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Homework 3: Modèle d’Ising en dimension finie

Consignes de rendu : Pour les questions numériques (indiquées par un astérisque), veuillez soumettre
un notebook Jupyter qui peut être exécuté de bout en bout sans erreur et qui reproduit tous les résultats de-
mandés dans ce document. Assurez-vous que votre code soit clair, bien commenté, et que toutes les dépendances
nécessaires soient clairement indiquées. Pour les questions théoriques, vous avez deux options :

• Vous pouvez inclure vos réponses directement dans le notebook Jupyter, en utilisant des cellules de texte
Markdown pour une présentation claire et structurée.

• Alternativement, vous pouvez soumettre un fichier PDF séparé contenant vos réponses aux questions
théoriques. Dans ce cas, assurez-vous que vos réponses soient bien organisées et correspondent clairement
aux numéros des questions.

Dans les deux cas, veillez à ce que vos explications soient claires, concises, et rigoureuses. N’hésitez pas à inclure
des schémas ou des équations lorsque cela est pertinent pour illustrer vos raisonnements.

Exercise 1 Le modèle d’Ising en une dimension

± ± ± ± ± ± ± ± ± ± ± ± ±+ +

1 2 N − 1 N

Le modèle d’Ising est l’un des modèles les plus simples et les plus fondamentaux de la physique statistique.
En une dimension, il consiste en une chaîne de N spins {si}Ni=1, où chaque spin peut prendre deux valeurs :
si = ±1. L’hamiltonien du système est donné par :

H = −J

N∑
i=0

sisi+1 (1)

où J est la constante de couplage entre spins voisins (nous considérerons J > 0, cas ferromagnétique).
Pour le reste de l’exercice on va considerer des conditions aux bords fixes s0 = sN+1 = 1

Part I — Développement haute température

Q1. On comence d’abord avec le calcul de la fonction de partition.
a) Écrivez l’expression de la fonction de partition ZN (β) pour β = 1

kBT .
b) En utilisant l’identité eβx = cosh(β)(1 + x tanh(β)) valable pour x = ±1, montrez que l’on peut

écrire

ZN (β) = [cosh(βJ)]N+1
∑

s∈{±1}N

N∏
i=0

(1 + κsisi+1) , (2)

où κ = tanh(βJ) et la somme sur s portent sur l’ensemble des éléments, c’est à dire
∑

s∈{±1}N ≡∑N
k=1

∑
sk∈{−1,1} ≡

∑
s1∈{−1,1} · · ·

∑
sN∈{−1,1}.

Q2. a) Développez le produit dans l’expression de ZN (β) en κ. Expliquez pourquoi chaque terme de ce
développement peut être représenté par un diagramme où les liens entre sites voisins représentent
un facteur κ.
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b) Pour N = 3, écrivez explicitement tous les termes du développement et représentez les diagrammes
correspondants.

c) Pour un diagramme donné, montrez que la somme sur les configurations de spins
∑

s∈{±1}N est
nulle sauf si chaque site (sauf 0 et N + 1) est connecté à un nombre pair de liens.

Q3. a) En utilisant la règle de parité de la question précédente, montrez que seuls deux types de diagrammes
contribuent à ZN (β) : le diagramme vide et le diagramme complètement rempli. Explique pourquoi.

b) En déduire l’expression exacte de ZN (β)

ZN (β) = [cosh(βJ)]N+12N (1 + κN+1) . (3)

Q4. On s’intéresse maintenant à calculer des observables comme l’énergie libre du système, l’énergie par site
et le chaleur spécifique.

a) Calculez l’énergie libre par site dans la limite thermodynamique

f(β) = − lim
N→∞

1

βN
lnZN (β) , (4)

et en déduire l’énergie interne par site u(β) = ∂(βf)
∂β et la chaleur spécifique c(β) = −β2 ∂2(βf)

∂β2 .
b) Tracez l’allure de ces fonctions thermodynamiques en fonction de la température. Commentez

l’absence de transition de phase dans ce système.

Part II — Simulation Monte Carlo
On s’intéresse maintenant à implémenter une simulation Monte Carlo efficace du modèle d’Ising 1D avec

l’algorithme de Metropolis. Pour optimiser le code, nous allons utiliser certaines stratégies d’implémentation
spécifiques.

Q1. Pour représenter la configuration du système de manière efficace, nous utiliserons un tableau de type
bool de longueur N +2 pour inclure les spins avec les conditions aux bords fixes. On va considerer True
comme +1 et False comme −1.

a) Implémentez une fonction Python qui calcule la variation d’énergie ∆E associée au retourne-
ment d’un spin si → −si avec comme définition energy_variation_1d(s: Iterable[bool],
J: float, pos: int) -> float:

b) Implémentez l’algorithme de Metropolis1 dans une fonction avec définition metropolis_simulation_1d(
s_init: Iterable[bool], J: float, beta: float, n_steps: int) -> Iterable[bool]:
qui propose un nombre N n_steps de l’algorithme et change le système.

c) Implémentez une fonction qui mesure l’énergie totale d’une configuration total_energy_1d(s:
np.ndarray, J: float) -> float.

