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Homework 3: Modéle d’Ising en dimension finie

Consignes de rendu : Pour les questions numériques (indiquées par un astérisque), veuillez soumettre
un notebook Jupyter qui peut étre exécuté de bout en bout sans erreur et qui reproduit tous les résultats de-
mandés dans ce document. Assurez-vous que votre code soit clair, bien commenté, et que toutes les dépendances
nécessaires soient clairement indiquées. Pour les questions théoriques, vous avez deux options :

e Vous pouvez inclure vos réponses directement dans le notebook Jupyter, en utilisant des cellules de texte
Markdown pour une présentation claire et structurée.

e Alternativement, vous pouvez soumettre un fichier PDF séparé contenant vos réponses aux questions
théoriques. Dans ce cas, assurez-vous que vos réponses soient bien organisées et correspondent clairement
aux numéros des questions.

Dans les deux cas, veillez & ce que vos explications soient claires, concises, et rigoureuses. N’hésitez pas a inclure
des schémas ou des équations lorsque cela est pertinent pour illustrer vos raisonnements.

Exercise 1 Le modéle d’Ising en une dimension
O -G-GO
1 2 N—-1 N

Le modéle d’Ising est I'un des modéles les plus simples et les plus fondamentaux de la physique statistique.
En une dimension, il consiste en une chaine de N spins {s;}2;, ot chaque spin peut prendre deux valeurs :
s; = 1. L’hamiltonien du systéme est donné par :

N
H= —JZ S8iSi+1 (1)
i=0

ou J est la constante de couplage entre spins voisins (nous considérerons J > 0, cas ferromagnétique).
Pour le reste de ’exercice on va considerer des conditions aux bords fixes so = sy11 =1

Part I —  Développement haute température

Q1. On comence d’abord avec le calcul de la fonction de partition.
a) Ecrivez I'expression de la fonction de partition Zx () pour 8 = kB%T
b) En utilisant I'identité e#* = cosh(B)(1 + z tanh(3)) valable pour z = +1, montrez que 1’on peut
écrire

N
Zn(B) = [cosh(BVF N7 T+ ksisiv), (2)
se{Z1}N i=0

ot k = tanh(8J) et la somme sur s portent sur ’ensemble des éléments, c’est & dire Ese{il}N =

N _
Zk:l Zske{—m} = Zsle{—l,l} e ZSNE{—l,l}'

Q2. a) Développez le produit dans l'expression de Zn () en k. Expliquez pourquoi chaque terme de ce
développement peut étre représenté par un diagramme ou les liens entre sites voisins représentent
un facteur k.



b) Pour N = 3, écrivez explicitement tous les termes du développement et représentez les diagrammes
correspondants.

c) Pour un diagramme donné, montrez que la somme sur les configurations de spins ) {x13~ est
nulle sauf si chaque site (sauf 0 et N + 1) est connecté & un nombre pair de liens.

Q3. a) En utilisant la régle de parité de la question précédente, montrez que seuls deux types de diagrammes
contribuent & Zn (/) : le diagramme vide et le diagramme complétement rempli. Explique pourquoi.
b) En déduire I'expression exacte de Zy(f)

Zn(B) = [cosh(B) V12N (1 + £V (3)

Q4. On s’intéresse maintenant & calculer des observables comme ’énergie libre du systéme, I’énergie par site
et le chaleur spécifique.
a) Calculez ’énergie libre par site dans la limite thermodynamique

. 1
f(B) = *A}gnooﬂholZN(B)a (4)
et en déduire I’énergie interne par site u(5) = B(Bﬁﬁf) et la chaleur spécifique ¢(5) = —ﬁz%g;).

b) Tracez l'allure de ces fonctions thermodynamiques en fonction de la température. Commentez
I’absence de transition de phase dans ce systéme.

Part II  —  Simulation Monte Carlo
On s’intéresse maintenant a implémenter une simulation Monte Carlo efficace du modéle d’Ising 1D avec
I’algorithme de Metropolis. Pour optimiser le code, nous allons utiliser certaines stratégies d’implémentation
spécifiques.

Q1. Pour représenter la configuration du systéme de maniére efficace, nous utiliserons un tableau de type
bool de longueur N + 2 pour inclure les spins avec les conditions aux bords fixes. On va considerer True
comme +1 et False comme —1.

a) Implémentez une fonction Python qui calcule la variation d’énergie AFE associée au retourne-
ment d’un spin s; — —s; avec comme définition energy_variation_1d(s: Iterable[bool],
J: float, pos: int) -> float:

b) Implémentez I’algorithme de Metropolis! dans une fonction avec définition metropolis_simulation_1d(
s_init: Iterable[bool], J: float, beta: float, n_steps: int) -> Iterable[bool]:
qui propose un nombre N n_steps de l'algorithme et change le systéme.

