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Homework 1: Un peu de probabilités

Consignes de rendu : Pour les questions numériques (indiqué par un astérisque), veuillez
soumettre un notebook Jupyter qui peut être exécuté de bout en bout sans erreur et qui reproduit
tous les résultats demandés dans ce document.Assurez-vous que votre code soit clair, bien commenté
et que toutes les dépendances nécessaires soient clairement indiquées. Pour les questions théoriques,
vous avez deux options :

• Vous pouvez inclure vos réponses directement dans le notebook Jupyter, en utilisant des cellules
de texte Markdown pour une présentation claire et structurée.

• Alternativement, vous pouvez soumettre un fichier PDF séparé contenant vos réponses aux ques-
tions théoriques. Dans ce cas, assurez-vous que vos réponses soient bien organisées et correspon-
dent clairement aux numéros des questions.

Dans les deux cas, veillez à ce que vos explications soient claires, concises et rigoureuses. N’hésitez pas
à inclure des schémas ou des équations lorsque cela est pertinent pour illustrer vos raisonnements.

Cette série d’exercices est conçue pour approfondir votre compréhension des concepts fondamen-
taux en théorie des probabilités et en statistique. Le devoir est structuré de manière séquentielle, vous
guidant à travers une progression logique des concepts. Nous commencerons par explorer la loi des
grands nombres, pierre angulaire de la théorie des probabilités. Ensuite, nous aborderons le théorème
central limite, qui décrit le comportement asymptotique des sommes de variables aléatoires. Nous exam-
inerons ensuite les corrections au théorème central limite, affinant notre compréhension de ses limites
et applications. Enfin, on va traite la théorie des grandes déviations, qui s’intéresse aux événements
rares mais significatifs.

Chaque partie comprend à la fois des exercices théoriques et des exercices numériques. Les
premiers pour consolider votre compréhension conceptuelle, et les deuxièmes pour tester et appliquer
ces concepts dans des situations pratiques.

Bon travail!

Exercise 1 Échauffement et Loi de Grand Nombre

Q1. On note Q(t) := P[T > t] = 1 − F (t) la probabilité qu’un événement ne se soit pas encore
produit après un temps t (F (t) désigne la fonction de distribution cumulative). On suppose
t ≥ 0. Sachant que le taux de changement de cette probabilité est constant et égal à −λ,
c’est-à-dire

dQ(t)

dt
= −λQ(t) . (1)

a) Dérivez la forme de la distribution Q(t).
b) Fixez la constante indéterminée dans la question précédente de telle sorte que la probabilité

totale sur tous les temps possibles est bien égale à 1. Quelle est la forme finale de la densité
de probabilité pλ(t) pour la distribution?

c) Calculer le valeur moyenne (espérance) et la variance de la variable aléatoire correspondante
en fonction du paramètre λ.
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Q2. Supposons que vous ne disposiez que d’un générateur de nombres aléatoires uniformes sur
l’intervalle [0,1]. Montrez comment, grâce à un changement de variable judicieux, vous pou-
vez utiliser cette distribution uniforme pour générer des échantillons suivant la distribution de
paramètre λ obtenue en Q1.

* Q3. Le but de cette question est de créer un générateur d’échantillons de cette distribution avec un
paramètre λ donné.

a) Créez dans un notebook la fonction generator(M: int, lam: float) -> np.ndarray
qui prend en entrée le nombre M d’échantillons à générer et le paramètre λ de la distribu-
tion, et renvoie un tableau numpy contenant les échantillons générés.

b) Fixez N = 105 et λ = 2 puis créez un histogramme, normalisé pour que ce soit un densité 1,
des échantillons générés et superposez cet histogramme avec la courbe de densité théorique
de la distribution obtenue en Q1.