Q2. Étudions maintenant le temps de décorrélation du système.
a) Implémentez une fonction qui mesure la distance de Hamming normalisée2 entre la configuration

initiale et la configuration qui evolue avec le Monte Carlo.
b) Suivez l’évolution de cette distance au cours du temps Monte Carlo. Après combien de pas Monte

Carlo les deux trajectoires deviennent-elles décorrélées ? Appelons ce nombre ntherm(T,N) et
répétez l’expérience pour différentes températures T/J ∈ {0.001, 1, 1000} et apres pour different
taille du systeme N ∈ {100, 500, 1000}. Commentez les dépendancs du temps de décorrélation avec
la température et la taille du systeme.

Q3. Effectuons maintenant une étude systématique des observables thermodynamiques comme l’énergie
moyenne par spin et le chaleur spécifique.

a) Pour N = 100 spins et différentes températures T/J ∈ [0.1, 2] on veut obtenir des échantillons de
Monte Carlo. Avec le valeurs précédentes, effectuer une thermalisation en attendant un nombre de
pas MCMC de 10∗ntherm(T,N = 100). Utiliser les 106 pas suivants pour évaluer l’énergie moyenne
⟨E⟩ et ⟨E2⟩ et la chaleur spécifique c = β2(⟨E2⟩ − ⟨E⟩2)/N .

1Pour une implémentation efficace pré-générez la séquence des positions à visiter avec np.random.randint.
2La distance de Hamming pour deux vecteurs in v,u ∈ {−1,+1}N est defini comme

dH(u,v) =
1

N

N∑
i=1

Θ(−viui) =
1

N

N∑
i=1

1ui ̸=vi =
nombre d’ éléments différents

dimension des vecteurs
(5)
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b) Comparez vos résultats numériques avec les expressions exactes obtenues dans la première partie.

Part III — Fonction de corrélation

Q1. La corrélation entre deux point a distance r est définie pour chaque température comme

Cβ(r) = ⟨sisi+r⟩ =
∑

s∈{−1,+1}N

sisi+r e
−βHβ(s)

ZN (β)
(6)

on veut computer cette quantité analytiquement et la comparez avec le simulations.
a) En utilisant la même idée du développement haute température pour la Part I, calculez Cβ(r).
b) Montrez que pour tout T > 0, N → ∞, et r fixée (cette dernière ne dépend pas de N), la fonction

de corrélation décroît exponentiellement

Cβ(r) ∼ e−r/ξ (7)

où ξ est la longueur de corrélation. Donnez la forme de ξ.

* Q2. À partir de vos simulations Monte Carlo :
a) Mesurez Cβ(r) pour différentes températures.
b) Comparez les résultats numériques avec l’expression analytique.
c) Extrayez la longueur de corrélation ξ pour diferent temperatures en T/J ∈ [0.5, 4.0]. Comment ξ

varie-t-elle avec la température ? Est-ce que il match avec la formule analytique?

Solution of Exercise 1

Part I — Développement haute température

Q1. Nous allons considérer l’hamiltonien

H = −J

N∑
i=0

sisi+1 (8)

a) La formule de la fonction de partion est

ZN (β) =
∑

s1∈{±1}

· · ·
∑

sN∈{±1}

eβJ
∑N

i=0 sisi+1 =
∑

s1∈{±1}

· · ·
∑

sN∈{±1}

N∏
i=0

eβJsisi+1 (9)

b) On note que sisi+1 ∈ {±1} pour toutes i = 0, . . . , N . Donc on a que

eβJsisi+1 = cosh(βJ)(1 + sisi+1 tanh(βJ)) (10)

donc on a que

ZN (β) =
∑

s1∈{±1}

· · ·
∑

sN∈{±1}

N∏
i=0

cosh(βJ)(1 + sisi+1 tanh(βJ)) (11)

= cosh(βJ)
N+1

∑
s1∈{±1}

· · ·
∑

sN∈{±1}

N∏
i=0

(1 + sisi+1 tanh(βJ)) (12)

= cosh(βJ)
N+1

∑
s1∈{±1}

· · ·
∑

sN∈{±1}

N∏
i=0

(1 + κsisi+1) (13)

Q2. a) On peut voir le term du produit produit
∏N

i=0(1 + κsisi+1) comme choisir pour chaque i soit le
terme avec 1 ou le terme κsisi+1. Donc le développement du produit

