆ ≤ e−k2/2∆
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Solution of Exercise 2
La méthode de Laplace (et ses variantes!) est un outil fondamental en physique statistique/théorique,

elle stipule que “la somme de termes exponentiellement grands est dominée par le plus grand d’entre
eux”. Pour s’en convaincre reprenons l’exemple de l’exercice précédent, où l’on a tracé la valeur de
eN(f(x)−f(x∗)) pour différentes valeurs de x:

où l’on voit la concentration de l’intégrant autour de x∗. Avant de passer à la preuve rigoureuse,
donnons d’abord une preuve heuristique de ce résultat: comme eN(f(x)−f(x∗)) est petit, par théorème de
Taylor, on a

IN ≈
∫ b

a
exp
{
N
(
f(x∗) + f ′′(x∗)(x− x∗)2/2

)
+ E

}
dx , (22)

où E est le terme d’erreur que l’on va négliger. On a donc

IN ≈ eNf(x∗) ·
∫ b

a
exp
{
N
(
f ′′(x∗)(x− x∗)2/2

)}
dx , (23)

comme f ′′(x∗) < 0, pour N ≫ 1; exp
{
N
(
f ′′(x∗)(x − x∗)2/2

)
décroît très fortement (avec x) dès que

l’on s’éloigne de x∗ et l’on peut remplacer l’intégration entre [a, b] par l’intégration sur toute la droite
réelle (cf. inégalité de Hoeffding de l’exercice précédent):

IN ≈ eNf(x∗) ·
∫ ∞

−∞
exp
{
N
(
f ′′(x∗)(x− x∗)2/2

)}
dx , (24)

et obtient le résultat voulu par intégration Gaussienne. L’exercise propose de rendre cet argument
heuristique rigoureux.

Q1. Par hypothèse, on a f ′′(x⋆) < 0 et donc aussi que g′′(0) < 0. Comme la fonction exponentielle
est toujours positive, on a que ∀δ < δ⋆ = min(x⋆ − a, b− x⋆) si on réduit la borne d’intégration∫ b−x⋆

a−x⋆

eN(g(x)−g(0)) dx ≥
∫ δ

−δ
eN(g(x)−g(0)) dx ≥ 0 (25)

donc la première partie de l’inégalité est démontrée.
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On veut donc fixer le valeur de δ pour avoir que la dérivée seconde de g(x) soit positive in
[−δ, δ]. On sait que la fonction g′′(.) est continue sur [a, b] et donc notamment en 0 donc si on
considère g′′(0) on a par définition de la continuité que

∀η > 0 ∃δ > 0 : ∀x |x| < δ =⇒
∣∣g′′(x)− g′′(0)

∣∣ < η (26)

vu que on peu choisir n’importe quel η > 0 on fixe η̃ = −g′′(0) et donc la définition de continuité
implique que il existe δ̃ > 0 tel que

∀x ∈ [−δ̃, δ̃] g′′(x) < 0 (27)

comme la fonction est continue et par unicité du maximum, on a:

∀δ > 0 : ∃γ > 0∀x : |x| > δ =⇒ g(x) < g(0)− γ (28)

Pour la borne supérieure on peut dire que ∀δ < δ⋆ on a que∫ b−x⋆

a−x⋆

eN(g(x)−g(0)) dx =

∫ −δ

a−x⋆

eN(g(x)−g(0)) dx+

∫ δ

−δ
eN(g(x)−g(0)) dx+

∫ b−x⋆

δ
eN(g(x)−g(0)) dx

≤ (b− a)e−γN +

∫ δ

−δ
eN(g(x)−g(0)) dx (29)

Donc on a que ∃γ > 0, ∀δ < min(δ⋆, δ̃)∫ b−x⋆

a−x⋆

eN(g(x)−g(0)) dx ≤ (b− a)e−γN +

∫ δ

−δ
eN(g(x)−g(0)) dx . (30)

Q2. On commence avec l’intervalle [−δ, δ] de la question précédente, en se rappelant que cet intervalle
a été choisi pour avoir la seconde dérivée positive dessus. Par théorème de Taylor avec reste de
Peano, on a:

g(x)− g(0) =
1

2
g′′(0)x2 + h(x)x2 ou lim

x→0
h(x) = 0 , (31)

où la fonction h(x) est continue. Par continuité, on a

∀ϵ > 0,∃δ > 0, ∀|x| < δ,we have |h(x)| < ϵ (32)

et donc

∀x ∈ [−δ, δ] :
x2

2
g′′(0)(1 + ϵ) ≤ g(x)− g(0) ≤ x2

2
g′′(0)(1− ϵ) (33)

