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Homework 2: Sphéres dures unidimensionnelles

Consignes de rendu : Pour les questions numériques (indiquées par un astérisque), veuillez soumettre
un notebook Jupyter qui peut étre exécuté de bout en bout sans erreur et qui reproduit tous les résultats de-
mandés dans ce document. Assurez-vous que votre code soit clair, bien commenté, et que toutes les dépendances
nécessaires soient clairement indiquées. Pour les questions théoriques, vous avez deux options :

e Vous pouvez inclure vos réponses directement dans le notebook Jupyter, en utilisant des cellules de texte
Markdown pour une présentation claire et structurée.

e Alternativement, vous pouvez soumettre un fichier PDF séparé contenant vos réponses aux questions
théoriques. Dans ce cas, assurez-vous que vos réponses soient bien organisées et correspondent clairement
aux numéros des questions.

Dans les deux cas, veillez & ce que vos explications soient claires, concises, et rigoureuses. N’hésitez pas a inclure
des schémas ou des équations lorsque cela est pertinent pour illustrer vos raisonnements.

Exercise 1 Le modéle des pinces a linge
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Nous allons étudier un modéle simple de particules dures en une dimension. Vous pouvez vous les
représenter comme des pinces a linge placées sur une corde a linge. Chaque pince a une largeur de 20 et est
placée sur un segment de longueur L. Les pinces ne peuvent pas se chevaucher, et doivent rester a une distance
d’au moins ¢ des extrémités du segment. Malgré sa simplicité, ce modéle permet d’illustrer des concepts
fondamentaux en physique statistique : c’est un bon modéle de particules "dures" unidimensionnelles, et un
exemple de force de déplétion (Asakura, Oosawa, 1954).

Q1. Soit 7 (z1,...,2n) la densité de probabilité de trouver les pinces aux positions {z1,...,zy} sur un fil.
La pince 7 se trouve en position x;. Pour ce systéme, cette distribution (non-normalisée) s’écrit

N
mr(z,. . on) = |[[ Oz — 2] — 20) H@(L — 0 —1;)0(z; — 0) (1)
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oindent ot ©(x) est on appelle Zy, 1, la fonction de partition.
a) Expliquez la signification physique de cette distribution. Pourquoi utilise-t-on la fonction de Heav-
iside ?
b) Interprétez les différents termes de I’équation. Que représente chacun des deux produits ?
¢) Est-ce que cette distribution considére les pinces comme distinguables ou indistinguables ? Justifiez
votre réponse.

* Q2. Nous voulons générer des configurations de pinces qui respectent les contraintes géométriques et qui
échantillonnent uniformément ’espace des configurations permises. Pour cela, on considére deux
approches différentes :



A : On place les pinces une par une a des positions aléatoires uniformément échantillonnées dans [0, L —
o]. Si une pince chevauche une autre ou sort des limites, on la replace a une nouvelle position
aléatoire jusqu’a trouver une position valide, puis on passe a la pince suivante.

B : On place les pinces une par une a des positions aléatoires uniformément échantillonnées dans [0, L —
o). Si une pince chevauche une autre ou sort des limites, on recommence depuis le début avec la
premiére pince.

a) Implémentez les deux approches A et B en créant une fonction:

e is_valid_pair(xl: float, x2: float, sigma: float) -> bool qui vérifie si deux pinces
aux positions x1 et x2 ne se chevauchent pas
Avant de commencer la génération de configurations, vérifiez que la condition L > 20 N est satisfaite.
Quelle est la signification physique de cette condition ?

b) Comparez les histogrammes obtenus pour N = 2, L = 1 et o = 0.1 avec ny, = 107.! Commentez
les deux histogrammes (similarité et différences). Ils devraient montrer la distribution jointe des
positions (x1,z2). Vous devriez observer que 'un des deux algorithmes ne produit pas un échan-
tillonnage uniforme! Quel algorithme devons nous choisir pour faire du sampling uniforme dans
Pespace des configurations de la distribution eq. (1) ?

¢) Montrez que, si la distribution jointe P(z1,x2) est bien uniforme, la distribution individuelle d’une
seule particule ne 'est pas et qu’il existe une sorte de force “effective” d’attraction par les bords.
C’est un exemple de forces dites de déplétion, qui sont purement d’origine entropique!