∏N
i=0(1+κsisi+1) va générer

des termes de la forme
κnsi1si1+1si2si2+1 · · · sinsin+1 (14)
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où n est le nombre de facteurs (1 + κsisi+1) pour lesquels on a choisi le terme κsisi+1 plutôt que
1. En tout generalite on peut ecrire que

N∏
i=0

(1 + κsisi+1) =
∑

E∈PN

κ|E|
∏
e∈E

sese+1 (15)

ou E est un sous ensemble de {0, . . . , N}. On indique PN l’ensemble de tous les sous ensemble E
possibles et |E| la cardinalité de E.
Chaque terme peut être représenté par un diagramme où l’on dessine un lien entre les sites i et
i+ 1 si le facteur κsisi+1 est sélectionné. Le coefficient κn compte alors le nombre de liens dans le
diagramme.

b) Pour N = 3, on a trois sites intérieurs et don on peut considérée le lien si sont sélectionne en en
produit

0 1 2 3 4

on peut explicitement avoir le produit

4∏
i=1

(1 + κsisi−1) = (1 + κs0s1)(1 + κs1s2)(1 + κs2s3)(1 + κs3s4) (16)

= (1 + κs1)(1 + κs1s2)(1 + κs2s3)(1 + κs3) (17)

= 1 + κ(s1 + s1s2 + s2s3 + s3) + κ4
(
s21s

2
2s

2
3

)
(18)

+ κ2
(
s21s2 + s1s2s3 + s1s3s4 + s1s

2
2s3 + s1s2s3 + s2s

2
3s4
)

(19)

+ κ3
(
s21s

2
2s3 + s21s2s3 + s1s2s

2
3 + s1s

2
2s

2
3

)
(20)

= 1 + κ(s1 + s1s2 + s2s3 + s3) + κ3(s3 + s2s3 + s1s2 + s1) + κ4 (21)

+ κ2(s2 + s1s2s3 + s1s3s4 + s1s3 + s1s2s3 + s2s4) (22)

ou s0 = s4 = +1. Les diagrammes correspondants sont, divisee par ordre,
Ordre 0 On a un seule diagramme

0 1 2 3 4

Ordre 1 On a quatre different diagrammes

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

Ordre 2 On a
0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

Ordre 3 On a
0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

Ordre 4 On a un seule diagramme
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0 1 2 3 4

c) Considérons un site intérieur i. Pour un diagramme donné, ce site apparaît dans le produit des si
un nombre de fois égal au nombre de liens connectés à ce site. Lors de la somme sur si = ±1, on a

∑
si=±1

sni =

{
2 si n est pair
0 si n est impair

(23)

Donc, pour qu’un diagramme contribue à la somme, chaque site intérieur doit être connecté à un
nombre pair de liens. Les sites aux bords (0 et N +1) ne sont pas soumis à cette contrainte car ils
sont fixés à +1.

Q3. a) D’après la règle de parité établie précédemment, chaque site intérieur doit être connecté à un
nombre pair de liens pour que la somme sur les configurations de spins soit non-nulle. Pour les
sites aux bords (fixés à +1), cette contrainte ne s’applique pas.
En considérant un site intérieur quelconque, il doit avoir soit 0 soit 2 liens. S’il a un seul lien ou
un nombre impair de liens, la somme sur ce spin donnera zéro. Cette contrainte propage de proche
en proche : si un site a deux liens, ses voisins doivent aussi avoir deux liens pour satisfaire la règle
de parité.
Donc, seuls deux types de diagrammes sont possibles :

• Le diagramme vide (aucun lien) : contribue avec un facteur 1
• Le diagramme complètement rempli (tous les liens) : contribue avec un facteur κN+1

b) Pour chacun de ces deux diagrammes valides, la somme sur les configurations de spins donne un
facteur 2N (car il y a N spins libres pouvant prendre deux valeurs). Le facteur global [cosh(βJ)]N+1

est toujours présent.
Donc la fonction de partition s’écrit

ZN (β) = [cosh(βJ)]N+12N (1 + κN+1) (24)

où κ = tanh(βJ).

Q4. a) L’énergie libre par site dans la limite thermodynamique est

f(β) = − lim
N→∞

1

βN
lnZN (β) = − lim

N→∞

1

βN
ln
(
[cosh(βJ)]N+12N (1 + κN+1)

)
= − 1

β
(ln[cosh(βJ)] + ln 2) (25)

où le terme ln
(
1 + κN+1

)
disparaît dans la limite N → ∞ car |κ| < 1 pour tout β fini.