Q4. Soit X1, X2, . . . , XN
iid∼ pλ des variables aléatoires indépendantes et identiquement distribuées

selon la distribution de la Q1. On définit la somme SN et la moyenne empirique µ̂N comme

SN =
N∑
i=1

Xi , µ̂N =
SN

N
. (2)

a) Vers quelle valeur µ̂N converge-t-elle lorsque N tend vers l’infini? Justifiez votre réponse.
b) Calculez la variance de la variable aléatoire µ̂N . Comment cette variance évolue-t-elle

lorsque N augmente ? Que pouvez-vous en conclure sur la précision de l’estimation de
E[X] par µ̂N ?

c) On définit la variance empirique σ̂2
N comme suit :

σ̂2
N =

1

N

N∑
i=1

(Xi − µ̂N )2 (3)

Calculez E[σ̂2
N ]. Cette estimation de la variance est-elle biaisée2 ? Si oui, expliquez la

source du biais.
d) Proposez une correction à l’estimateur σ̂2

N permettant d’obtenir un estimateur non biaisé
de la variance. Justifiez votre réponse.

* Q5. Écrivez un code Python qui calcule µ̂N pour différentes valeurs de N avec le code créé dans
Q3. Pour λ = 2, tracez deux graphiques: le premier est un graphique montrant la moyenne
empirique µ̂N en fonction de N , pour N entre 10 et 107. Le second est un graphique montrant
la variance de µ̂N en fonction de N , pour N entre 100 et 105. Commentez les résultats obtenus.
Ces résultats sont-ils cohérents avec la théorie?

Solution of Exercise 1

Q1. a) On peut modeliser le temp quand l’evenment se passe comme un variable aleatoire que on
appelle T . La densite de probabilite que on nous demande est

Q(t) = P[T > t] (4)

ou on peut seulement considérée de temps qui sont positif. On reconnaît que Q(t) est liée
a la fonction de répartition de la variable T parce que

FT (t) = P[T ≤ t] = 1− P[T > t] = 1−Q(t) (5)
1avec matplotlib cela se fait en mettant l’option True à l’option densité: matplotlib.pyplot.hist( ... ,

density=True).
2Un estimateur λ̂ est dit non-biaisé si et seulement si E[λ̂] = λ.
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Pour dériver la forme de la distribution P (t), nous résolvons l’équation différentielle donne
dans la consigne. L’équation est

dQ(t)

dt
= −λQ(t) (6)

On veut procéder avec la méthode de séparation des variables, donc

dQ

Q
= −λdt (7)

En intégrant des deux côtés
lnQ(t) = −λt+ C (8)

où C est une constante d’intégration. En prenant l’exponentielle

Q(t) = Ae−λt (9)

où A = eC est une constante à déterminer.
b) Pour normaliser la distribution on peut bien imposer que FT (0) = 0, ou Q(0) = 1 ou

normaliser la densité de probabilité. On procède avec Q(0) = 1, ce qui implique A = 1.
Ainsi

Q(t) = e−λt (10)

La densité de probabilité p(t) est la dérivée négative de Q(t) parce que

p(t) =
dFT (t)

dt
=

d

dt
[1−Q(t)] = −dQ(t)

dt
= λe−λt (11)

On peut vérifier que aussi la densité est normalisée∫ ∞

0
p(t)dt =

∫ ∞

0
λe−λtdt = 1 (12)

Ainsi, la forme finale de la densité de probabilité pour la distribution exponentielle est

p(t) =

{
λe−λt pour t ≥ 0

0 sinon
. (13)

c) Calculons l’espérance et la variance de un variable aléatoire T avec cette distribution de
probabilité. La moyenne µ est donnée par

µ = E[T ] =
∫ ∞

0
tp(t) dt =

∫ ∞

0
tλe−λt dt (14)

En intégrant par parties on peut obtenir l’integral indefini∫
tλe−λt dt = −e−λtt+

∫
eλt dt = −e−λt(λt+ 1)

λ
+ C (15)

donc on peut directement ecrire que

µ = −e−λt(λt+ 1)

λ

∣∣∣∣∞
t=0

= 0 +
1

λ
=

1

λ
(16)

On continue avec la variance. La variance σ2 est donnée par E[T 2]−µ2. Calculons d’abord
E[T 2].