Q3. Nous allons calculer analytiquement la fonction de partition Zy ; de ce probléme & N particules sur
une corde de longueur L.
a) La fonction de partition (normalisation du 7y) du systéme s’écrit

oo o0
ZN,L:/ d(El/ de 7TL(1'1,...,(EN) (2)
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Montrez que cette intégrale se décompose en N! secteurs d’intégration, correspondant chacun a un
ordonnancement différent des pinces. Pourquoi chaque secteur contribue-t-il de maniére identique
a l'intégrale totale ?

b) En choisissant un ordonnancement particulier (par exemple x1 < z2 < -+ < zy), montrez que la
fonction de partition peut s’écrire

L—o L—o
ZN,L:N!/ d:c1~-~/ denymp(xy,..,xn) T (21, ..., ZN) (3)
o T(zy1,...,xn) vaut 1 si 21 < g < --- < xy et 0 sinon.
¢) Considérez le changement de variable suivante:
yp=xr — 2k —1)o Vk=1,...,N (4)

Cette transformation “retire” I’espace minimal nécessaire pour chaque pince. Pourquoi le terme
(2k—1)0 représente I'espace minimal cumulé nécessaire jusqu’a la pince k7 Quelles sont les nouvelles
bornes d’intégration pour les variables y;? Comment s’exprime la condition d’ordre z; < x3 <
-+« < xpy en termes des yi 7

d) En utilisant cette transformation, démontrez que

Znr=(L—-2No)N siL>2No (5)

Q4. Considerong le "bon" algorithme de la Q2, avec N pas successifs.
a) Pourquoi, en moyenne, la probabilité d’acceptance du N-ieme pas est-elle donnée par

L—o d
N—eme TN
Pace ¢ = Exy Xy m(X1, Xa, ., Xno1,7N) (6)
o L—20
Montrer que pY.~¢™¢ peut s’exprimer, a une constante prés que I’on déterminera, comme un rapport

de deux fonctions de partition Z. En déduire que la probabilité d’ accepter les N pas successifs
avec le algorithme de la Q2 est donnée par :

L—2No\ "
alg. — ? 7
i = (257 ™

!Utiliser la fonction matplotlib.pyploy.hist2d



Pour L = 10 et 0 = 0.1, tracez cette probabilité en fonction de N et comparez-la avec le nombre
moyen d’essais nécessaires dans vos simulations précédentes. Pourquoi cela motive-t-il la recherche
d’un autre algorithme?

b) Cette analyse suggére un algorithme d’échantillonnage bien plus efficace que ceux de la Q2. Pour
échantillonner les variables y; directement, une approche naive serait de les tirer uniformément
sur [0,L — 2No] et de ne garder que les configurations ot y1 < y2 < -+ < yy. Montrez que la
probabilité d’acceptation serait alors 1/N!, ce qui est encore pire que les algorithmes précédents.

¢) Au lieu de rejeter les configurations o les y; ne sont pas ordonnés, on peut simplement les trier
! Cela préserve-t-il 'uniformité de I’échantillonnage? FEst ce que la transformation inverse zj =
yr + (2k — 1)o donne des configurations valides? Quelle est la probabilité d’acceptation de cet
algorithme?

* Q5. Implémentez 'algorithme basé sur le tri des {y;}. L’algorithme est le suivant:

C : Tirez N variables uniformément dans [0, L — 2N¢]. Triez-les pour obtenir les {y;} ordonnés. Ap-
pliquez la transformation inverse xy = yx + (2k — 1)o.

a) Comparons efficacité des deux approches en Q2 et C pour L = 10 et ¢ = 0.1. Comparez le
nombre moyen d’essais nécessaires en fonction de N pour les deux algorithmes. Mesurez le temps
de calcul en fonction de N et tracez les deux courbes sur un méme graphique.

Q6. Nous allons maintenant étudier la distribution de densité de probabilité 7z, n - (x) qu’une pince quel-
conque se trouve a la position .

a) Considérons une pince fixée a la position z. Pourquoi les autres pinces doivent nécessairement se
trouver soit & gauche (dans l'intervalle [0, z — o]), soit & droite (dans l'intervalle [z + o, L]) de cette
pince. Illustrez votre raisonnement par un schéma.

b) Pour une configuration avec k pinces a gauche de z, Combien y a-t-il de fagons de choisir les k
pinces qui seront placées a gauche parmi les N — 1 pinces restantes? En déduire que :

N-1

1 N -1
TN (T) = Z 7 < 3 )Zk,x—UZN—l—k,L—x—g (8)
k=0 “NL

¢) Etudions le comportement prés des bords du segment, c’est-a-dire pour x > ¢. Démontrez que
pour des valeurs x qui sont proche au bord gauche on a

1 N-1
> ~ _ _
TN o)~ TN [1 I —aNg &) )

Interprétez physiquement ce résultat. Comment interprétez-vous la décroissance linéaire en (z—o)?