L’énergie interne par site est alors

u(β) =
∂(βf)

∂β
= −J tanh(βJ)

La chaleur spécifique par site est

c(β) = −β2 ∂
2βf

∂β2
= −β2 ∂u

∂β
= β2J2 sech2(βJ) (26)

Cette chaleur spécifique présente les comportements asymptotiques suivants :
• À haute température (βJ ≪ 1) : c(β) ≈ (βJ)2

• À basse température (βJ ≫ 1) : c(β) ≈ 4(βJ)2e−2βJ

L’absence de singularité dans ces quantités thermodynamiques, représenté en Fig. 1, indique
l’absence de transition de phase dans le modèle d’Ising 1D, contrairement au cas 2D qui présente
une transition à température finie.

Part II — Simulation Monte Carlo

Q1. Voir le notebook

Q2. Voir le notebook
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Figure 1: Courbes d’énergie et de chaleur spécifique pour le modèle Ising 1D.

Q3. Voir le notebook

Part III — Fonction de corrélation

Q1. a) Pour calculer la fonction de corrélation, nous devons d’abord évaluer ⟨sisi+r⟩. En utilisant la même
technique de développement haute température que précédemment

⟨sisi+r⟩ =
1

ZN (β)

∑
s

sisi+re
βJ

∑N
j=0 sjsj+1 (27)

En utilisant la même transformation avec κ = tanh(βJ), on obtient

⟨sisi+r⟩ =
[cosh(βJ)]N+1

ZN (β)

∑
s

sisi+r

N∏
j=0

(1 + κsjsj+1) (28)

Par la règle de parité de la Q3, Part I, seuls les diagrammes où tous les sites sont connectés à
un nombre pair de liens contribuent. Pour calculer ⟨sisi+r⟩, seuls les deux diagrammes suivants
satisfont cette condition : celui avec une ligne continue de r liens connectant les sites i et i+ r, et
celui qui connecte le site i au bord et le site i+ r au bord. Donc

⟨sisi+r⟩ =
[cosh(βJ)]N+12N (κr + κN+1−r)

[cosh(βJ)]N+12N (1 + κN+1)
= κr 1 + κN+1−2r

1 + κN+1
. (29)

Dans la limite N → ∞, si on considère r fixée (ne dépendant pas de N), on a, pour le fait que
κ < 1, que les termes κN+1 et κN+1−2r sont sous-dominants, donc la fonction de corrélation est
simplement

Cβ(r) = κr = [tanh(βJ)]r (30)

b) La fonction de corrélation peut être réécrite sous forme exponentielle

Cβ(r) = [tanh(βJ)]r = er ln(tanh(βJ)) = e−r/ξ (31)

où la longueur de corrélation ξ est donnée par

ξ = − 1

ln(tanh(βJ))
(32)

Cette longueur de corrélation a les comportements asymptotiques suivants :
• À haute température (βJ ≪ 1) : ξ ≈ 1

2βJ

• À basse température (βJ ≫ 1) : ξ ≈ − 1
2e

2βJ

La longueur de corrélation diverge exponentiellement quand T → 0. Cette divergence est carac-
téristique d’un point critique à température nulle, confirmant l’absence de transition de phase à
température finie dans le modèle d’Ising 1D.
Le fait que ξ soit finie pour tout T > 0 implique que les corrélations décroissent toujours exponen-
tiellement avec la distance. Cette décroissance exponentielle est liée au coût énergétique de création
de domaines de spins opposés, qui est fini en 1D mais devient infini en 2D à basse température.
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Q2. Voir le notebook

Exercise 2 Ising 2D
On considère une variante en deux dimensions du modèle déjà étudié. Le degré de liberté consiste en

N ×N spins {si,j}Ni,j=1, où chaque spin peut prendre deux valeurs : si,j = ±1. L’hamiltonien du système est
donné par

H = −J

N−1∑
i=1

N−1∑
j=1

(si,jsi+1,j + si,jsi,j+1)− J

N−1∑
i=1

(sN,isN,i+1 + si,Nsi+1,N ) + C({si,j}Ni,j=1) (33)

où J est la constante de couplage entre spins voisins (nous considérerons J > 0, cas ferromagnétique) et C est
le terme concernant les conditions aux bords. Pour le reste de l’exercice on va considérer des condition au bord
toroïdales (i.e. periodiques)

C({si,j}Ni,j=1) = −J

N∑
i=1

si,Nsi,1 − J

N∑
i=1

sN,is1,i (34)

Part I — Développement haute température

Q1. a) En utilisant l’identité eβx = cosh(β)(1 + x tanh(β)) pour x = ±1, montrez que l’on peut écrire

ZN (β) = [cosh(βJ)]2N
2 ∑
{si,j}

∏
(i,j)∼(i′,j′)

(1 + κsi,jsi′,j′) (35)

où κ = tanh(βJ) et la notation (i, j) ∼ (i′, j′) désigne les paires de sites premiers voisins.
b) Développez le produit dans l’expression de ZN (β). Expliquez pourquoi chaque terme de ce développe-

ment peut être représenté par un diagramme où les liens entre sites voisins représentent un facteur
κ.

c) Pour un diagramme donné, montrez que la somme sur les configurations de spins
∑

{si,j} est nulle
sauf si chaque site (sauf les bords) est connecté à un nombre pair de liens.