E[T 2] =

∫ ∞

0
t2λe−λt dt = −t

e−λt(λt+ 1)

λ

∣∣∣∣∞
t=0

+

∫ ∞

0

e−λt(λt+ 1)

λ
dt

= −t
e−λt(λt+ 1)

λ

∣∣∣∣∞
t=0

+

∫ ∞

0
e−λtt dt+

1

λ

∫ ∞

0
e−λt dt

= 0 +
1

λ2
+

1

λ2
=

2

λ2
(17)
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Ou on a intégrée par parties deux fois et l’integral d’avant on nous aide a faire seulement
un integration par partie. Maintenant, nous pouvons calculer la variance :

σ2 = E[T 2]− µ2 =
2

λ2
−
(
1

λ

)2

=
1

λ2
(18)

On peut noter que l’écart-type σ = 1
λ est égal à la moyenne, ce qui est une propriété

caractéristique de la distribution exponentielle.

Q2. Pour générer des échantillons suivant une distribution exponentielle à partir d’une distribution
uniforme, nous pouvons utiliser la méthode de la transformation inverse. Soit U une variable
aléatoire uniformément distribuée sur [0, 1], i.e. U ∼ Unif([0, 1]). L’idée est de trouver une
fonction g telle que X = g(U) suive une distribution exponentielle. Pour faire ça, on peut
constater que de manière générale

FX(x) = P[X ≤ x] = P[g(U) ≤ x] = P[U ≤ g−1(x)] = g−1(x) (19)

et donc on peut prendre g(·) = F−1
X (·). Ça veut dire U = FX(X), et donc

U = 1− e−λX (20)

En résolvant pour X, on obtient :

1− U = e−λX (21)
− ln(1− U) = λX (22)

X = − 1

λ
ln(1− U) (23)

Ainsi, si U est uniformément distribué sur [0,1], alors X = − 1
λ ln(1− U) suivra une distribution

exponentielle de paramètre λ. Comme U est uniformément distribuée sur [0, 1], 1−U l’est aussi.
Donc, en pratique, on peut simplifier l’expression en

X = − 1

λ
ln(U) (24)

Donc l’algorithme a trois étapes

1. Générer U uniformément sur [0,1]

2. Calculer X = − 1
λ ln(U)

Q3. Voir le Notebook.

Q4. a) D’après la loi des grands nombres, la moyenne empirique µ̂N converge en probabilité vers
l’espérance mathématique de la distribution sous-jacente lorsque n tend vers l’infini. Pour
la distribution exponentielle de paramètre λ, nous savons que E[X] = 1

λ . Donc

lim
N→∞

µ̂N =
1

λ
(25)

b) Pour calculer la variance de µ̂N , nous utilisons les propriétés de la variance et le fait que
les Xi sont indépendantes

Var(µ̂N ) = Var

(
1

N

N∑
i=1

Xi

)
=

1

N2
Var

(
N∑
i=1

Xi

)
=

1

N2

N∑
i=1

Var(Xi) =
1

N2
·N ·Var(X)

(26)
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Sachant que pour une distribution exponentielle, Var(X) = 1
λ2 , nous obtenons

Var(µ̂N ) =
1

N2
·N · 1

λ2
=

1

Nλ2
(27)

La diminution de la variance avec l’augmentation de N indique que l’estimateur µ̂N devient
de plus en plus précis pour estimer E[X]. Cette analyse montre que µ̂N est un estimateur
consistant et non biaisé de E[X] pour la distribution exponentielle, avec une précision qui
s’améliore à mesure que la taille de l’échantillon augmente.

c) Pour calculer E[σ̂2
N ], nous allons utiliser la décomposition suivante

σ̂2
N =

1

N

N∑
i=1

(Xi − µ̂N )2 =
1

N

N∑
i=1

(X2
i − 2Xiµ̂N + µ̂2

N ) (28)

