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Homework 1: Un peu de probabilités

Consignes de rendu : Pour les questions numériques (indiqué par un astérisque), veuillez
soumettre un notebook Jupyter qui peut étre exécuté de bout en bout sans erreur et qui reproduit
tous les résultats demandés dans ce document.Assurez-vous que votre code soit clair, bien commenté
et que toutes les dépendances nécessaires soient clairement indiquées. Pour les questions théoriques,
vous avez deux options :

e Vous pouvez inclure vos réponses directement dans le notebook Jupyter, en utilisant des cellules
de texte Markdown pour une présentation claire et structurée.

e Alternativement, vous pouvez soumettre un fichier PDF séparé contenant vos réponses aux ques-
tions théoriques. Dans ce cas, assurez-vous que vos réponses soient bien organisées et correspon-
dent clairement aux numéros des questions.

Dans les deux cas, veillez & ce que vos explications soient claires, concises et rigoureuses. N’hésitez pas
& inclure des schémas ou des équations lorsque cela est pertinent pour illustrer vos raisonnements.

Cette série d’exercices est congue pour approfondir votre compréhension des concepts fondamen-
taux en théorie des probabilités et en statistique. Le devoir est structuré de maniére séquentielle, vous
guidant a travers une progression logique des concepts. Nous commencerons par explorer la loi des
grands nombres, pierre angulaire de la théorie des probabilités. Ensuite, nous aborderons le théoréeme
central limite, qui décrit le comportement asymptotique des sommes de variables aléatoires. Nous exam-
inerons ensuite les corrections au théoréme central limite, affinant notre compréhension de ses limites
et applications. Enfin, on va traite la théorie des grandes déviations, qui s’intéresse aux événements
rares mais significatifs.

Chaque partie comprend & la fois des exercices théoriques et des exercices numériques. Les
premiers pour consolider votre compréhension conceptuelle, et les deuxiémes pour tester et appliquer
ces concepts dans des situations pratiques.

Bon travail!

Exercise 1 Echauffement et Loi de Grand Nombre

Q1. On note Q(t) := P[T" > t] = 1 — F(¢t) la probabilité qu'un événement ne se soit pas encore
produit aprés un temps ¢ (F(t) désigne la fonction de distribution cumulative). On suppose
t > 0. Sachant que le taux de changement de cette probabilité est constant et égal a —A\,
c’est-a-dire
dQ(t)

2= o). 1)

a) Dérivez la forme de la distribution Q(¢).

b) Fixez la constante indéterminée dans la question précédente de telle sorte que la probabilité
totale sur tous les temps possibles est bien égale & 1. Quelle est la forme finale de la densité
de probabilité py(t) pour la distribution?

c¢) Calculer le valeur moyenne (espérance) et la variance de la variable aléatoire correspondante
en fonction du parameétre A.



Q2. Supposons que vous ne disposiez que d'un générateur de nombres aléatoires uniformes sur
I'intervalle [0,1]. Montrez comment, grace & un changement de variable judicieux, vous pou-
vez utiliser cette distribution uniforme pour générer des échantillons suivant la distribution de
paramétre A obtenue en Q1.

* Q3. Le but de cette question est de créer un générateur d’échantillons de cette distribution avec un
paramétre \ donné.

a) Créez dans un notebook la fonction generator(M: int, lam: float) -> np.ndarray
qui prend en entrée le nombre M d’échantillons & générer et le paramétre A\ de la distribu-
tion, et renvoie un tableau numpy contenant les échantillons générés.

b) Fixez N = 10° et A = 2 puis créez un histogramme, normalisé pour que ce soit un densité !,
des échantillons générés et superposez cet histogramme avec la courbe de densité théorique
de la distribution obtenue en Q1.

Q4. Soit X1, Xo,..., Xn id px des variables aléatoires indépendantes et identiquement distribuées
selon la distribution de la Q1. On définit la somme Sy et la moyenne empirique fiy comme

. S
SN:ZXia iy == (2)

a) Vers quelle valeur [in converge-t-elle lorsque N tend vers l'infini? Justifiez votre réponse.

b) Calculez la variance de la variable aléatoire fiy. Comment cette variance évolue-t-elle
lorsque N augmente 7 Que pouvez-vous en conclure sur la précision de l'estimation de
E[X] par fiy ?

c¢) On définit la variance empirique &]2\, comme suit :

N
= (X — ) (3)

Calculez E[&?V]. Cette estimation de la variance est-elle biaisée? ? Si oui, expliquez la
source du biais.

d) Proposez une correction a l'estimateur 6% permettant d’obtenir un estimateur non biaisé
de la variance. Justifiez votre réponse.