¢) Implémentez une fonction qui mesure 1’énergie totale d’une configuration total_energy_1d(s:
np.ndarray, J: float) -> float.

Q2. Etudions maintenant le temps de décorrélation du systéme.

a) Implémentez une fonction qui mesure la distance de Hamming normalisée? entre la configuration
initiale et la configuration qui evolue avec le Monte Carlo.

b) Suivez I’évolution de cette distance au cours du temps Monte Carlo. Aprés combien de pas Monte
Carlo les deux trajectoires deviennent-elles décorrélées 7 Appelons ce nombre ngperm(7, N) et
répétez l'expérience pour différentes températures 7'/J € {0.001,1,1000} et apres pour different
taille du systeme N € {100, 500, 1000}. Commentez les dépendancs du temps de décorrélation avec
la température et la taille du systeme.

Q3. Effectuons maintenant une étude systématique des observables thermodynamiques comme |’énergie
moyenne par spin et le chaleur spécifique.
a) Pour N = 100 spins et différentes températures T'/J € [0.1,2] on veut obtenir des échantillons de
Monte Carlo. Avec le valeurs précédentes, effectuer une thermalisation en attendant un nombre de
pas MCMC de 10 * ngperm (7, N = 100). Utiliser les 10° pas suivants pour évaluer 1’énergie moyenne
(E) et (E?) et la chaleur spécifique ¢ = 8%((E?) — (E)?)/N.

Pour une implémentation efficace pré-générez la séquence des positions & visiter avec np.random.randint.
2La distance de Hamming pour deux vecteurs in v, u € {—1, +1}N est defini comme

N N
1 1 nombre d’ éléments différents
#(u,v) N ; (—viwi) N ; i#vi dimension des vecteurs ®)




b) Comparez vos résultats numériques avec les expressions exactes obtenues dans la premiére partie.

Part III  —  Fonction de corrélation

Q1. La corrélation entre deux point a distance r est définie pour chaque température comme

e—FHs(s)

SiSitr
Cp(r) = (siSi4r) = Z W
se{-1,+1}V N

on veut computer cette quantité analytiquement et la comparez avec le simulations.
a) En utilisant la méme idée du développement haute température pour la Part I, calculez Ca(r).
b) Montrez que pour tout T' > 0, N — oo, et r fixée (cette derniére ne dépend pas de N), la fonction
de corrélation décroit exponentiellement

Cp(r) ~ "¢ (7)
ou & est la longueur de corrélation. Donnez la forme de &.

* Q2. A partir de vos simulations Monte Carlo :
a) Mesurez Cg(r) pour différentes températures.
b) Comparez les résultats numériques avec 1’expression analytique.
¢) Extrayez la longueur de corrélation £ pour diferent temperatures en T'/J € [0.5,4.0]. Comment &
varie-t-elle avec la température ? Est-ce que il match avec la formule analytique?

Solution of Exercise 1
Part I —  Développement haute température

Q1. Nous allons considérer 'hamiltonien
H= —JXN: 8iSi+1 (8)
i=0
a) La formule de la fonction de partion est
N
Zn(B) = Z . Z B TN sisier — Z . Z I—Iewsisi+1 9)
s1e{=£1} sye{xl} s1e{=£1} sye{£1}i=0
b) On note que s;8;4+1 € {£1} pour toutes i = 0,..., N. Donc on a que
ePIsisitr = cosh(BJ)(1 + 848441 tanh(B.J)) (10)
donc on a que

N
ZyB) = Y. Y TJcosh(8I)(1 + sisiy1 tanh(B])) (11)

s1€{*+1} snyE{£1}i=0

N
=cosh(B)M > o 3" J](1+ sisig tanh(B)) (12)

s1e{£1} sne{£1}i=0

N
=cosh(B/)" > o ST [+ ksisien) (13)

s1e{x+1} snyE{£1}i=0

Q2. a) On peut voir le term du produit produit vazo(l + Kk8;8;+1) comme choisir pour chaque i soit le
terme avec 1 ou le terme xs;s;+1. Donc le développement du produit Hfio(l + K$;Si+1) va générer
des termes de la forme