=
1

N

N∑
i=1

X2
i − 2µ̂2

N + µ̂2
N =

1

N

N∑
i=1

X2
i − µ̂2

N (29)

Prenons l’espérance des deux côtés

E[σ̂2
N ] = E

[
1

N

N∑
i=1

X2
i

]
− E[µ̂2

N ] =
1

N

N∑
i=1

E[X2
i ]− E[µ̂2

N ] (30)

En substituant ces valeurs obtenu a la question Q1.c. De plus, E[µ̂2
N ] = Var(µ̂N ) +

(E[µ̂N ])2 = 1
Nλ2 + 1

λ2 .

E[σ̂2
N ] =

2

λ2
−
(

1

Nλ2
+

1

λ2

)
=

2

λ2
− 1

Nλ2
− 1

λ2
=

1

λ2
− 1

Nλ2
=

N − 1

Nλ2
(31)

L’estimation de la variance est biaisée car E[σ̂2
N ] ̸= Var(X) = 1

λ2 .
Le biais provient de l’utilisation de la moyenne empirique µ̂N dans le calcul de σ̂2

N . Cette
moyenne est elle-même une variable aléatoire, ce qui introduit une dépendance entre les
termes (Xi − µ̂N )2. Cette dépendance conduit à une sous-estimation systématique de la
vraie variance.

d) Pour obtenir un estimateur non biaisé de la variance, nous pouvons multiplier σ̂2
N par un

facteur correctif

σ̂2
N,corrigé =

N

N − 1
σ̂2
N =

1

N − 1

N∑
i=1

(Xi − µ̂N )2 (32)

Avec le resultat de la question precedent nous obtenons :

E[σ̂2
N,corrigé] =

N

N − 1
E[σ̂2

N ] =
N

N − 1
· N − 1

Nλ2
=

1

λ2
(33)

Cette valeur est exactement égale à Var(X) pour la distribution exponentielle. Cet estima-
teur corrigé est connu sous le nom de variance empirique non biaisée ou variance empirique
corrigée. Il est couramment utilisé en statistiques pour estimer la variance d’une population
à partir d’un échantillon.
Cette correction est valable non seulement pour la distribution exponentielle, mais pour
toute distribution avec une variance finie. Pour de grandes valeurs de n, la différence entre
l’estimateur biaisé et non biaisé devient négligeable.

Q5. Voir le notebook
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Exercise 2 Fonction caractéristique et TCL

Soit i =
√
−1 le nombre imaginaire unité, la fonction caractéristique, de la densité de probabilité

pX est définie de la façon suivante

φX(t) = E
[
eitX

]
=

∫ ∞

−∞
pX(x)eitx dx . (34)

Par développement de l’exponentielle en série entière et interversion de la série et de l’espérance, dans
un voisinage de l’origine, on a le développement en série formelle:

φX(t) = 1 +
∞∑
k=1

mk,X
(it)k

k!
(35)

où mk,X := E[Xk] est le keme moment de la variable aléatoire X quand ce dernier existe. On définit le
log de la fonction caractéristique comme la fonction HX(t) := logφX(t) et on définit nème cumulant
de X, κn,X comme le coefficient de la série de Taylor de cette fonction

HX(t) = logφX(t) =

∞∑
l=1

κl,X
(it)l

l!
(36)

Dans la première partie on veut utiliser cette definition pour redémontrer le TCL. Si il est pas ex-
plicitement dit, considérée que la variable aléatoire X a les trois premières moments fini.

Q1. Montrer que φX(t) existe pour toute distribution pX et que |φX(t)| ≤ 1.

Q2. Comment obtient-on pX(x) à partir de φX(t) ?

Q3. Si φX(t) a un rayon de convergence R > 0 a l’origine, que peut-on en déduire sur les moments
de la variable aléatoire X ?