* Q5. Ecrivez un code Python qui calcule fiy pour différentes valeurs de N avec le code créé dans
Q3. Pour XA = 2, tracez deux graphiques: le premier est un graphique montrant la moyenne
empirique fiy en fonction de N, pour N entre 10 et 107. Le second est un graphique montrant
la variance de /iy en fonction de N, pour N entre 100 et 10°. Commentez les résultats obtenus.
Ces résultats sont-ils cohérents avec la théorie?

Solution of Exercise 1
Q1. a) On peut modeliser le temp quand ’evenment se passe comme un variable aleatoire que on
appelle T'. La densite de probabilite que on nous demande est
Q(t) =P[T > 1] (4)

ou on peut seulement considérée de temps qui sont positif. On reconnait que Q(t) est liée
a la fonction de répartition de la variable T" parce que

Pr(t) =P[T <#] = 1= P[> ] = 1 - Q(t) (5)

'avec matplotlib cela se fait en mettant ’'option True & l'option densité: matplotlib.pyplot.hist( ...
density=True).
2Un estimateur A est dit non-biaisé si et seulement si E[A] = ).



Pour dériver la forme de la distribution P(¢), nous résolvons ’équation différentielle donne
dans la consigne. L’équation est

dQ(?)
—27 = _)\O(t 6
20— o ()
On veut procéder avec la méthode de séparation des variables, donc
d@
— = —)\dt 7
0 (7)
En intégrant des deux cotés
nQ(t) =-M+C (8)
ot C est une constante d’intégration. En prenant I’exponentielle
Q(t) = Ae™™ (9)

oit A = e% est une constante a déterminer.

b) Pour normaliser la distribution on peut bien imposer que Fr(0) = 0, ou Q(0) = 1 ou
normaliser la densité de probabilité. On procéde avec Q(0) = 1, ce qui implique A = 1.
Ainsi

Qt) = e (10)
La densité de probabilité p(t) est la dérivée négative de Q(t) parce que
dFr(t) d dQ(t) _
p(t) = u a[l - Q)] = —a - Ae M (11)

On peut vérifier que aussi la densité est normalisée

/OOO p(t)dt = /OOO e Mdt =1 (12)

Ainsi, la forme finale de la densité de probabilité pour la distribution exponentielle est

p(t) = (13)

0 sinon

{)\e_)‘t pour t >0

c¢) Calculons 'espérance et la variance de un variable aléatoire T avec cette distribution de
probabilité. La moyenne p est donnée par

) o0
p=E[T] = /0 tp(t) dt = /0 the M dt (14)
En intégrant par parties on peut obtenir 'integral indefini
/t)\e_/\t dt = —e ™Mt + /e)‘t dt = —e_M(A; e (15)
donc on peut directement ecrire que
_ )
M__e At(i\\t+1) t:0:0+§:i (16)

On continue avec la variance. La variance o2 est donnée par E[T?] — u?. Calculons d’abord
E[T?].

00 —At 1 oo 0o ,—At 1
E[T2] — / reMdt = _tw + / M dt
0 A t=0 0

A

oo a 1 o
+ / e Mrdt + — / e Mdt
t=0 0 A 0

e M+ 1)
A

(17)



Ou on a intégrée par parties deux fois et I'integral d’avant on nous aide a faire seulement
un integration par partie. Maintenant, nous pouvons calculer la variance :

2 (1)}’ 1
2 2 2
s=Er -t = (5) = "

On peut noter que 'écart-type o = % est égal & la moyenne, ce qui est une propriété
caractéristique de la distribution exponentielle.

Q2. Pour générer des échantillons suivant une distribution exponentielle & partir d’une distribution
uniforme, nous pouvons utiliser la méthode de la transformation inverse. Soit U une variable
aléatoire uniformément distribuée sur [0,1], i.e. U ~ Unif([0,1]). L’idée est de trouver une
fonction g telle que X = ¢(U) suive une distribution exponentielle. Pour faire ¢a, on peut
constater que de maniére générale

Fx(z) =P[X <a] =P[g(U) < 2] =P[U < g '(z)] = g '(2) (19)

et donc on peut prendre g(-) = F5'(-). Ga veut dire U = Fx(X), et donc

U=1—e? (20)
En résolvant pour X, on obtient :
1-U=e™M (21)
—In(1-U) =X (22)
X:—imﬂ—U) (23)
Ainsi, si U est uniformément distribué sur |0,1], alors X = —+ ln(l — U) suivra une distribution

exponentielle de paramétre A. Comme U est uniformément dlstrlbuee sur [0, 1], 1 —U Dest aussi.
Donc, en pratique, on peut simplifier I’expression en

1
X = 5 In(U) (24)

Donc I’algorithme a trois étapes
1. Générer U uniformément sur [0,1]
2. Calculer X = —1 In(U)

Q3. Voir le Notebook.