F«'nsil Si1+18i5Sis+1 """ 84y, Sipy+1 (14)



ot n est le nombre de facteurs (1 4 ks;s;41) pour lesquels on a choisi le terme ks;s;11 plutot que
1. En tout generalite on peut ecrire que

N
H(l + KSiSit1) = Z Kl E| H SeSet1 (15)
i=0 EcPn ecE

ou E est un sous ensemble de {0,..., N}. On indique Py l'ensemble de tous les sous ensemble F

possibles et |E| la cardinalité de E.
Chaque terme peut étre représenté par un diagramme ot 'on dessine un lien entre les sites ¢ et
i+ 1 si le facteur ks;s;41 est sélectionné. Le coefficient k™ compte alors le nombre de liens dans le
diagramme.

b) Pour N = 3, on a trois sites intérieurs et don on peut considérée le lien si sont sélectionne en en
produit

G----0----9----- @-----0

0 1 2 3 4

on peut explicitement avoir le produit

4
H(l +rsisi—1) = (1 + ksos1)(1 4 ks152) (1 + Ks253) (1 + Ks3s4) (16)
i=1
= (1 + &s1)(1 + ks152)(1 + Ks283)(1 + Ks3) (17)
=1+ r(s1 + s152 + s283 + s3) + £* (s75353) (18)
+ 17 (5752 4 515253 + 515354 + 515353 + 515253 + 525354) (19)
+ 1% (878583 + 575983 + 515253 + 515553 (20)
= 1+ K51+ 5152 + 5283 + 53) + K° (53 + 5253 + 5152 + 51) + K (21)
+ ;12(52 + 515253 + 515354 + 5153 + S15283 + S254) (22)

ou sg = s4 = +1. Les diagrammes correspondants sont, divisee par ordre,
Ordre 0 On a un seule diagramme

G ----O0-----©----~- o-----0
0 1 2 3 4
Ordre 1 On a quatre different diagrammes
—o - ---9----- o-----0
0 1 2 3 4
G----O—O--- - - @-----0
0 1 2 3 4
G----0----6—5----20
0 1 2 3 4
G ----0O-----©----~- o—o
0 1 2 3 4
Ordre 2 On a
——e—o----- o-----0
0 1 2 3 4
G—o ----6———5----20
0 1 2 3 4
—o - ---9----- o—»
0 1 2 3 4
o---- -----0
0 1 2 3 4
G----O——o---—— ©
0 1 2 3 4
G----O0----6———8— 9
0 1 2 3 4
Ordre 3 On a
54 -----0
0 1 2 3 4
———e—o----- ©
0 1 2 3 4
—o ----6—s8—— 9
0 1 2 3 4
o ---- ©
0 1 2 3 4

Ordre 4 On a un seule diagramme



Q3.

Q4.

G

©
0 1 2 3 4

¢) Considérons un site intérieur i. Pour un diagramme donné, ce site apparait dans le produit des s;
un nombre de fois égal au nombre de liens connectés a ce site. Lors de la somme sur s; = +1, on a

Z o= {3 si n est pair (23)

sim21 s1 n est impair

Donc, pour qu'un diagramme contribue a la somme, chaque site intérieur doit étre connecté & un
nombre pair de liens. Les sites aux bords (0 et N + 1) ne sont pas soumis & cette contrainte car ils
sont fixés a +1.

a) D’aprés la régle de parité établie précédemment, chaque site intérieur doit étre connecté a un
nombre pair de liens pour que la somme sur les configurations de spins soit non-nulle. Pour les
sites aux bords (fixés & +1), cette contrainte ne s’applique pas.

En considérant un site intérieur quelconque, il doit avoir soit 0 soit 2 liens. S’il a un seul lien ou
un nombre impair de liens, la somme sur ce spin donnera zéro. Cette contrainte propage de proche
en proche : si un site a deux liens, ses voisins doivent aussi avoir deux liens pour satisfaire la régle
de parité.

Donc, seuls deux types de diagrammes sont possibles :

e Le diagramme vide (aucun lien) : contribue avec un facteur 1

e Le diagramme complétement rempli (tous les liens) : contribue avec un facteur ¥ 1

b) Pour chacun de ces deux diagrammes valides, la somme sur les configurations de spins donne un
facteur 2V (car il y a N spins libres pouvant prendre deux valeurs). Le facteur global [cosh(3.J)]N 1
est toujours présent.