Q4. Comment s’expriment les quatre premiers cumulants en fonction des moments de X?

Q5. Quelle est la transformée de Fourier d’une Gaussienne ? En déduire que les cumulants d’une
variable Gaussiene, i.e. κn,X pour X ∼ N (µ, σ2), sont nuls pour n > 2, i.e. κn,X = 0∀n > 2.

Q6. On considère SN = X1+· · ·+XN , où les Xi sont N variables aléatoires indépendantes distribuées
selon la loi de densité pX . Que vaut la fonction génératrice de SN en fonction de celle de X?
Que vaut son logarithme HSN

(t) en fonction de HX(t)? Que valent les cumulants de SN en
fonction de ceux de X?

Q7. Dans la suite, on note par

GN =
1

√
κ2,X

·
(

SN√
N

−
√
N ·m1,X

)
. (37)

Montrez que le logarithme de la fonction caractéristique de GN — la fonction HGN
(t) — satisfait

HGN
(t) = NHX−µ

σ

(
t√
N

)
. (38)

Quelle est la limite des fonctions HGN
(t) (et donc de la fonction caractéristique φGN

(t) de GN )
dans la limite ou N est très grand? En déduire que la distribution de GN converge vers une
distribution Gaussienne de moyenne nulle et de variance unité dans la limite.

Q8. Tentons de répondre à la question suivante : Est-il nécessaire que tous les Xi aient la même
distribution pour obtenir la convergence vers la Gaussienne ? On va supposer d’avoir N vari-
able aléatoire {Xi}Ni=1 indépendants avec E

[
X2

i

]
< ∞ (mais pas nécessairement identiquement

distribuées).
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a) Pour des variables indépendantes (mais pas nécessairement identiquement distribuées), que
vaut l’espérance et la variance de leur somme ? En déduire la construction de la variable
G̃N de moyenne nulle et de variance un.

b) Exprimez la fonction HG̃N
(t) en tant que fonction des fonctions HXi(t) des variables aléa-

toires individuelles.
c) En utilisant le théorème de Taylor avec reste de Peano, développez les fonctions HXi et

calculez la fonction HG̃N
(t). Que peut-on dire du terme résiduel correspondent ? Pourquoi

tend-il vers 0 lorsque N augmente ?
d) Prouvez donc la généralisation du résultat de la Q7 pour ce cas.

Q9. Calculez la fonction caractéristique φX(t) de la distribution obtenue à la Q1 de l’Exercise 1.

* Q10. En utilisant le générateur de cette même distribution, que vous avez implémenté dans l’exercice
précédent, tracez pour différentes valeurs de N ∈ {4, 16, 64, 256, 1024, 4096} l’histogramme (nor-
malisé pour que cela soit une densité de probabilité) de ρN :=

√
N(µ̂N − E[X]), où µ̂N est la

moyenne empirique de N échantillons, et comparez-le à une distribution gaussienne ayant la
moyenne et variance donnée par le TCL.

Solution of Exercise 2

Q1. On commence avec l’existence de φX(t). φX(t) est définie comme une espérance mathématique.
Elle existe si l’intégrale converge absolument. Vu que |eitx| = 1 pour tout x réel on a que∫ ∞

−∞
|pX(x)eitx| dx =

∫ ∞

−∞
pX(x) dx = 1 < ∞ (39)

L’intégrale converge car pX(x) est une densité de probabilité.
On procède pour montrer l’inégalité. On a que

|φX(t)| =
∣∣∣∣∫ ∞

−∞
pX(x)eitx dx

∣∣∣∣ (40)

≤
∫ ∞

−∞
|pX(x)eitx|dx (par l’inégalité triangulaire pour les intégrales) (41)

=

∫ ∞

−∞
pX(x)|eitx|dx (car pX(x) est réelle et non-négative) (42)

=

∫ ∞

−∞
pX(x) dx (car |eitx| = 1 pour tout x réel) (43)

= 1 (car pX(x) est une densité de probabilité) (44)

Donc, |φX(t)| ≤ 1.