Q2. En utilisant l’analyse precedente,
a) Calculez l’énergie libre par site dans la limite thermodynamique

f(β) = − lim
N→∞

1

βN2
lnZN (β) (36)

à l’ordre κ10.
b) En déduire l’énergie interne par site u(β) et la chaleur spécifique c(β) au meme ordre.

Part II — Développement basse température

Q1. a) Dans la limite basse température (β → ∞), quel est l’état fondamental du système compte tenu
des conditions aux bords?

b) Quelle est l’énergie de cet état fondamental?
c) Classifiez les trois premières excitations possibles au-dessus de l’état fondamental. Quelle est leur

énergie et leur dégénérescence?

Q2. a) En déduire que l’expression de la fonction de partition à basse température peut s’écrire comme:

ZN (β) = e−βE0

((
10∑
k=0

a2ke
−2kβJ

)
+ o(e−20βJ)

)
(37)

où les coefficients ai sont à déterminer. Expliquez pourquoi seuls les terms paires contribuent à la
somme.

b) En déduire l’énergie libre, l’énergie interne et la chaleur spécifique dans cette limite.

* Part III — Simulation Monte Carlo
On veut aussi implémenter un algorithme efficient pour simuler le Monte Carlo dans le cas en deux

dimension. Encore un fois on va implémenter l’algorithme de Metropolis et nous utiliserons un tableau de type
bool de dimension N2 pour définir l’état du système.
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Q1. On veut aussi implémenter un algorithme efficient pour simuler le Monte Carlo dans le cas en deux
dimension.

a) Implémenter la fonction qui calcule la différence en énergie pour un flip de spin si,j → −si,j . (Rap-
pel: on considère des conditions au bord periodiques! ). On notera cette fonction par energy_variation_2d(s:
np.array, J: float, pos: tuple) -> float:.

b) Implémenter la fonction qui fait tournez l’algorithme de Metropolis pour un nombre de steps fixe
N2 n_steps.
On notera cette fonction par def metropolis_simulation_2d(s_init: np.ndarray, J: float,
beta: float, n_steps: int) -> np.ndarray:.

c) Implémenter la fonction qui calcule l’énergie par spin comme def energy_per_spin_2d(s: np.ndarray,
J: float) -> float:.

d) Implémenter la fonction qui calcule le chaleur spécifique par site comme def specific_heat_per_spin(T:
float, J: float) -> float:.

Q2. Produire une figure de la distribution de magnétisation pour les valeurs de la température T/J ∈
{2.0, 2.6, 3.0} après la thermalisation. Que notez vous? Est ce que il y a un changement de comportement
quelque part?

Part IV — Solution Exacte et Comparaison avec les Expansions
La solution exacte du modèle d’Ising 2D, obtenue par Onsager en 1944, représente une avancée mathématique
majeure utilisant la méthode de la matrice de transfert. L’énergie libre f(β) par site est donnée par:

−βf(β) = ln(2 cosh 2βJ) +
1

π

∫ π/2

0

dθ ln

1
2

1 +

√
1−

(
2 sinh 2βJ

cosh2 2βJ

)2

sin2 θ

 . (38)

Q1. En dérivant par rapport à β, démontrez que l’énergie moyenne par site s’écrit

e(β) = −J coth 2βJ

1 + 2

π

(
2 tanh2 2βJ − 1

) ∫ π/2

0

dϕ

(
1−

(
2 sinh 2βJ

cosh2 2βJ

)2

sin2 ϕ

)− 1
2

 (39)

Les solutions précédentes dépendent d’une intégrale. Pour estimer sa valeur, vous pouvez la calculer
avec python avec la routine: scipy.integrate.quad.

Q2. Nous allons maintenant comparer quatre approches différentes pour calculer l’énergie du système : la
simulation Monte Carlo, la solution exacte d’Onsager, le développement à haute température et le
développement à basse température.

a) Tracez sur un même graphique la solution exacte d’Onsager et les résultats de la simulation Monte
Carlo pour un système de taille N = 128.

b) Ajoutez au graphique précédent les développements à haute et basse températures. Utilisez des
courbes différentes pour représenter chaque ordre du développement.

c) Commentez le graphique obtenu.