Donc la fonction de partition s’écrit

Zn(B) = [cosh(BT)] V12N (1 + KN H) (24)
ou k = tanh(BJ).

a) L’énergie libre par site dans la limite thermodynamique est

1 1
FB) == Jim Fym2n(B)=— lim —5n (lcosh(B)NF12N (1 + kN H1))
= 7% (In[cosh(B8J)] + In2) (25)

out le terme In(1 + k™ T!) disparait dans la limite N — oo car |x| < 1 pour tout § fini.
L’énergie interne par site est alors

u(B) = 6555) = —J tanh(8J)
La chaleur spécifique par site est
0?Bf 0
o(B) =~ g = ~B 55 = BT sec(5) (26)

Cette chaleur spécifique présente les comportements asymptotiques suivants :
e A haute température (8J < 1) : c(3) ~ (8J)?
e A basse température (8J > 1) : ¢(B) ~ 4(8J)%e=287
L’absence de singularité dans ces quantités thermodynamiques, représenté en Fig. 1, indique

I’absence de transition de phase dans le modéle d’'Ising 1D, contrairement au cas 2D qui présente
une transition a température finie.

Part II —  Simulation Monte Carlo

Q1. Voir le notebook

Q2. Voir le notebook



BJ
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Figure 1: Courbes d’énergie et de chaleur spécifique pour le modéle Ising 1D.

Q3. Voir le notebook

Part III  —  Fonction de corrélation

Q1. a) Pour calculer la fonction de corrélation, nous devons d’abord évaluer (s;s; ). En utilisant la méme
technique de développement haute température que précédemment

1 N
<Si8i+r> = m g 5i5i+r€ﬁ'] S0 8isit1 (27)
En utilisant la méme transformation avec k = tanh(8J), on obtient

h N+1
[cos /:'J ZSZSWH 1+ ks;5541) (28)

(8iSiyr) =

Par la régle de parité de la Q3, Part I, seuls les diagrammes ot tous les sites sont connectés a
un nombre pair de liens contribuent. Pour calculer (s;s;i.), seuls les deux diagrammes suivants
satisfont cette condition : celui avec une ligne continue de r liens connectant les sites ¢ et ¢ + r, et
celui qui connecte le site 7 au bord et le site 7 + r au bord. Donc

[cosh(BJ)|NH12N (57 4 gNF1-T) 14 gN+1-2r

Sisir) = o (B FRN (1 + AV ) T N (29)

Dans la limite N — oo, si on considére r fixée (ne dépendant pas de N), on a, pour le fait que
k < 1, que les termes kVT! et kN F172" sont sous-dominants, donc la fonction de corrélation est
simplement

Cy(r) = k" = [tanh(B)] (30)

b) La fonction de corrélation peut étre réécrite sous forme exponentielle
Cs(r) = [tanh(BJ)]" = ¢e" In(tanh(8J)) — o—r/¢ (31)

ot la longueur de corrélation £ est donnée par

1

§=- In(tanh(8.J))

Cette longueur de corrélation a les comportements asymptotiques suivants :

e A haute température (8J < 1) : £ ~ %

e A basse température (BJ > 1) : € ~ —Ze2hJ
La longueur de corrélation diverge exponentiellement quand 7" — 0. Cette divergence est carac-
téristique d’un point critique a température nulle, confirmant I’absence de transition de phase a
température finie dans le modeéle d’Ising 1D.
Le fait que & soit finie pour tout 7' > 0 implique que les corrélations décroissent toujours exponen-
tiellement avec la distance. Cette décroissance exponentielle est liée au cotit énergétique de création
de domaines de spins opposés, qui est fini en 1D mais devient infini en 2D & basse température.



Q2. Voir le notebook

Exercise 2 Ising 2D

On considére une variante en deux dimensions du modéle déja étudié. Le degré de liberté consiste en
N x N spins {sm} ot chaque spin peut prendre deux valeurs : s; ; = £1. L’hamiltonien du systeme est

3,j=17
donné par
N—-1N-1 N—-1
N
—J (8i8i41 + Sigsijen) —J Y (snisnisr + sinsivin) +C({sij 1) (33)
i=1 j=1 =1

ou J est la constante de couplage entre spins voisins (nous considérerons J > 0, cas ferromagnétique) et C est
le terme concernant les conditions aux bords. Pour le reste de ’exercice on va considérer des condition au bord
toroidales (i.e. periodiques)

{SZJ},g 1 __JZSZNSzl_JZSNzSIZ (34)

Part I —  Développement haute température

Q1. a) En utilisant I'identité e’® = cosh(B)(1 + 2 tanh(83)) pour = = +1, montrez que 'on peut écrire

Zn(B) = [cosh (BN S [ (1 +ssigsig) (35)
{s4,5} (4,3)~(",3")

ou x = tanh(B8J) et la notation (i, 5) ~ (¢/,5) désigne les paires de sites premiers voisins.

b) Développez le produit dans I'expression de Zn (). Expliquez pourquoi chaque terme de ce développe-
ment peut étre représenté par un diagramme ou les liens entre sites voisins représentent un facteur
K.