Q2. On peut obtenir pX(x) à partir de φX(t) en utilisant la transformée de Fourier inverse. La
fonction génératrice φX(t) est en fait la transformée de Fourier de pX(x). Donc

pX(x) =
1

2π

∫ ∞

−∞
φX(t)e−itx dt (45)

Cette formule permet de retrouver la densité de probabilité à partir de la fonction génératrice,
à condition que φX(t) soit intégrable.

Q3. if R > 0 then ϕ(t) is analytical on B(R) and in particular ϕ(k)(0) is well defined for any k. Since
the latter is also equal to ikEXk, it implies the existence of all moments.
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Q4. Pour exprimer les cumulants en fonction des moments, nous utilisons le développement en série
de Taylor de logφX(t) et le comparons avec celui de φX(t). Soit mn,X = E[XN ] le n-ième
moment de X.

φX(t) =

∫ ∞

−∞
pX(x)eitx dx (46)

=

∫ ∞

−∞
pX(x)

[
1 + itx− t2x2

2
− 1

6
it3x3 +

t4x4

24
+O

(
t5
)]

dx (47)

:= 1 + itm1,X − t2

2!
m2,X − it3

3!
m3,X +

t4

4!
m4,X +O

(
t5
)

(48)

on a donc pour la fonction HX(t) que on peut aussi développer le log et obtenir que

HX(t) = im1,Xt+
1

2
t2
(
m2

1,X −m2,X

)
− 1

6
it3
(
2m3

1,X − 3m1,Xm2,X +m3,X

)
(49)

+
1

24
t4
(
−6m4

1,X + 12m2
1,Xm2,X − 4m1,Xm3,X − 3m2

2,X +m4,X

)
+O

(
t5
)

(50)

:= κ1,X
it

1!
+ κ2,X

(it)2

2!
+ κ3,X

(it)3

3!
+ κ4,X

(it)4

4!
+O

(
t5
)

(51)

En comparant ces deux expressions, nous obtenons

• Premier cumulant : κ1 = µ1 = E[X] (moyenne)

• Deuxième cumulant : κ2 = µ2 − µ2
1 = Var(X) (variance)

• Troisième cumulant : κ3 = µ3 − 3µ2µ1 + 2µ3
1

Ces relations montrent que les cumulant sont des combinaisons de moments centrés, offrant une
description alternative des propriétés de la distribution.

Q5. Pour démontrer cela, nous allons utiliser la fonction characteristique de la distribution gaussi-
enne et la définition des cumulants. Pour X ∼ N (µ, σ2) on a que

φX(t) = E[eitX ] =
1√
2πσ2

∫ ∞

−∞
exp

(
−1

2

(x− µ)2

σ2
+ itx

)
dx

=
1√
2πσ2

∫ ∞

−∞
exp

(
− 1

2σ2
(x2 − 2µx+ µ2) + itx

)
dx

=
1√
2πσ2

∫ ∞

−∞
exp

(
− 1

2σ2
x2 +

( µ

σ2
+ it

)
x− µ2

2σ2

)
dx

=
e−

µ2

2σ2

√
2πσ2

∫ ∞

−∞
exp

(
− 1

2σ2

[
x2 − 2σ2

( µ

σ2
+ it

)
x
])

dx

=
e−

µ2

2σ2

√
2πσ2

∫ ∞

−∞
exp

(
− 1

2σ2

[
x2 − 2σ2

( µ

σ2
+ it

)
x+ σ4

( µ

σ2
+ it

)2
− σ4

( µ

σ2
+ it

)2])
dx

=
e−

µ2

2σ2

√
2πσ2

e
σ2

2

(
µ

σ2+it
)2 ∫ ∞

−∞
exp

(
− 1

2σ2

[
x− σ2

( µ

σ2
+ it

)]2)
dx

= e−
µ2

2σ2 e
σ2

2

(
µ2

σ4+
2µit

σ2 −t2
)
= e−

µ2

2σ2+
µ2

2σ2+µit−σ2t2

2 = eµit−
σ2t2

2 (52)