Part V — Le Cumulant de Binder
Le cumulant de Binder (ou plus précisément, la kurtosis) est un outil puissant pour l’étude numérique des
transitions de phase, notamment pour déterminer la température critique et la classe d’universalité d’un système.
Pour un système de taille N , il est défini comme

UN = 1− ⟨m4⟩N
3⟨m2⟩2N

(40)

où m = 1
N2

∑N
i,j=1 si,j est l’aimantation par site et ⟨·⟩N désigne la moyenne thermique pour un système de taille

linéaire N .

Q1. Pour T > Tc (phase paramagnétique), la distribution de l’aimantation devient gaussienne dans la limite
thermodynamique. Montrez que pour le cas gaussienne on a que UN = 0.

Q2. Pour T < Tc (phase ferromagnétique), la distribution de l’aimantation tend vers deux pics de Dirac en
±m⋆(T ) où m⋆(T ) est l’aimantation spontanée. Montrez que pour cette distribution on a que UN = 2

3 .
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* Q3. Écrivez une fonction qui calcule le cumulant de Binder à partir d’une série temporelle d’aimantations
obtenue par simulation Monte Carlo.

* Q4. Pour le modèle d’Ising 2D, effectuez des simulations Monte Carlo pour des réseaux avec N ∈ {8, 16, 32, 64}
aux températures T/J ∈ {2.0, 2.1, 2.2, 2.3, 2.4, 2.5}. Pour chaque taille et température échantillonnez
de l’ordre de 103 configurations indépendantes a l’équilibre. Calculez UN et représentez graphiquement
UN (T ) pour les différentes tailles.

* Q5. À partir de vos données
a) Estimez Tc à partir du point de croisement des courbes UN (T ).
b) Comparez votre estimation avec la valeur exacte Tc/J ≃ 2.269 donnée par Onsager.

Solution of Exercise 2

Part I — Developpement Haute Temperature

Q1. a) Partons de la fonction de partition

ZN (β) =
∑
{si,j}

expβJ

N−1∑
i=1

N∑
j=1

si,jsi+1,j +

N∑
i=1

N−1∑
j=1

si,jsi,j+1 +

N∑
i=1

si,Nsi,1 +

N∑
i=1

sN,is1,i

 (41)

en utilisant l’indice on a que cette expression se factorise sur les liens

ZN (β) =
∑
{si,j}

∏
(i,j)−(i′,j′)

eβJsi,jsi′,j′ (42)

ou on indique (i, j)− (i′, j′) un line existente sur le resaux.
Pour chaque lien, nous pouvons appliquer l’identité donnée. Comme si,jsi′,j′ = ±1, nous avons

eβJsi,jsi′,j′ = cosh(βJ)(1 + si,jsi′,j′ tanh(βJ)) (43)

Le réseau a 2N2 liens au total en comptant les liens avec les bords fixes. En posant κ = tanh(βJ),
nous obtenons la forme désirée

ZN (β) = [cosh(βJ)]2N
2 ∑
{si,j}

∏
(i,j)−(i′,j′)

(1 + κsi,jsi′,j′) (44)

b) Le développement du produit donnera une somme de termes qui peuvent être organisés selon les
puissances de κ∏

⟨i,j⟩

(1 + κsi,jsi′,j′) = 1 +
∑
liens

κsi,jsi′,j′ +
∑

paires

κ2si,jsi′,j′sk,lsk′,l′ + · · · (45)

Chaque terme correspond à un choix de liens où nous prenons le facteur κsi,jsi′,j′ plutôt que 1.
Ces choix peuvent être représentés par un diagramme où :

• Chaque site du réseau est un point
• Un lien est tracé entre deux sites voisins si nous avons choisi le facteur κsi,jsi′,j′ correspondant
• L’ordre en κ est le nombre de liens dans le diagramme

c) Pour un diagramme donné avec certains liens choisis, nous avons une somme de la forme∑
{si,j}

∏
liens choisis

si,jsi′,j′ (46)

Considérons un site intérieur particulier si,j . Ce spin apparaît dans le produit autant de fois qu’il
y a de liens connectés à lui. Quand nous sommons sur si,j = ±1 :

• Si le nombre de liens est pair :
∑

si,j=±1(si,j)
pair = 2

• Si le nombre de liens est impair :
∑

si,j=±1(si,j)
impair = 0
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Donc un diagramme donne une contribution non nulle uniquement si chaque site intérieur est
connecté à un nombre pair de liens. Les sites aux bords ont toujours s = +1 donc cette règle ne
s’applique pas à eux.