¢) Pour un diagramme donné, montrez que la somme sur les configurations de spins > {s:,) st nulle
sauf si chaque site (sauf les bords) est connecté a un nombre pair de liens.

Q2. En utilisant ’analyse precedente,
a) Calculez I’énergie libre par site dans la limite thermodynamique

f(B) == lim ——InZy(B) (36)
a lordre 10,
b) En déduire 'énergie interne par site u(3) et la chaleur spécifique ¢(3) au meme ordre.

Part I —  Développement basse température

Q1. a) Dans la limite basse température (8 — 00), quel est I’état fondamental du systéme compte tenu
des conditions aux bords?
b) Quelle est I’énergie de cet état fondamental?
¢) Classifiez les trois premiéres excitations possibles au-dessus de 1’état fondamental. Quelle est leur
énergie et leur dégénérescence?

Q2. a) En déduire que 'expression de la fonction de partition a basse température peut s’écrire comme:
10
Zn(B) = e PE0 ((Z azm‘”“‘”) + 0<e—20w)> (37)
k=0

ot les coefficients a; sont & déterminer. Expliquez pourquoi seuls les terms paires contribuent & la
somme.
b) En déduire I’énergie libre, I’énergie interne et la chaleur spécifique dans cette limite.

* Part III —  Simulation Monte Carlo
On veut aussi implémenter un algorithme efficient pour simuler le Monte Carlo dans le cas en deux
dimension. Encore un fois on va implémenter 1’algorithme de Metropolis et nous utiliserons un tableau de type
bool de dimension N? pour définir I'état du systéme.



Q1. On veut aussi implémenter un algorithme efficient pour simuler le Monte Carlo dans le cas en deux
dimension.

a) Implémenter la fonction qui calcule la différence en énergie pour un flip de spin s; ; = —s; ;. (Rap-
pel: on considére des conditions au bord periodiques!). On notera cette fonction par energy_variation_2d(s:
np.array, J: float, pos: tuple) -> float:.

b) Implémenter la fonction qui fait tournez 1’algorithme de Metropolis pour un nombre de steps fixe
N? n_steps.
On notera cette fonction par def metropolis_simulation_2d(s_init: np.ndarray, J: float,
beta: float, n_steps: int) -> np.ndarray:.

¢) Implémenter la fonction qui calcule I’énergie par spin comme def energy_per_spin_2d(s: np.ndarray,
J: float) -> float:.

d) Implémenter la fonction qui calcule le chaleur spécifique par site comme def specific_heat_per_spin(T:
float, J: float) -> float:.

Q2. Produire une figure de la distribution de magnétisation pour les valeurs de la température T/J €
{2.0,2.6,3.0} aprés la thermalisation. Que notez vous? Est ce que il y a un changement de comportement
quelque part?

Part IV —  Solution Fxacte et Comparaison avec les FExpansions
La solution exacte du modéle d’Ising 2D, obtenue par Onsager en 1944, représente une avancée mathématique
majeure utilisant la méthode de la matrice de transfert. L’énergie libre f(8) par site est donnée par:

2sinh 287 2
2sinh 257 J) sin2 ¢ (38)

1 [™/? 1
_Bf(ﬁ)zln(Qcosh2BJ)+;/O df1n 3 1+ 1_<cosh22,8J

Q1. En dérivant par rapport & 5, démontrez que I’énergie moyenne par site s’écrit

2 /2 2sinh 287\ ” . E
e(8) = —J coth 287 |1+ = (2tanh? 2.7 — 1)/0 do <1— (;;EQW) sin? ¢> (39)

Les solutions précédentes dépendent d’une intégrale. Pour estimer sa valeur, vous pouvez la calculer
avec python avec la routine: scipy.integrate.quad.

Q2. Nous allons maintenant comparer quatre approches différentes pour calculer ’énergie du systéme : la
simulation Monte Carlo, la solution exacte d’Onsager, le développement a haute température et le
développement a basse température.

a) Tracez sur un méme graphique la solution exacte d’Onsager et les résultats de la simulation Monte
Carlo pour un systéme de taille N = 128.

b) Ajoutez au graphique précédent les développements a haute et basse températures. Utilisez des
courbes différentes pour représenter chaque ordre du développement.