* Q7. Nous allons maintenant étudier numériquement la distribution de probabilité 7y n,(z). Fixons les
paramétres L = 20 et 0 = 0.75.
a) Pour toutes N € {1,5,10} comparez ’histogramme obtenu par simulation de ’algorithme en C
avec la formule analytique de la distribution 7y, v ,(z) defini en eq. (8).
b) Intéressons-nous maintenant a la forme de la distribution 77, n »(x) en étudiant directement I’expression
théorique donnée par 1’équation (8). Définissons trois ensembles de points caractéristiques pour la
distribution 77, N :

Anpo ={z €[o,L — 0] | x est un minimum local de 71, N o}, (10)
Byro={e€lo, L~ o] | mno(x) = L7}, (1)
CnLo={x€lo,L—o0]|xest un maximum local de 7y n o}, (12)

Pour toutes les valeurs de N € {1,2,...9,10} et les valeurs de L et o définies précédemment,
déterminez numériquement? les ensembles Ay 1, », Bn,po et Cnpo
Comment évolue la cardinalité de ces ensembles avec N7

c¢) Représentez sur un méme graphique les points de Ay 1.0, By 1.0 €t Cn, 1o en fonction de N : pour
chaque N et pour chaque ensemble placez un point dans le plan cartésien de coordonnées (N, x)
avec un couleur spécifique pour chaque ensemble.

2La méthode la plus simple consiste a évaluer la fonction de ’équation (8) pour n points uniformément répartis dans
lintervalle [0, L — o]. A partir de ce tableau de valeurs, identifiez les points recherchés. L’erreur sur les valeurs sera
approximativement de (L — 20)/n. Une valeur de n = 10° sera suffisante.



d) Comment peut-on interpréter physiquement les régions autour des maxima et des minima de 7y 1, ¢
Que représentent ces zones en termes de configurations des pinces?

Solution of Exercise 1

Q1. a) La distribution de probabilité dans I’équation (1) est donnée par un produit de plusieurs fonctions
de Heaviside, chacune représentant une limite sur les valeurs que les variables impliquées peuvent
prendre. L’absence de termes supplémentaires rend la distribution de probabilité uniforme sur
toutes les configurations autorisées.

b) Le premier produit, impliquant N(N — 1)/2 termes, passe en revue tous les couples de variables et
les contraint a avoir une distance d’au moins 20 entre eux, puisque c’est la distance minimale entre
les centres des broches qui leur permet de ne pas se chevaucher. Le second produit, impliquant
toutes les IV variables, s’assure que les épingles sont complétement a l'intérieur de l'intervalle [0, L],
en imposant que le centre de ’épingle soit & une distance d’au moins o de la frontiére.

¢) Puisque les épingles sont étiquetées et que chacune des positions est attachée a une épingle donnée,
on considére que les particules peuvent étre distinguées.

Q2. Voir le notebook

Q3. a) En outre, 7y (x1,22,...,2x) est symétrique dans ses arguments. Cela signifie que pour toute
permutation o € Sy des N indices, nous avons

7'('(1‘1,...,331\1):71'(330(1),...,3?0(1\[)). (13)

Au total, il y a N! permutations, chacune donnant la méme contribution & la fonction de partition.
Nous voulons maintenant argumenter que cela implique différents secteurs d’intégrations pour
I'intégrale de la fonction de partition. Nous précisons qu’un secteur d’intégration est une région
de composantes connectées ou la valeur de w est non nulle. Grace a la réponse précédente, nous
savons qu’en raison de la symétrie de permutation, l'intégration peut étre divisée en N! régions.
Ces régions sont également déconnectées parce que pour passer d’'un ordre donné & un autre, il faut
passer par une configuration non autorisée, c¢’est-a-dire m = 0.

Nous pouvons alors sélectionner un ordre et le multiplier par N! pour obtenir la fonction de partition
totale.

b) Si lon choisit Vordre 21 < x2--- < 2y, la fonction 7 permet de ne sélectionner que les configura-
tions ayant cet ordre, donc un seul des secteurs d’intégration. Par ’argument du point précédent,
si on multiplie par N! on obtient la fonction de partition totale. La restriction dans le domaine
d’intégration vient directement de la définition de 7, comme nous 'avons vu dans Q1. Cela ne
permet pas aux épingles d’étre en dehors de l'intervalle [0, L]. Cela devient donc

e oo
ZN,L:/ dxl/ dLL'N 7TL(1‘1,...,(EN) (14)

— —o0
L—o L—o
(i)/ d(El/ CL'EN ’n—L(mlw'wa) (15)
o [ =
S {/ dx1--'/ dey T(x1,22,...,28)+ (16)

L—o L—o
/ dxl---/ den T(x2,21,...,2N8) + ...