Q4. a) D’aprés la loi des grands nombres, la moyenne empirique /iy converge en probabilité vers
I’espérance mathématique de la distribution sous-jacente lorsque n tend vers 'infini. Pour
la distribution exponentielle de parameétre A, nous savons que E[X]| = % Donc

1
lim gy = " (25)

N—o0

b) Pour calculer la variance de iy, nous utilisons les propriétés de la variance et le fait que
les X; sont indépendantes

Var(jiy) Var< ZX) <ZX> NQZVar — - N - Var(X)

(26)



Sachant que pour une distribution exponentielle, Var(X) = %, nous obtenons

1 1 1

Var(in) =+ -

RS @)

La diminution de la variance avec 'augmentation de N indique que 'estimateur iy devient
de plus en plus précis pour estimer E[X]. Cette analyse montre que fiy est un estimateur
consistant et non biaisé de E[X] pour la distribution exponentielle, avec une précision qui
s’améliore & mesure que la taille de ’échantillon augmente.

¢) Pour calculer E[6%], nous allons utiliser la décomposition suivante

N

N
R 1 R 1 N N
6% = N D (X — i) = N D (X7 - 2Xifin + A3 (28)
i=1 i=1
1 & 1
= XX -2+ ik = D XT - i (29)
i=1 i=1
Prenons 'espérance des deux cotés
1 & 1 -
Elo}] = E |+ 3 X?| - E[id] = - > EIX?] - B[ (30)
i=1 i=1
En substituant ces valeurs obtenu a la question Ql.c. De plus, E[a%] = Var(in) +

(Eljin])? = o + 5.

e
A2 NX2 )2 A2 NXZ A2 A2 N2 N2
L'estimation de la variance est biaisée car E[6%] # Var(X) = 5.
Le biais provient de 'utilisation de la moyenne empirique fiy dans le calcul de 6?\,. Cette
moyenne est elle-méme une variable aléatoire, ce qui introduit une dépendance entre les
termes (X; — jiy)?. Cette dépendance conduit & une sous-estimation systématique de la
vraie variance.
d) Pour obtenir un estimateur non biais¢ de la variance, nous pouvons multiplier &]2\, par un
facteur correctif

N [
R corrige = mff]?v =~N_1 > (Xi — fin)? (32)
=1

Avec le resultat de la question precedent nous obtenons :

R N R N N -1 1
E[6% corrigs) = ﬁE[UJQV} SN N2 e (33)

Cette valeur est exactement égale & Var(X) pour la distribution exponentielle. Cet estima-
teur corrigé est connu sous le nom de variance empirique non biaisée ou variance empirique
corrigée. Il est couramment utilisé en statistiques pour estimer la variance d’une population
a partir d’un échantillon.

Cette correction est valable non seulement pour la distribution exponentielle, mais pour
toute distribution avec une variance finie. Pour de grandes valeurs de n, la différence entre
I’estimateur biaisé et non biaisé devient négligeable.

Q5. Voir le notebook



Exercise 2 Fonction caractéristique et TCL

Soit 1 = y/—1 le nombre imaginaire unité, la fonction caractéristique, de la densité de probabilité
px est définie de la fagon suivante

ox(® =[] = [~ px@et s (34

—00

Par développement de ’exponentielle en série entiére et interversion de la série et de ’espérance, dans
un voisinage de l'origine, on a le développement en série formelle:

= (it)*
ex(t) =1+ Z Mk X~ (35)
k=1 )

ou my x = E[X k] est le k™ moment de la variable aléatoire X quand ce dernier existe. On définit le
log de la fonction caractéristique comme la fonction Hx (t) := log ¢ x (t) et on définit néme cumulant
de X, kp x comme le coefficient de la série de Taylor de cette fonction

(@)
Hx(t) =logox(t) = KLX (36)
=1
Dans la premiére partie on veut utiliser cette definition pour redémontrer le TCL. Si il est pas ex-
plicitement dit, considérée que la variable aléatoire X a les trois premiéres moments fini.
Q1. Montrer que ¢x(t) existe pour toute distribution px et que |px(t)| < 1.

Q2. Comment obtient-on px(x) a partir de ¢x(t) ?

Q3. Si px(t) a un rayon de convergence R > 0 a l'origine, que peut-on en déduire sur les moments
de la variable aléatoire X 7

Q4. Comment s’expriment les quatre premiers cumulants en fonction des moments de X7

Q5. Quelle est la transformée de Fourier d’'une Gaussienne ? En déduire que les cumulants d’une
variable Gaussiene, i.e. i, x pour X ~ N (g, 0?), sont nuls pour n > 2, i.e. kn,x = 0Vn > 2.