¢) Commentez le graphique obtenu.

Part V. —  Le Cumulant de Binder
Le cumulant de Binder (ou plus précisément, la kurtosis) est un outil puissant pour 'étude numérique des
transitions de phase, notamment pour déterminer la température critique et la classe d’universalité d’un systéme.
Pour un systéme de taille IV, il est défini comme

Uy =1— 18 (40)

/_oi/\
%i
o=

oum = ﬁ ij:l s; ; est 'aimantation par site et (-) y désigne la moyenne thermique pour un systéme de taille
linéaire N.

Q1. Pour T > T. (phase paramagnétique), la distribution de I’aimantation devient gaussienne dans la limite
thermodynamique. Montrez que pour le cas gaussienne on a que Uy = 0.

Q2. Pour T < T, (phase ferromagnétique), la distribution de ’aimantation tend vers deux pics de Dirac en

£m,.(T) ot m,(T) est Paimantation spontanée. Montrez que pour cette distribution on a que Uy = 3.



* Q3. Ecrivez une fonction qui calcule le cumulant de Binder & partir d’une série temporelle d’aimantations
obtenue par simulation Monte Carlo.

* Q4. Pour le modéle d’Ising 2D, effectuez des simulations Monte Carlo pour des réseaux avec N € {8, 16, 32,64}
aux températures T/J € {2.0,2.1,2.2,2.3,2.4,2.5}. Pour chaque taille et température échantillonnez
de T’ordre de 10® configurations indépendantes a I’équilibre. Calculez Uy et représentez graphiquement
Un(T) pour les différentes tailles.

* Q5. A partir de vos données
a) Estimez T, & partir du point de croisement des courbes Uy (T).
b) Comparez votre estimation avec la valeur exacte T./.J ~ 2.269 donnée par Onsager.

Solution of Exercise 2

Part I —  Developpement Haute Temperature
Q1. a) Partons de la fonction de partition
N-1 N N-1 N N
ZN(B) = Z exp 3J Z Z SijSit1,5 + Z Z 5i,jSi,j+1 T Zsi,NSi,l + ZSN,1151,i (41)
(s} i=1 j=1 i=1 j=1 i=1 i=1

en utilisant I'indice on a que cette expression se factorise sur les liens

vy =Y I e )
{si5} (4,9)—(i",5")

ou on indique (4,7) — (#/,7’) un line existente sur le resaux.
Pour chaque lien, nous pouvons appliquer I'identité donnée. Comme s; ;s j» = %1, nous avons

ePTsiisiit = cosh(BJ)(1 + s jsir j tanh(BJ)) (43)

Le réseau a 2N? liens au total en comptant les liens avec les bords fixes. En posant x = tanh(3.J),
nous obtenons la forme désirée

2
Zn(B) = [eosh(BNPY Y [ (1 +ksijsiy) (44)
{si3} (6,9)—(@.5")
b) Le développement du produit donnera une somme de termes qui peuvent étre organisés selon les
puissances de

H (1 + Iﬁ:Si,jSi/J‘/) =1+ Z RSj,5Si 5 + Z I{QSi’jSi/’j/sk’lSk/,l/ + - (45)

(i,7) liens paires

Chaque terme correspond a un choix de liens ot nous prenons le facteur xs; ;js; j plutét que 1.
Ces choix peuvent étre représentés par un diagramme ou :

e Chaque site du réseau est un point
e Un lien est tracé entre deux sites voisins si nous avons choisi le facteur xs; js; ;- correspondant
e [’ordre en k est le nombre de liens dans le diagramme

¢) Pour un diagramme donné avec certains liens choisis, nous avons une somme de la forme

Z H Si,554 5/ (46)

{s;,; } liens choisis

Considérons un site intérieur particulier s; ;. Ce spin apparait dans le produit autant de fois qu’il
y a de liens connectés & lui. Quand nous sommons sur s; ; = £1 :

e Si le nombre de liens est pair : ) j:il(si,j)pair =2

e Si le nombre de liens est impair : > ., (s; ;)P =0
siyj= :



Q2.

Q1.