On peut bien prendre le logaritme et avoir

HX(t) = logφX(t) = log
(
eiµt−

1
2
σ2t2
)
= iµt− 1

2
σ2t2 (53)

En comparant cette série avec l’expression de de la question precedent, nous voyons que
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• κ1 = µ (le premier cumulant est la moyenne)
• κ2 = σ2 (le deuxième cumulant est la variance)
• κn = 0 ∀n > 2 (il n’y a pas de termes d’ordre supérieur à 2 dans l’expression de HX(t))

Ainsi, nous avons démontré que pour une distribution gaussienne, tous les cumulants d’ordre
supérieur à 2 sont nuls.

Q6. Soit φX(t) la fonction génératrice de X. Pour SN , nous avons :

φSN
(t) = E[eitSN ] = E[eit(X1+···+XN )] = E[eitX1 · · · eitXN ] (54)

= E[eitX1 ] . . .E[eitXN ] (par indépendance) (55)

= φX(t)N (56)

Donc, la fonction génératrice de SN est la N-ième puissance de la fonction génératrice de X.
Soit κn,X le n-ième cumulant de X et κn,SN

le n-ième cumulant de SN , donc avec un calcul
direct

logφSN
(t) = log

(
φX(t)N

)
= N logφX(t) = N

∞∑
n=1

κn,X
(it)n

n!
(57)

En comparant cela avec la définition des cumulants pour SN

logφSN
(t) =

∞∑
n=1

κn,SN

(it)n

n!
(58)

Nous concluons que
κn,SN

= Nκn,X ∀n,N ∈ {1, 2, 3 . . . } (59)

Cette relation montre que les cumulants de la somme de variables aléatoires indépendantes et
identiquement distribuées sont simplement N fois les cumulants de la variable individuelle.

Q7. Commençons par exprimer la fonction génératrice de GN en termes de celle de X. Comme
l’exercise precedent, nous avons:

φGN
(t) = E[ei

t√
κ2

(∑
i Xi√
N

−
√
Nm1

)
] = E[ei

t√
N

(
X1−m1√

κ2

)
] . . .E[ei

t√
N

(
XN−m1√

κ2

)
] (60)

=

[
φX−m1√

κ2

(
t√
N

)]N
(61)

L’étape clé consiste à examiner le comportement de cette expression pour N grand. Si on
reprend l’expression calculé dans la Q3 de cette exercise, on a que

HGN
(t) = NHX−m1√

κ2

(
t√
N

)
= N

[
0 +

1

2

(
i

t√
N

)2

+ o(N−1)

]
= − t2

2
+ oN (1) . (62)

Cela signifie que, pour N grand, on a HGN
= − t2

2 ; c’est exactement l’expression que l’on a
trouvée pour une gaussienne de moyenne nulle et variance un.

Q8. Non, il n’est pas nécessaire que tous les Xi aient la même distribution pour que le théorème
central limite s’applique. Soit {X1, X2, ..., XN} une suite de variables aléatoires indépendantes,
pas nécessairement identiquement distribuées. Supposons que chaque Xi a une espérance µi

et une variance σ2
i finies et aussi le troisième moment qui est fini E[X3

i ] < ∞ pour toutes
i = 1, . . . , N .
Pour généraliser l’approximation gaussienne, considérons la somme normalisée suivante

GN =
1

√
κ2

(∑N
i=1Xi√
N

−
∑N

i=1 µi√
N

)
, ou κ2 =

1

N

∑
i

σ2
i (63)
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On peut continuée comme la question precedent:

φGN
(t) = E[e

i t√
κ2N

(
∑

i Xi−
∑

i µi)
] =

∏
i

E[ei
t√
N

(
Xi−µi√

κ2

)
] =

∏
i

[
φXi−µi√

κ2

(
t√
N

)]
(64)