L—o L—o
/ dl‘r'-/ dﬂ?NT(xN,xN—l-~-7x1)}77L(7317~--a1‘N)

L—o L—o
(_i)N'/ dxl/ dmNT(xhx%...,xN)wL(xl,...,xN) (17)

nous pouvons également supprimer la partie de I'intégration liée au fait que les broches doivent
étre sur la ligne en [0, L — o].

Plus précisément, nous avons que (a) découle du fait qu’en dehors de la plus petite région 7y, est nul,
(b) de analyse précédente des différentes régions d’intégration et enfin (¢) du fait que l'intégrale
dans chacune de ces régions est la méme, rappelons que le nombre de permutations est N!.’



Q4.

¢) Nous pouvons commencer le calcul a partir de la premiére épingle, k = 1. En raison de la bordure
gauche, nous avons besoin d’'un espace ¢ comme espace minimal avant la quille. Il en va de méme
pour k£ = 2, mais nous devons maintenant tenir compte de I’espace occupé par la premiére cheville
(qui est de 20). En général, puisque la quille k aura k — 1 quilles & sa gauche, I’espace minimal &
sa gauche sera (k— 1) 20+ 0 = (2k — 1)o.
Pour les limites d’intégration des variables y, & partir des bornes sur x; on obtient directement

c—2k—1lo<y,<L—-—0—(2k—1)o=L—2ko. (18)

De plus, la condition d’ordre imposée aux variables x combinée au terme 6(|z; — z;| — 20) pour
tous i < j provenant de la définition de 7y, nous avons le terme 0(xy+1 — xx — 20) pour tout k, qui
en termes de nouvelles variables devient simplement 6(yx+1 — yx), ce qui signifie que les nouvelles
variables sont également ordonnées.

Mais alors, en regardant 'Eq. (18), combiné avec 'ordonnancement, il impose les contraintes suiv-
antes

0=0—-2-1lo<y1 <y2<- - <yn-1<yn < L—2No. (19)
d) Pour revenir a ’Eq. (14), en termes de nouvelles variables, elle devient
L—2No Y3 Y2
N1 = N!/ dyn - / dys dy, = (20)
YN -1 Y1 0
L—2No L—2No L—2No
N[ e [ e [ dn Tl ). (21)
0 0 0

ou 7 est & nouveau la méme fonction d’ordonnancement. Maintenant, par le méme raisonnement
pour lequel au point b) nous avons fait apparaitre le facteur N! (en choisissant un ordre), nous
pouvons maintenant relacher 'ordre et cela fera disparaitre le facteur N! :

L—2No L—2No L—2No
Zng = / dyy - - / dys / dy, = (L —2No)V . (22)
0 0 0

a) Par définition de 'algorithme B, a la n-iéme étape, nous essayons de placer la n-iéme épingle en
générant sa position uniformément aléatoire dans [0, L — o] et en vérifiant qu’elle satisfait aux

conditions de wy. A valeur fixe des N — 1 quilles précédentes x1,...,xn_1, DOUS avons que
1 L—o
Prob(Acc N-eme |z1,...,2y-1) = / deny m(zn|z1, .. 2N—1) (23)
L—-20 /,
ou m(xnl|zy,...,xNn—1) est la probabilité que xy satisfasse les contraintes de m, étant donné que

les N — 1 précédents satisfont les contraintes elles-mémes. Si 'on veut la probabilité moyenne, il
faut faire la moyenne sur les autres variables, ce qui donne ’expression du texte.
Rendre I'espérance explicite :

pN ceme — Ex, .. xn_.[Prob(Acc N-eme |z1,...,2n-1)] = (24)
1 L—o L—o 1 L—o

:ZN_l/U d$1~-~L de?lL*QO’\/U dﬂ?Nﬂ'(SL’N|l‘17...,$N71>7T(.’171,...,l‘N,l):

(25)

Z
_ N . (26)
(L—20)ZNn_1
Pour revenir a la probabilité d’acceptation de I'ensemble de I'algorithme, nous avons que
Pact = Pace” * Pace " ¥ D (27)
l—er

Il est facile de comprendre que p,°" . = 1, puisque la premiére épingle est toujours acceptée, et

que Z; = f:ia dzq7m(xz1) = L — 20. La probabilité d’acceptation totale sera alors

palgzl* \Z& * % * \qu\ **Z—N
ace (L—20)7y (L—20)% (L—20)7 (L —20)Zn=1
B Zn _ (L—2No)V
- (L-20)N-17z, (L —20)N

= (28)

(Voir notebook python pour la comparaison avec les simulations).



b) Le résultat p,.. = 1/N! provient d’un simple argument combinatoire : Etant donné N broches
indépendantes, générées uniformément dans le méme intervalle, tous les ordres sont également
probables. Puisqu’il y a N! de ces commandes au total, la probabilité d’obtenir une commande
spécifique est de 1/N1.