Q2. a) Donc à l’ordre κ10

ZN (β) = cosh(βJ)
2N2

22N
2
[
1 +N2κ4 + 2N2κ6 +

(
7N2 +

N2(N2 − 5)

2

)
κ8 (47)

+
(
28N2 + 2N2(N2 − 8)

)
κ10 + o(κ10)

]
(48)

L’énergie libre par site est

−βf(β) =
1

N2
logZ = 2 log coshβJ + 2 log 2 + κ4 + 2κ6 +

(
9

2
+

N2

2

)
κ8+ (49)

+
(
2N2 + 12

)
κ10 − N2

2
κ8 − 2N2κ10 + o(κ10) (50)

où nous avons utilisé que pour ϵ ≈ 0 nous pouvons écrire log(1 + ϵ) = ϵ − ϵ2

2 + O(ϵ3). On voit,
et on peut le prouver à n’importe quel ordre, que la contribution des diagrammes déconnectés est
toujours annulée par le développement du logarithme. On a

−βf(β) = 2 log 2 coshβJ + κ4 + 2κ6 +
9

2
κ8 + 12κ10 + o(κ10) (51)

b) L’énergie interne par site est

u(β) =
∂(βf)

∂β
≈ −2Jκ− 4J

cosh2(βJ)
κ3 − 12J

cosh2(βJ)
κ5 − 36J

cosh2(βJ)
κ7 − 120J

cosh2(βJ)
κ9 (52)

La chaleur spécifique par site est

c(β) ≈ β2J2
(
2sech2(Jx) + 1080 tanh8(Jx)sech4(Jx) + 252 tanh6(Jx)sech4(Jx) (53)

+ 60 tanh4(Jx)sech4(Jx) + 12 tanh2(Jx)sech4(Jx)− 240 tanh10(Jx)sech2(Jx) (54)

− 72 tanh8(Jx)sech2(Jx)− 24 tanh6(Jx)sech2(Jx)− 8 tanh4(Jx)sech2(Jx)
)

(55)

Ce développement est valide à haute température (βJ ≪ 1) où κ est petit.

Part II — Developpement Basse Temperature

Q1. a) Dans la limite basse température (β → ∞), l’état fondamental est celui qui minimise l’énergie du
système. Tous les spins s’alignent dans la même direction pour minimiser l’énergie d’interaction
entre spins voisins parce que l’energie est proportionelle au nombre de liens frustree. L’état fon-
damental est donc celui où tous les spins sont identiques, pointant soit tous vers le haut +1 out
−1.

b) L’énergie de l’état fondamental est proportionele au nombre de liens dans le systeme, donc

E0 = −2JN2 . (56)

c) On va consideree le suivantes

Les premières excitations correspondent à retourner un ou plusieurs spins par rapport à l’état
fondamental. L’augmentation d’énergie corresponde a le nombre de lien frustrée: Si on considère
de tourner un spin de +1 a −1 les liens avec ses voisins passent de −J à +J , augmentant l’énergie
de 2J par lien.
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Le premier niveau excité: un seule spin retourné et donc énergie est de E1 = E0 + 8J . Vu que on
peut choisir la position du spin on a un degeneressance de N2.
Le deuxième niveau excité: deux spins retournés adjacents, énergie E2 = E0+12J . Leur degenerec-
cance est de 2N2.
Troisième niveau excité: on a que huit different liee sont frustree. Et donc on a une énergie
E3 = E0 + 16J . Le configuration correspondantes sont: deux spin non adjacentes, avec degeneres-
saince N2(N2−5)

2 , quatre spin toutes adjacentes, avec degeneraissance N2, trois spin en ligne, avec
degeneraissance 2N2 et infin trois spins en "L" adjacentes avec degeneraissance 4N2.

Q2. a) La fonction de partition à basse température s’écrit

ZN (β) =
∑
{s⃗}

eβJ
∑

⟨i,j⟩ sisj = e−βE0

∑
{s⃗}

e−β∆E = e−βE0

∑
∆E

w(∆E)e−β∆E (57)

Où E0 = −2N2J , ∆E = 2N2J − J
∑

⟨i,j⟩ sisj est la différence énergétique par rapport à l’état
fondamental et w(∆E) la dégénérescence correspondante. Puisque chaque lien brisé donne une
contribution de 2J à ∆E, il n’y aura que des termes pairs dans l’expansion.

b) On appelle w = e−2βJ . À partir de là, nous pouvons calculer l’énergie libre:

−βf(β) =
1

N2
logZ = 2βJ + w4 + 2w6 +

9

2
w8 + 12w10 + o(w10) (58)

L’énergie interne:

u(β) = −2J(1− 4w4 − 12w6 − 36w8 − 120w10) + o(w10) (59)

La chaleur spécifique:

c(β) = −β2 ∂u

∂β
= 32J2β2e−20βJ

(
36e4βJ + 9e8βJ + 2e12βJ + 150

)
(60)

qui montre un comportement exponentiel à basse température, typique des systèmes avec un gap
d’énergie.