Q6. On considére Sy = X1+ -+ Xy, ou les X; sont IV variables aléatoires indépendantes distribuées
selon la loi de densité px. Que vaut la fonction génératrice de Sy en fonction de celle de X?
Que vaut son logarithme Hg, (t) en fonction de Hx(t)? Que valent les cumulants de Sy en
fonction de ceux de X7

Q7. Dans la suite, on note par

_ L (A wNom
Gy = — (\/N VN 1,X). (37)

Montrez que le logarithme de la fonction caractéristique de Gy — la fonction Hg,, (t) — satisfait

Hey (1) = NHax (\/tﬁ> . (38)

Quelle est la limite des fonctions Hg,, (t) (et donc de la fonction caractéristique ¢g,, (t) de Gn)
dans la limite ou N est trés grand? En déduire que la distribution de G converge vers une
distribution Gaussienne de moyenne nulle et de variance unité dans la limite.

Q8. Tentons de répondre & la question suivante : Est-il nécessaire que tous les X; aient la méme
distribution pour obtenir la convergence vers la Gaussienne 7 On va supposer d’avoir N vari-
able aléatoire {XZ}ZA; | indépendants avec E[X?] < oo (mais pas nécessairement identiquement
distribuées).



QoI.
* Q10.

Q1.

Q2.

Q3.

a) Pour des variables indépendantes (mais pas nécessairement identiquement distribuées), que
vaut l'espérance et la variance de leur somme ? En déduire la construction de la variable
Gy de moyenne nulle et de variance un.

b) Exprimez la fonction Hg (t) en tant que fonction des fonctions Hx,(t) des variables aléa-
toires individuelles.

c) En utilisant le théoréme de Taylor avec reste de Peano, développez les fonctions Hyx, et
calculez la fonction Hg (t). Que peut-on dire du terme résiduel correspondent ? Pourquoi
tend-il vers 0 lorsque N augmente ?

d) Prouvez donc la généralisation du résultat de la Q7 pour ce cas.

Calculez la fonction caractéristique px (t) de la distribution obtenue a la Q1 de ’Exercise 1.

En utilisant le générateur de cette méme distribution, que vous avez implémenté dans l'exercice
précédent, tracez pour différentes valeurs de N € {4, 16, 64, 256, 1024, 4096} 'histogramme (nor-
malisé pour que cela soit une densité de probabilité) de py := VN (iny — E[X]), ot jin est la
moyenne empirique de N échantillons, et comparez-le & une distribution gaussienne ayant la
moyenne et variance donnée par le TCL.

Solution of Exercise 2

On commence avec 'existence de ¢ x (t). ¢x(t) est définie comme une espérance mathématique.
Elle existe si I'intégrale converge absolument. Vu que |¢?*| = 1 pour tout z réel on a que

/OO Ipx (z)e™| dz = /OO px(z)dr=1< 00 (39)

—00 —00

L’intégrale converge car px(x) est une densité de probabilité.
On proceéde pour montrer 'inégalité. On a que

lox(t)] = \ [ pxwetaa

o0
< / Ipx (z)e™|dz  (par I'inégalité triangulaire pour les intégrales) (41)

—00
oo
= / px(z)|e"™|dz  (car px(z) est réelle et non-négative) (42)
o0 |
= px(z)dzr (car |e"®| =1 pour tout z réel) (43)
—o0
=1 (car px(z) est une densité de probabilité) (44)

Donc, |px (1)] < 1.

On peut obtenir px(z) a partir de ¢x(t) en utilisant la transformée de Fourier inverse. La
fonction génératrice px(t) est en fait la transformée de Fourier de px (z). Donc

px(@) = — / T ox (et at (45)

:% .

Cette formule permet de retrouver la densité de probabilité a partir de la fonction génératrice,
a condition que @x () soit intégrable.

if R > 0 then ¢(t) is analytical on B(R) and in particular ¢(*)(0) is well defined for any k. Since
the latter is also equal to i*EX*, it implies the existence of all moments.



Q4.

Q5.

Pour exprimer les cumulants en fonction des moments, nous utilisons le développement en série
de Taylor de log px(t) et le comparons avec celui de px(t). Soit m, x = E[X] le n-iéme
moment de X.

o0
ox(t) :/ pX(:U)ezm dzx (46)
— 00
o0 22 1 ttat
= 1+ite — —— — 2323+ — + O(°) | d 47
[ x| Lt - B - it T 0(9) | o (a7)
=1+t £ it t O(td 48
=1+ mix — 577127)( - img,x + ﬂm&X + ( ) ( )

on a donc pour la fonction Hx (t) que on peut aussi développer le log et obtenir que

) 1 1.
Hx(t) =imy xt+ §t2 (miX — mQ’X) — ézt?’ (2m‘iX —3mi xma x + m3,X) (49)
1
+ ﬂt4 (=6mi x + 12m7 xmo x — 4my xmz x — 3m3 x + myx) + O(t°) (50)
it (it)? (it)3 (it)*
_/<51X1'+I€ o1 +H3’XT+H4’XT+O(t5) (51)

En comparant ces deux expressions, nous obtenons
e Premier cumulant : k1 = p; = E[X] (moyenne)
e Deuxiéme cumulant : kg = g — puf = Var(X) (variance)
e Troisiéme cumulant : k3 = 3 — 3uapy + 243
Ces relations montrent que les cumulant sont des combinaisons de moments centrés, offrant une

description alternative des propriétés de la distribution.