Q3. On a ∫ δ

−δ
e−NC x2

2 dx =

∫ ∞

−∞
e−NC x2

2 dx−
∫ −δ

−∞
e−NC x2

2 dx−
∫ ∞

δ
e−NC x2

2 dx (34)

=

√
2π

NC
− 2

∫ ∞

δ
e−NC x2

2 dx (35)

et avec l’inégalité de Hoeffding on a

P[X ≥ k] ≤ e−
k2

2 X ∼ N (0, 1) (36)

et donc
0 <

∫ ∞

δ
e−NC x2

2 dx ≤ e−NC δ2

2 , (37)
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et donc ∣∣∣∣∫ ∞

δ
e−NC x2

2 dx

∣∣∣∣ < Me−N (38)

pour une constante M > 0, donc∫ δ

−δ
e−NC x2

2 dx =

√
2π

NC
+O(e−N ) (39)

Q4. cela découle immédiatement des 2 questions précédentes.

Q5. Avec les bornes précédentes on a dans la limite N → ∞ et pour tout ϵ suffisament petit,√
1

1 + ϵ
≤ lim

N→∞

√
−Nf ′′(x⋆)√

2π

∫ b
a eNf(x) dx

eNf(x⋆)
≤
√

1

1− ϵ
(40)

et comme cette relation est vraie pour tout ϵ, cela implique la limite désirée.

Q6. Supposons que la fonction f(x) possède un nombre fini de maxima locales en des points x∗i ∈]a, b[.
Près de chaque maximum x⋆i , l’intégrale peut être approchée en développant f(x) au second
ordre autour de x∗i dans chaque sub-interval :

f(x) ≈ f(x∗i ) +
1

2
f ′′(x∗i )(x− x∗i )

2.

En substituant cette approximation dans l’intégrale, on obtient :

IN ≈
∑
i

∫ b

a
eN(f(x

∗
i )+

1
2
f ′′(x∗

i )(x−x∗
i )

2) dx .

L’intégrale autour de chaque x∗i est approximativement gaussienne ce qui donne:

IN ≈
∑
i

√
2π

N |f ′′(x∗i )|
eNf(x∗

i ).

comme f(xi) es identique pour tout i, en prenant le logarithme et en considérant la limite
N → ∞ seulement le maximum globale domine la somme et on obtient :

lim
N→∞

1

N
log IN = sup

x
f(x).

* Exercise 3 De Laplace à Legendre
Appliquons la méthode de Laplace à des fonctions de type f(x, λ) = −e(x) + λx. On définit la

séquence de fonctions

sN (λ) =
1

N
log

∫ b

a
eN(−e(x)+λx) dx et s(λ) = lim

N→∞
sN (λ)

Q1. Montrer que sN (λ) est une fonction convexe, en montrant que sa dérivée seconde est toujours
positive.

Q2. Montrer en utilisant la méthode de Laplace que s(λ) est la transforme de Legendre (ou plus
précisément de Legendre-Fenchel 4) de la fonction e(x). Pourquoi est-elle forcement convexe?

s(λ) = sup [−e(x) + xλ] = −e(x⋆) + x⋆λ (41)

4Il faut rendre justice à Fenchel qui a explicitement généralisé les travaux de Legendre qui étaient restreints aux
fonctions convexes. C’est Fenchel qui a étendu ces concepts aux fonctions non différentiables et non convexes.
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Q3. Montrer le résultat fondamental des Transformée s(.) de Legendre (Attention! x⋆ est une fonc-
tion de λ! On devrai plutôt écrire s(λ) = −e(x⋆(λ)) + x⋆(λ)λ pour être correct):

d

dλ
s(λ) = x⋆ (42)

Nous allons voir bientôt que le fait que les Transformées de Legendre apparaissent partout
en physique statistique (et par conséquent, en thermodynamique) est une conséquence de la
formule de Laplace pour les intégrales.

Solution of Exercise 3
Appliquons la méthode de Laplace à des fonctions de type f(x, λ) = −e(x) + λx. On définit la

séquence de fonctions

sN (λ) =
1

N
log

∫ b

a
eN(−e(x)+λx) dx et s(λ) = lim

N→∞
sN(λ)

Q1. Maintenant, calculons la deuxième dérivée.

d2

dλ2
sN (λ) =

d

dλ

(∫ b
a x · eN(−e(x)+λx) dx∫ b
a eN(−e(x)+λx) dx

)
(43)

En utilisant la règle du quotient, nous obtenons :

d2

dλ2
sN (λ) =

(
∫ b
a eN(−e(x)+λx) dx) · (

∫ b
a Nx2 · eN(−e(x)+λx) dx)