Donc un diagramme donne une contribution non nulle uniquement si chaque site intérieur est
connecté & un nombre pair de liens. Les sites aux bords ont toujours s = +1 donc cette régle ne
s’applique pas a eux.

a) Donc & I'ordre x!°
N?(N?2 -5
Zn(B) = cosh(ﬁJ)mszzN2 [1 + N2kt 4+ 2N?K5 + <7N2 + (2)> K® (47)
+ (28N2 + 2N2(N? — 8)) k10 + o(nw)} (48)

L’énergie libre par site est

1 9 N?
—Bf(B) = ﬁlogZ = 2logcosh BJ + 2log 2 4+ k* + 2k° + (2 + 2) KO+ (49)

N2
+ (2N? +12) 610 - 7;5‘ —2N?610 4 0(k1%)  (50)

ou nous avons utilisé que pour € ~ 0 nous pouvons écrire log(1+¢€) = € — % + O(€®). On voit,
et on peut le prouver a n’importe quel ordre, que la contribution des diagrammes déconnectés est
toujours annulée par le développement du logarithme. On a

—Bf(B) = 2log2cosh fJ + k* + 2k° + gng + 12610 + o(x'0) (51)

b) L’énergie interne par site est

4 12 12
u(p) = 9(51) ~—2JKk — 2J K — 2J K® — 3SJ KT — 20J k) (52)
a8 cosh”(BJ) cosh” () cosh”(BJ) cosh®(5J)
La chaleur spécifique par site est
c(B) = B2J? (2sech2(Jx) + 1080 tanh®(Jz)sech® (Jx) + 252 tanh®(Jz)sech* (Jz) (53)

+ 60 tanh*(Jx)sech*(Jz) 4+ 12 tanh?(Jx)sech?(Jz) — 240 tanh'®(Jz)sech?(Jx) (54)
— 72tanh®(Jz)sech?(Jx) — 24 tanh®(Jz)sech?(Jx) — 8tanh4(Jx)sech2(Jm)) (55)

Ce développement est valide & haute température (8J < 1) ol k est petit.

Part I  —  Developpement Basse Temperature

a) Dans la limite basse température (8 — o0), 'état fondamental est celui qui minimise I’énergie du
systéme. Tous les spins s’alignent dans la méme direction pour minimiser 1’énergie d’interaction
entre spins voisins parce que ’energie est proportionelle au nombre de liens frustree. L’état fon-
damental est donc celui ot tous les spins sont identiques, pointant soit tous vers le haut +1 out
—1.

b) L’énergie de I'état fondamental est proportionele au nombre de liens dans le systeme, donc

Eo = —2JN?. (56)

¢) On va consideree le suivantes

o e

BREEER RN

Les premiéres excitations correspondent & retourner un ou plusieurs spins par rapport a 1’état
fondamental. L’augmentation d’énergie corresponde a le nombre de lien frustrée: Si on considére
de tourner un spin de +1 a —1 les liens avec ses voisins passent de —.J & +.J, augmentant 1’énergie
de 2J par lien.
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Le premier niveau excité: un seule spin retourné et donc énergie est de 1 = Ey + 8J. Vu que on
peut choisir la position du spin on a un degeneressance de N2.

Le deuxiéme niveau excité: deux spins retournés adjacents, énergie Fs = Ey+12.J. Leur degenerec-
cance est de 2?2,

Troisiéme niveau excité: on a que huit different liee sont frustree. Et donc on a une énergie
FE3 = Ey+ 16J. Le configuration correspondantes sont: deux spin non adjacentes, avec degeneres-
. N2(N2-5) . . . 2 . . .
saince ——5—, quatre spin toutes adjacentes, avec degeneraissance N=, trois spin en ligne, avec
degeneraissance 2N? et infin trois spins en "L" adjacentes avec degeneraissance 4N?2.

Q2. a) La fonction de partition a basse température s’écrit
ZN(B) = Z P 2ty i%i = g=PFo Ze‘BAE = ¢ PP Zw(AE)e‘BAE (57)
e I AE

Ou By = —2N2J, AE = 2N?%J — JZ ) Sis; est la différence énergétique par rapport a ’état

fondamental et w(AFE) la degenerescence correspondante. Puisque chaque lien brisé donne une
contribution de 2J a AF, il n’y aura que des termes pairs dans I'expansion.
b) On appelle w = e~287. A partir de 1, nous pouvons calculer I’énergie libre:

1 9
—Bf(B) = N2 log Z = 23J +w* + 2uw® + §w8 + 120" + o(w'?) (58)
L’énergie interne:
u(B) = —2J(1 — 4w* — 120° — 36w® — 120w'°) + o(w'?) (59)

La chaleur spécifique:

co(B) = B gg = 32773272077 (36" + 9e%7 4 261277 4 150) (60)
qui montre un comportement exponentiel a basse température, typique des systémes avec un gap
d’énergie.