Pour démontrer cela, nous allons utiliser la fonction characteristique de la distribution gaussi-
enne et la définition des cumulants. Pour X ~ N (p,0?) on a que

1(x—p)?
exp ———— +itx | do
V2ro? < o2

& 1
= / exp( 5 2($ — 2ux + p?) —i—ltx)dx

1
—— 2%+ ( a + zt M dx
o - 202

&=

[ eti

px(t) =

On peut bien prendre le logaritme et avoir

, 1
Hx(t) =logex(t) = log (ewt_%‘fzﬂ) = iut — 502t2 (53)

En comparant cette série avec I’expression de de la question precedent, nous voyons que



Q6.

Q7.

Q8.

e 1 = i (le premier cumulant est la moyenne)

e 1y = 02 (le deuxiéme cumulant est la variance)

e, =0Vn>2 (il n’y a pas de termes d’ordre supérieur a 2 dans 'expression de Hx (t))
Ainsi, nous avons démontré que pour une distribution gaussienne, tous les cumulants d’ordre

supérieur a 2 sont nuls.

Soit px (t) la fonction génératrice de X. Pour Sy, nous avons :

Osy (t) _ E[eitSN] _ E[eit(X1+~--+XN)] _ E[eitXl . eitXN] (54)
= B[] ... E[e®™~] (par indépendance) (55)
= ox(t)" (56)

Donc, la fonction génératrice de Sy est la N-iéme puissance de la fonction génératrice de X.
Soit Ky, x le n-itme cumulant de X et k, g, le n-iétme cumulant de Sy, donc avec un calcul
direct

o0 .
it)"
log sy (1) = log(px (V) = Nlog px (1) = NS sy x 02 (57)
— n!
En comparant cela avec la définition des cumulants pour Sy
o0 .
(at)"
log sy () = > Fn. Sy =1~ (58)
n=1
Nous concluons que
knsy = Nknx Vn,N €{1,2,3...} (59)

Cette relation montre que les cumulants de la somme de variables aléatoires indépendantes et
identiquement distribuées sont simplement IV fois les cumulants de la variable individuelle.

Commengons par exprimer la fonction génératrice de Gy en termes de celle de X. Comme
I’exercise precedent, nous avons:

pan(t) = Bl v (O /)y g ()] e w () e0)

¢ N
[ vl (\/N ﬂ
L’étape clé consiste & examiner le comportement de cette expression pour N grand. Si on
reprend l'expression calculé dans la Q3 de cette exercise, on a que

t
Hao (t) = NHx-m <>—N
N() X\/@l \/ﬁ

- 2 .
Cela signifie que, pour N grand, on a Hg, = —%; c’est exactement l’expression que l'on a
trouvée pour une gaussienne de moyenne nulle et variance un.

1/t \? ~ ¢
0+2<Z\/N> +0(N 1)] :—54‘0]\7(1). (62)

Non, il n’est pas nécessaire que tous les X; aient la méme distribution pour que le théoréme
central limite s’applique. Soit { X7, Xs, ..., Xn} une suite de variables aléatoires indépendantes,
pas nécessairement identiquement distribuées. Supposons que chaque X; a une espérance p;
et une variance o7 finies et aussi le troisiéme moment qui est fini E[X?] < oo pour toutes
i=1,...,N.

Pour généraliser ’approximation gaussienne, considérons la somme normalisée suivante

RN DY AED (D SRy ol
GN_@( VN VN )’ 0‘“””2—N2i:“z' (63)




On peut continuée comme la question precedent:

NGl

1

On peut d’abord utiliser le théoréme de Taylor avec le reste de Peano pour écrire

, + t

ou h(t/v/N) — 0 pour N — oco. Si on prend le log, on a que

2t2 2

o? t? t
Hon(®) = > Hxin ~z<f)=§i:[0 ey ey UCAGH] e S CY

Dans la derniére étape, nous avons utilisé la définition de ko et le fait que h(t/vVN) — 0
pour N — oco. Encore une fois, ¢a c’est exactement ’expression que 'on a trouvée pour une
gaussienne de moyenne nulle et variance un.

Q9. De la définition de fonction caractéristique on a que

1) = ite \ -z dr = \ —(A—it)x de =\ |— —(A—it)x _
ox(t) /0 e \e x /0 e x ¢ LT (67)

La fonction caractéristique existe pour tout ¢ € R. On a aussi que avec un calcul

oo A
Mx(t) = / ere M dr = (68)
0 A—t
la fonction génératrice des moments n’existe que pour ¢t < A.
Q10. Voir le Notebook
Exercise 3 Correction au CLT
On note par
1 _(@=p?
2(x) := e 202 69
’Y,u,,a ( ) W ( )

la densité d’une variable aléatoire Gaussienne de moyenne u et variance o>.