Part III — Simulation Monte Carlo

Q1. Voir le Notebook

Q2. Voir le Notebook

Part IV — Solution Exacte et Comparaison avec les Expansions

Q1. La derivee du premiere terme est

− d

dβ
log(cosh(2βJ)) = −2J tanh(2βJ) (61)

Pour le deuxieme terme on peur definir

q(x) :=
2 sinh(2x)

cosh2(2x)
,

dq(x)

dx
= 4J sech(2βJ)(sech2(2βJ)− tanh2(2βJ)) , (62)

le deuxième terme est un intégrale absolument convergente donc pour le théorème de convergence dom-
inée on peut echangee l’intégrale et la dérivée pour obtenir

J

π

∫ π/2

0

sin2(θ)q(βJ)q′(βJ)

1− sin2(θ)q(βJ)2 +
√
1− sin2(θ)q(βJ)2

dθ (63)

Maintenant on veut separee le termes qui sont dans l’integrale. On commence pour diviser et multiplier
par −J coth(2βJ)

− sin2(θ)q(βJ) tanh(2βJ)q′(βJ)

π

(
1− sin2(θ)q(βJ)2 +

√
1− sin2(θ)q(βJ)2

) (64)

11



Aussi le premier partie on peut la voir comme

−2J tanh(2βJ) = −J coth(2βJ)

∫ π/2

0

4 tanh2(2βJ)

π
dθ (65)

âpres on considère la somme de deux pour obtenir que

∂βf(β)

∂β
= −J cosh(2βJ)

π

∫ π/2

0

4 tanh2(2βJ)− sin2(θ)q(βJ) tanh(2βJ)q′(βJ)(
1− sin2(θ)q(βJ)2 +

√
1− sin2(θ)q(βJ)2

)
 dθ

(66)
On va simplifier le terme dans l’integrale. On veut consideree la definition de q en eq. (62), donc

sin2(θ)q(βJ) tanh(2βJ)q′(βJ) = 8 tanh2(2βJ) sin2(θ) sech2(2βJ)(sech2(2βJ)− tanh2(2βJ)) (67)

= 2q(βJ)2 sin2(θ)(sech2(2βJ)− tanh2(2βJ)) (68)

donc le on a que devien

4 tanh2(2βJ)− 2 sin2(θ)q(βJ)2(tanh2(2βJ) + sech2(2βJ)) + 4 tanh2(2βJ)
√
1− sin2(θ)q(βJ)2√

1− sin2(θ)q(βJ)2
(
1 +

√
1− sin2(θ)q(βJ)2

) (69)

Ou on a factorisee le denominateur aussi. Maintenant on peut utiliser le fat que tanh2(x)+sech2(x) = 1
pour simplifier ulterieurement pour obtenir

4 tanh2(2βJ)− 2 sin2(θ)q(βJ)2 + 4 tanh2(2βJ)
√

1− sin2(θ)q(βJ)2√
1− sin2(θ)q(βJ)2

(
1 +

√
1− sin2(θ)q(βJ)2

) (70)

maintenant on tente de simplifier la deuxieme partie du denominateur et on obtien que

4 tanh2(2βJ)− 2 + 2
√
1− sin2(θ)q(βJ)2√

1− sin2(θ)q(βJ)2
= 2 + 2

2 tanh2(2βJ)− 1√
1− sin2(θ)q(βJ)2

(71)

et donc la forme final.

Q2. Voir le Notebook

Part V — Le Cumulant de Binder

Q1. Dans la phase paramagnétique (T > Tc), la distribution de l’aimantation devient gaussienne dans la
limite thermodynamique en raison du théorème central limite

P (m) ∝ exp

(
−m2

2σ2

)
(72)

où σ2 = ⟨m2⟩. Pour une distribution gaussienne, les moments pairs sont reliés par

⟨m4⟩ = 3⟨m2⟩2 (73)

En substituant cette relation dans l’expression du cumulant de Binder

UL = 1− ⟨m4⟩L
3⟨m2⟩2L

= 1− 3⟨m2⟩2

3⟨m2⟩2
= 0 (74)

Q2. Dans la phase ferromagnétique (T < Tc), la distribution tend vers

P (m) =
1

2
[δ(m−m⋆) + δ(m+m⋆)] (75)

Pour cette distribution on a que ⟨m2⟩ = m2
⋆ et que ⟨m4⟩ = m4

⋆. D’où

UL = 1− m4
⋆

3m4
⋆

=
2

3
(76)
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Q3. Voir le Notebook

Q4. Voir le Notebook

Q5. Voir le Notebook

À la température critique, le système présente une invariance d’échelle. Les fonctions de corrélation et
les moments de l’aimantation suivent des lois d’échelle universelles. Le cumulant de Binder étant un
rapport de moments, il devient indépendant de la taille du système à Tc.
Les courbes UL(T ) pour différentes tailles doivent donc se croiser en Tc. Ce croisement fournit une
méthode pour déterminer numériquement la température critique.
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