Part III  —  Simulation Monte Carlo
Q1. Voir le Notebook
Q2. Voir le Notebook
Part IV —  Solution Fzxacte et Comparaison avec les FExpansions

Q1. La derivee du premiere terme est

~1 10g(cosh(2[3])) = —2J tanh(24.J) (61)
Pour le deuxieme terme on peur definir
2sinh(2z)  dg(x)
cosh?(2z) " dz

q(x) = = 4. sech(28.J)(sech®(28.J) — tanh*(23.7)), (62)

le deuxiéme terme est un intégrale absolument convergente donc pour le théoréme de convergence dom-
inée on peut echangee 'intégrale et la dérivée pour obtenir

J /”/2 sin®(0)q(8J)q' (BJ) a0 (63)
TJo 1 —sin%(0)q(BJ)? +\/1—s1n Ja(BJ)?

Maintenant on veut separee le termes qui sont dans I'integrale. On commence pour diviser et multiplier
par —J coth(25J)

- sin’(0)q(B.J) tanh(26.1) ¢ (3.J) (64)

ﬁ(l—sm() (BJ) + /1 —sin*(6 (w))
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Q2.

Q1.

Q2.

Aussi le premier partie on peut la voir comme

/2 2
4 tanh”(26J) 49

—2J tanh(28J) = —J coth(?ﬂj)/o - (65)
apres on considére la somme de deux pour obtenir que
9B(8) _ _J cosh(28]) /”/ *|atann?26.) sin”(6)q(8.) tanh(28.)q'(8J) a0
86 a m 0
(1—5111() (8J)? —l—\/l—sm (BJ)>
(66)

On va simplifier le terme dans U'integrale. On veut consideree la definition de ¢ en eq. (62), donc
sin?(0)q(B8.J) tanh(28.7)¢'(8.J) = 8 tanh?(25.J) sin?() sech?(23.J) (sech?(28.J) — tanh?(28.J))  (67)
= 2¢(B.J)? sin’(0) (sech?(26.J) — tanh?(23.7)) (68)

donc le on a que devien

4tanh®(26.7) — 2sin®(0)q(8.)2 (sanh? (28.7) + sech?(26.7)) + 4 tanh?(26.7),/1 — sin® (0)q(5.])2

\/1 —sin®(0)q(BJ)? <1 + \/1 — sinz(e)Q(ﬁJ)2>

Ou on a factorisee le denominateur aussi. Maintenant on peut utiliser le fat que tanh?(z) +sech?(z) = 1
pour simplifier ulterieurement pour obtenir

(69)

4tanh®(283.J) — 2sin?(0)q(BJ)? + 4 tanh®(25.J) \/1 —sin?(0)q(B.J)?

(70)
V1 - sin®(0)q(8)? (1+\/lsm 0)q (5J)>
maintenant on tente de simplifier la deuxieme partie du denominateur et on obtien que
dtanh®(28.J) — 2+ 2\/1 —sin?(0)q (BJ)2 _ 2tanh2(26j) 1)
\/1 —sin?(0)q(BJ)? \/1 — sin? BJ)?

et donc la forme final.

Voir le Notebook

Part V. —  Le Cumulant de Binder

Dans la phase paramagnétique (T' > T.), la distribution de l'aimantation devient gaussienne dans la
limite thermodynamique en raison du théoréme central limite

2
P(m) x exp <_;Z2> (72)
ott 02 = (m?). Pour une distribution gaussienne, les moments pairs sont reliés par
(m?) = 3(m?)? (73)
En substituant cette relation dans I’expression du cumulant de Binder
(m*)r 3(m?)?
U,=1- =1- =0 74
R T AT E ™
Dans la phase ferromagnétique (T < T.), la distribution tend vers
1
P(m) = 5[6(771 —my) + d(m + my)] (75)

Pour cette distribution on a que (m?) = m? et que (m*) = m?. D’ou

4
2
T =2 (76)

U, =1— -
o 3mi 3

12



Q3. Voir le Notebook
Q4. Voir le Notebook

Q5. Voir le Notebook

A la température critique, le systéme présente une invariance d’échelle. Les fonctions de corrélation et
les moments de 'aimantation suivent des lois d’échelle universelles. Le cumulant de Binder étant un
rapport de moments, il devient indépendant de la taille du systéme a T,.

Les courbes Ur(T) pour différentes tailles doivent donc se croiser en T,. Ce croisement fournit une
méthode pour déterminer numériquement la température critique.
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