Q1. a) Reprenez le calcul de Q7 de I’Exercise 2, et montrez que pour N grand, la fonction Hg,,
peut s’écrire comme

t2 ikgt?
Ho ()= ——— ———4+0O(N ). 70
on(t) =~ = o) (10
b) En utilisant la relation entre la fonction caractéristique et la densité de probabilité, montrez
que
X 1 _
pan (@) =70,1(2) 603 (ac3 - Sx) TN + O(N 1) (71)

c¢) En déduire que Sy = Zf\; 1 X; peut étre approximée par une loi Gaussienne de largeur
ov N dans un intervalle de largeur d’ordre N et donner la valeur maximale possible du
parameétre «.

10



Q2.

* Q3.

Q1.

On note Fg, (z) := [*__pay(y)dy la cumulative de la variable Gy et ®(z) := [*_ ~0,1(y)dy
celle d’'une standard Gaussienne. On rappelle que la norme sup d’une fonction est donnée par
Il flloo := sup; | f(£)]. Montrez que la différence entre les 2 cumulatives est donnée par

C
[Foy — @l < N

pour une constante C' indépendante de IV, c’est & dire que la vitesse de convergence est d’ordre
O(N—1/?),

(72)

Ecrivez un code python pour calculer la différence entre Fgg ~ et @ puis tracez cette distance em-
pirique en fonction de N en échelle logarithme, pour des valeurs de N € {4, 16, 64, 256, 1024, 4096}
Montrez que le scaling est bien en N1/ sur cette figure.

Solution of Exercise 3

a) Pour le troisitme moment de G on peut voir que

X — 3 K
m3cy = / pay(9)g’dg = / p(x)ﬂdw =3 (73)

o3 - o3

ol nous avons utilisé la définition du troisiéme cumulant.
Considérons la fonction caractéristique de G que comme dans I'autre reponse et dévelop-
pons log(1 + z) autour de x = 0

t

=T () e ez ()
m t\* ik t\?
= exp N log <1 +0— 2722 (\/N) —~ 6}52 (\/N) + 0(1/N2)> (75)

:expN( £ _im U +O(1/N2)> — exp <—7§2 iregt” +O(1/N)> .
(76)

T2N T 603 NN 2 603V N

b) Définissons maintenant k' = 5 gf/N et utilisons la relation entre la fonction caractéristique
loa

et la fdp pour écrire:

L[~ e/ 2—itw —it?k! gy 1

pa(7) = o %/ e~ P/271 (] i3 + O(1/N))dt  (77)
_ LT epitagy W /OO e /271 g 4 O(1/N) (78)
27 J_ o 27 J_

Pour le premier terme, nous pouvons remarquer qu’il s’agit de la transformée de Fourier
d’une gaussienne standard. Alternativement, nous pouvons compléter les carrés au niveau
de I'exposant et écrire

1 o0 . wQ 'k/,/ o0 . w2
e3tmiw? =gy 1T [ —3(t-iel =580 L O(1/N)  (79)

o2 o 27 J_o

1 w2 Zk/ o0 1 - \2
e — 5 (t—iw) t3dt> 80
\/2776 < V2T /_oo ¢ (80)

esn (z) =

Q
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En effectuant le changement de variables ¢’ = t + iz, on peut écrire

1 2 'k/ [e'¢) 12
Py (@) = Ee*? <1 - \Z/? / N e T (t? — 3izt”? + 32°t + ia?) dt’> (81)
=701(2) (1= ik (=3iz + iz%)) =01 (2) (1 + K (2" = 32)) . (82)

Si nous substituons I'expression de %/, nous retrouvons le résultat souhaité.

¢) L’approximation a une signification si % < 1. Ca veut dire z < NV/6.

Q2. En intégrant Eq.(71) par rapport a x, on obtient

Foy(z) = ®(x) + f(z) +O(N™) (83)

VN

avec f(z) == G [* Hes(y)ro,1(y)dy et donc [|[Fay(z) = @(2)|lo = O(|f(2)]oc/VN) et on

obtient le résultat désiré avec C' = || f(2)]|0o-

Q3. Voir le Notebook

Exercise 4 Théoréme de Cramer

Pour la variable aléatoire Sy, nous venons de voir qu’il existe un intervalle de taille N (avec
un certain o € (0,1) calculée en Q1.b de 'Exercise 3) dans laquelle I'approximation Gaussienne
s’applique pour N trés grand. La taille de cet intervalle est donc petite par rapport a la valeur typique
(espérance) de Sy qui est d’ordre N. On s’intéresse ici a comprendre le probabilité que Sy prennent
des valeurs dans un intervalle de taille N > N¢. De maniére équivalente, on cherche a comprendre la
probabilité que /iy dévie de O(1) de sa valeur typique. On rappelle que Hx (t) :=log ¢ x (t).