(
∫ b
a eN(−e(x)+λx) dx)2

−
(
∫ b
a x · eN(−e(x)+λx) dx) · (

∫ b
a Nx · eN(−e(x)+λx) dx)

(
∫ b
a eN(−e(x)+λx) dx)2

(44)

Pour montrer que cette deuxième dérivée est toujours positive, nous pouvons réécrire l’expression
sous une autre forme. Définissons une mesure de probabilité p(x) sur [a, b] :

p(x) =
eN(−e(x)+λx)∫ b

a eN(−e(x)+λx),dx
(45)

(il est clair que p > 0 et
∫
p = 1). La dérivée seconde peut se réécrire comme:

d2

dλ2
sN (λ) = N

(
E[X2]− (E[X])2

)
= N · Var(X) > 0 (46)

où E (resp. Var) représente l’espérance par rapport à la mesure p(.) (resp. la variance de
X ∼ p). La variance d’une variable aléatoire étant toujours non-négative (inégalité de Jensen),
cela conclut la preuve.

Q2. La solution est donne directement par l’application du dernière exercice.

s(λ) = sup [−e(x) + xλ] = −e(x⋆) + x⋆λ (47)

ou x⋆ = x⋆(λ) est le point de minumum de e(x)− xλ pour toutes valuers de λ.
s(λ) est forcément convexe car elle est obtenue comme un supremum de fonctions affines en
λ. La propriété que la transformée de Legendre-Fenchel d’une fonction est toujours convexe
découle du fait que le supremum d’une famille de fonctions convexes ou affines est toujours
convexe.
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Q3. On peut directement dire que

d

dλ
s(λ) = −e′(x⋆(λ))(x⋆)′(λ) + (x⋆)′(λ)λ+ x⋆(λ) =

[
−e′(x⋆(λ)) + λ

]
(x⋆)

′
(λ) + x⋆(λ) = x⋆(λ)

(48)
parce que x⋆(λ) est le maximum du −e(x) + xλ et donc il est le point qui annule la derivee.

* Exercise 4 Tranformée et double-tranformée de Legendre-Fenchel

On définit la transformée de Legendre-Fenchel de la fonction e(x) par

s(λ) = e(λ) = supx [−e(x) + xλ] = −e(x⋆) + x⋆λ (49)

On peut aussi calculer la transformée de la transformée :

e(x) = s(λ) = supλ [−s(λ) + xλ] . (50)

On va se poser la question de la relation entre la double Transformée e(.) et la fonction originale e(.).

Q1. Est-il est possible que e(x) = e(x) pour toute fonction e(.)? Donner un contre-exemple évident
en utilisant la question 3− 1.

Q2. Montrer que si e(.) est strictement convexe, alors il ne peut y a qu’un seul maximum, et que la
relation entre λ et x∗ est unique et inversible 5.

Q3. Montrer que pour toute fonction convexe e(.) (et seulement dans ce cas) on a bien e(x) = e(x).

Q4. Vérifier numériquement que si e(.) n’est pas convexe, la double Transformée e(.) donne l’enveloppe
convexe de la fonction e(x).

Solution of Exercise 4

Q1. On a montré que la transformée de Legendre-Fenchel est toujours une fonction convexe, quelle
que soit la fonction d’origine. Donc, si e(x) n’est pas convexe, ¯̄e(x) est convexe et, par con-
séquent, les deux fonctions ne peuvent pas être égales.

Q2. On a que le maximum doit satisfaire

∂x[−e(x) + xλ] = 0 =⇒ e′(x) = λ (51)

De plus, si la fonction e(x) est strictement convexe, alors e′(x) est strictement croissante et donc
l’équation précédente admet une seule solution.

Q3. On peut commencer par prendre la dérivée de la définition :

∂λ[−s(λ) + xλ] =⇒ x = x⋆(λ), (52)

où le arg sup en λ est noté λ⋆. C’est la valeur pour laquelle on a x = x⋆(λ⋆). De plus, cette
valeur λ⋆ existe toujours car s(λ) est convexe, et donc x⋆(λ) est une fonction croissante de λ.
En substituant cela dans la définition :

¯̄e(x) = −s(λ⋆) + xλ⋆ = e(x⋆(λ⋆))− x⋆(λ⋆)λ⋆ + xλ⋆ = e(x), (53)

5On rappelle le théorème suivant qui explicite la dérivée de la réciproque d’une fonction bijective et dérivable en
fonction de la dérivée: [

f−1]′ (a) = 1

f ′ (f−1 (a))
.
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Q4. Dan le case ou e(.) n’est pas convexe on a la chose suivante

out la flèche indique une application de la transforme de Legendre-Fenchel.
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