¢) Pour justifier le fait que la réorganisation n’affecte pas la validité de lalgorithme d’échantillonnage,
nous pouvons décomposer la procédure en deux étapes : Nous commengons par échantillonner les
valeurs des N nombres, sans décider de leur ordre, puis nous échantillonnons une permutation P
donnant I'ordre aux nombres. La fonction de partition correspondant & cette procedure is

L—2No L—2No
Z/ dypl to / dyPN T(ypla R ZUPN) ) (30)
p /O 0

ce qui n’est qu'une autre fagon de réécrire la fonction de partition dans ’Eq. (20). Mais maintenant,
parmi toutes les permutations possibles, effectivement la seule qui donne une contribution non nulle
est celle qui trie les nombres, ce qui correspond au choix fait dans I'algorithme proposé.

Comme cette procédure n’est jamais rejetée, la probabilité d’acceptation est de un.

Q5. Voir le notebook

Q6.  a) Considérons une pince positionnée a x. En raison de la contrainte de volume exclu (les pinces ont
une largeur 20), aucune autre pince ne peut étre placée dans les intervalles [x — o, x] et [z, x + o] car
cela créerait un chevauchement. Cette contrainte divise naturellement I’espace disponible en deux
régions distinctes ou les autres pinces peuvent étre placées: a gauche on a lintervalle [0,z — o] et
a droite Uintervalle [z + o, L].

On peut illustrer cette contrainte avec le schéma suivant

20
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b) Pour calculer la probabilité totale de trouver une pince en z parmi le N pinces totales, nous devons
compter toutes les évents favorable pour obtenir cette résultat. Pour avoir un pince en position
x on doit avoir necesariement que k pinces a gauche et N — 1 — k pinces a droite pour toutes les
valeurs de k.

Pour un k donné on a que
e Nous devons choisir k£ pinces parmi les N — 1 pinces restantes pour les placer & gauche, cette
nombre est (Ngl)

e Les k pinces de gauche doivent étre placées dans Uintervalle [0, z — o]. On doit compter toutes
le configuration de ces k pinces et donc on peut écrire la Z, ,_,. Egalement pour la partie
droite.

Pour une valeur de k fixée, la probabilité est donc proportionnelle &

N -1
< k >Zk:,zaZN1k‘,Lza (31)

En sommant sur toutes les valeurs possibles de k et en normalisant par Zy ; pour obtenir une
densité de probabilité, on obtient eq. (8).

¢) Pour z 2 o, seul le terme k = 0 contribue & la somme car il n’y a pas assez d’espace a gauche pour
placer d’autres pinces. Equation (8) se réduit donc a

ZN- —r—0
mr(e 2 o) = e ZlNLL (32)

En utilisant la formule pour la fonction de partition obtenue précédemment

Znr = (L—2No)N (33)
IN-p-2o=(L—2—0—-2(N—-1)g)N7! (34)



on peut écrire

(L—2—0—2(N—-1)0)N-!

TN (T Z o) =

(L—2No)N
1 z—o \V7!
—_ — 1—7
L—2NO’< L—2NJ> (36)
1 N -1
~ 1-— —
L—2No [ L—2no U)] (87)

ou la derniére ligne utilise le développement (1 + y)™ &~ 1 4+ ny pour y < 1.
Ce résultat montre deux choses importants

e La probabilité au bord (z = o) est ﬁ, soit bien plus grande que la densité uniforme de %
e La probabilité décroit linéairement (en premiére approximation) avec la distance au bord (z—o)

Ce modéle simple de pinces a linge illustre le concept fondamental des forces entropiques. Contraire-
ment aux forces usuelles comme la gravité ou l’électromagnétisme, ces forces émergent purement de
considérations statistiques et géométriques. La surconcentration des pinces prés des bords, révélée
par le derniere développement est une manifestation de cette force entropique. Ce phénoméne se
retrouve dans de nombreux systemes biologiques et colloidaux, comme ['interaction de déplétion
d’Asakura-Oosawa entre particules colloidales en présence de polyméres. Cette force, bien que
d’origine purement entropique, peut étre suffisamment forte pour induire des transitions de phase
et joue un role crucial dans 'auto-organisation de la matiére molle.

Q7. Voir le notebook