Q1. Ecrivez la densité de probabilité de fix en fonction de sa fonction caractéristique puis celles des
X;. En déduire en utilisant la méthode du col 3, montrez que p;, (u) < exp[—NIx(u)], ot la
“fonction des grandes déviations” Iy (u) est donnée par

Ix(u) =iz"u— Hx(z"), (85)
z* étant la solution de H (z) = iu.

Q2. On définit la fonction génératrice des cumulants comme
Kx(t) = log (E[e'*]) (86)

et 'on pose maintenant z* = —it*. Justifier pourquoi, si tout les moments existent, on trouve
bien que Ix(u) = ut*—rx (t*) (avec kx (t) = log Mx (t)) avec t* tel que Oy (ut—log Mx (t))|¢ = 0,
ce qui est bien le théoréme de Cramer.

Q3. Supposons que la distribution de X soit une gaussienne de largeur 1, i.e. px(x) = v01(x).
Calculer Hx (t) et, en utilisant ’equation (85), calculer Ix(u). Est-ce que dans ce cas on peut
calculer Iy (u) d’une facon plus simple?

Q4. On veut déterminer la loi de la moyenne empirique fiy, ot les X; sont des variables aléatoires
indépendantes et identiquement distribuées selon une loi exponentielle de paramétre .

3]a méthode du col est ’analogue complexe de la méthode de Laplace. Si on considere un integrale sur un chemin C

/ 9(2)MPdz ~ g (z7) N T) (84)
C

oul'on a f'(z*) = 0.
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Q5.

* Q6.

Q1.

Distribution, Symbol

Forme densité px(x)

‘ Fonction Caractéristique

Bernoulli, B(p) pd(x—1)+ (1 —p)d(z+1) 1—p+ pet
Geometric, Geom(p) Y ope (1 — ) 1pd(x — k) #j;)en
Uniform continuous, Unif([a,b]) | 7-1[z € [a, b]] ezzl();f:)a
Laplace, Laplace(a, b) % exp (—@) lfbit:tz
Gaussian, N (i, 0?) \/ﬁ exp <—%) eitn—30°t"
Gamma, I'(«a, ) %Va,ﬂ >0 ( — %) ¢
Chi squared, x?(k) %7&_; ke{l,2,3,...} (1- Zit)_g
. n p— N

Binomial, B(n,p) Z]kvzo (k)pk(l —p)" k5 (2 — k) (1 —p+ pe t)

1 o itu—0t|
Cauchy, Cauchy(zo,7) =] e

a) Trouvez la fonction caractéristique du ¢y, (t) du somme de variables aléatoires indépen-
dantes. Quelle loi est jin?
b) Calculez la moyenne et la variance de la loi trouvée.

En utilisant le théoréme de Cramér, calculez la fonction de grandes déviations Ix(x) pour la
moyenne empirique de N variables aléatoires indépendentes suivant la distribution calculée en
Q1 de 'Exercise 1.

(Simulations numériques)

a) Comparez graphiquement la fonction de grandes déviations obtenue & la question précé-
dente avec les résultats de simulations pour des valeurs de N € {4,32,256} (nombre
d’échantillons). Discutez de la convergence observée.

b) Commentez les différences entre ces approximations et la fonction de grandes déviations,
en particulier pour les événements rares.

Solution of Exercise 4

Commencons par exprimer la probabilité P, (u) en termes de la fonction caractéristique

Par(0) = P(Sw/N =) = [~ Shetupetsn) = [~ Seiou(em)™ 0
_ / h ;ifr exp|—itu + N Hx (t/N)] (88)

ou on a utilisez la définition Hx (t) = log px (t).

Pour N grand, on peut appliquer la méthode du col. On va definir z = ¢/N e on cherche le

point z* qui maximise I’exposant

d

d—[—izu + Hx(2)] = —iu+ H(2) =0
z

Ce qui donne la condition HY (2*) = iu.

En développant ’exposant autour de z* et en gardant les termes dominants pour N grand, on

obtient

(89)

P

" (u) - CNefN(iz*ufHX(z*))

(90)
ou C'y est un facteur de normalisation. En identifiant avec I’expression donnée, on trouve bien
Ix(u) =iz"u — Hx(2) (91)

Ce qui démontre le résultat demandé.
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Q2.

Q3.

Q4.

On a le relation

¢'(z)
H(2) = 2272, 92
M'(iz)
HY =1i-
et donc en posant z = —it, I’équation du point col se réécrit:
M'(t7)
i. = 94
i M) iu (94)
c’est a dire
K\ (t) =u, (95)
on peut donc réécrire
Ix(u) = t"u — Hx(—it"), (96)
L (u) = #'u — Kx(t). (97)

ce qui est le résultat souhaité.

Pour une distribution gaussienne standard X ~ A(0, 1), la fonction caractéristique et son log
sont

- t?
px(t)=¢ ", Hx(t) =logpx(t) = —3 . (98)
Pour calculer fx(u), on doit d’abord trouver z* tel que H' (2*) = iu et il est 2* = —iu.

En substituant dans 1’équation pour Iy (z)

Ie(w) = i(—iu)u — Hy(—in) = u2 + 00 @ (99)

On peut en effet calculer Ix(u) d’une fagon plus simple dans ce cas. Comme Sy/N est la
moyenne de N variables aléatoires gaussiennes indépendantes de moyenne 0 et variance 1, sa
distribution est une gaussienne de moyenne 0 et variance 1/N. Donc

VN N

P, (u) = 100
En identifiant avec la forme e Nx(®)_ on retrouve bien
2
Lx(u) = % (101)

Sous I'hypothése que tous les cumulants de X existent, on peut exprimer Hx(z) comme une
série de Taylor

00 . \n
Hx(2) =) fnx (ZZ!> (102)
n=1
Notons que tous les k, x sont réels. La condition HY (2*) = iu devient donc
i Ko, x 1" (z*)n_l _ i Kn,X i™w( 24 C2)"T_lei(n—1)9 — i (103)
Ze(n-1)! Lo
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ou on pose z* = pu+i¢ et § = arctan(¢/p). On peut d’abord diviser la partie reelee

R2on, X

m( n" (M +C2) T COS((?n—l)H) (paire)

o

Il
—

n

X (4 ) sin (20— 2)0)  (mpaie)

+
NE

n=1

et la partie imaginaire

uzgm( 1)"(u% + )™ sin((2n — 1)0)  (paire)
30 Gy (U () con((2n = 2)6) - (mpaive) (104)

La premiére équation est satisfaite si p = 0, ce qui implique § = 7/2. La deuxiéme équation
détermine alors ¢ en fonction de u. Ainsi, on a bien montré que z* = u + i avec ( réel.

La convexité de Ix(u) découle directement de cette relation de Legendre comme on avait vu
dans la premiere serie. En effet, la transformée de Legendre d’une fonction convexe est toujours
convexe.

Q5. a) Nous allons procéder par étapes pour déterminer la loi de la moyenne empirique fiy. Dans
I’exercice precedent Q8 on a trouve la fonction characteristique du varaible exponetiel avec
parameter A. On peut suivre le raisonment dans la question Q6 du meme exo pour dire

que
Pay () = E[eN] = E[eit(% i Xi)] = E[e% T X ‘] (independance) (105)
“Ilmet = Tlex(y) = () (100

(NNt (107)
\NA -t N NA
Cette forme correspond a la fonction génératrice des moments d’une distribution Gamma

de paramétres o« = N et 8 = ﬁ Donc, la moyenne empirique i suit une loi Gamma de
paramétres « = N et § = ﬁ La loi Gamma a un densité de probabilité

xa—l 6—593/801

XNF(aaﬁ) ) px(.’L'): F(OZ)

ou I'(2) :/ t*~le~tdt (108)
0

On note que il ne peut pas étre un loi chi squared parce que nous avons deux parameétres.
b) On veut démontrer que I'espérance et la variance d’une variable aléatoire X ~ I'(a, 3)

! o

E[X]:B, Var(X):@

On pourrait faire les integrales exact mais il est plus facile de developer en taylor la forme
de la fonction characteristique. On a que

(109)

Hx(t) = —alog (1—2)_“;; ;;2+O( %) (110)

La distribution de fiy a donc E[fin] = et Var(iy) = N,\2
Remarque : Lorsque N tend vers l'infini, cette distribution converge vers une distribution
normale centrée sur %, conformément au théoréme central limite.
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Q6. On a deja trouve dans EX2 la fonction generatrice de moments d’une variable exponentielle
de paramétre A\. Selon le théoréme de Cramér, la fonction de grandes déviations I(z) est la
transformée de Legendre-Fenchel de la fonction generatrice de cumulants Hx (t). Donc on a que

I(x) = igg{tx —Hx()} = igﬂg{tw + log<1 - ;)} (111)

Pour trouver le supremum, nous dérivons par rapport a ¢t et égalisons a zéro

%(tz—H;dt))zx—%zO (112)

et donc
! = L (113)
Xr = —— P N
A—t x
Donc, la fonction de grandes déviations pour la moyenne empirique de n variables exponentielles

de paramétre A est
I(z) = Ax — log(Az) — 1, pourz >0 (114)

Q7. Voir le notebook
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