On peut d’abord utiliser le théorème de Taylor avec le reste de Peano pour écrire

φXi−µi√
κ2

(t/
√
N) = 1 + i

t√
N

m
1,

Xi−µi√
κ2

− t2

2N
m

2,
Xi−µi√

κ2

+
t2

N
m

2,
Xi−µi√

κ2

h(t/
√
N) (65)

ou h(t/
√
N) → 0 pour N → ∞. Si on prend le log, on a que

HGN
(t) =

∑
i

HXi−µi
κ2

(
t√
N

)
=
∑
i

[
0− σ2

i

2κ2

t2

N
+

σ2
i

κ2

t2

N
h(t/

√
N)

]
−−−−→
N→∞

− t2

2
. (66)

Dans la dernière étape, nous avons utilisé la définition de κ2 et le fait que h(t/
√
N) → 0

pour N → ∞. Encore une fois, ça c’est exactement l’expression que l’on a trouvée pour une
gaussienne de moyenne nulle et variance un.

Q9. De la définition de fonction caractéristique on a que

φX(t) =

∫ ∞

0
eitxλe−λx dx = λ

∫ ∞

0
e−(λ−it)x dx = λ

[
− 1

λ− it
e−(λ−it)x

]∞
0

=
λ

λ− it
(67)

La fonction caractéristique existe pour tout t ∈ R. On a aussi que avec un calcul

MX(t) =

∫ ∞

0
etxλe−λx dx =

λ

λ− t
(68)

la fonction génératrice des moments n’existe que pour t < λ.

Q10. Voir le Notebook

Exercise 3 Correction au CLT

On note par

γµ,σ2(x) :=
1√
2πσ2

e−
(x−µ)2

2σ2 (69)

la densité d’une variable aléatoire Gaussienne de moyenne µ et variance σ2.

Q1. a) Reprenez le calcul de Q7 de l’Exercise 2, et montrez que pour N grand, la fonction HGN

peut s’écrire comme

HGN
(t) = − t2

2
− iκ3t

3

6σ3
√
N

+O(N−1) . (70)

b) En utilisant la relation entre la fonction caractéristique et la densité de probabilité, montrez
que

pGN
(x) = γ0,1(x)

[
1 +

κ3,X
6σ3

(
x3 − 3x

) 1√
N

+O(N−1)

]
(71)

c) En déduire que SN =
∑N

i=1Xi peut être approximée par une loi Gaussienne de largeur
σ
√
N dans un intervalle de largeur d’ordre Nα et donner la valeur maximale possible du

paramètre α.
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Q2. On note FGN
(x) :=

∫ x
−∞ pGN

(y)dy la cumulative de la variable GN et Φ(x) :=
∫ x
−∞ γ0,1(y)dy

celle d’une standard Gaussienne. On rappelle que la norme sup d’une fonction est donnée par
∥f∥∞ := supt |f(t)|. Montrez que la différence entre les 2 cumulatives est donnée par

∥FGN
− Φ∥∞ ≤ C√

N
. (72)

pour une constante C indépendante de N , c’est à dire que la vitesse de convergence est d’ordre
O(N−1/2).

* Q3. Écrivez un code python pour calculer la différence entre FGN
et Φ puis tracez cette distance em-

pirique en fonction de N en échelle logarithme, pour des valeurs de N ∈ {4, 16, 64, 256, 1024, 4096}.
Montrez que le scaling est bien en N−1/2 sur cette figure.

Solution of Exercise 3

Q1. a) Pour le troisième moment de GN on peut voir que

m3,GN
=

∫
pGN

(g)g3dg =

∫
p(x)

(x− µ)3

σ3
dx =

κ3
σ3

(73)

où nous avons utilisé la définition du troisième cumulant.
Considérons la fonction caractéristique de GN que comme dans l’autre reponse et dévelop-
pons log(1 + x) autour de x = 0

φGN
(t) =

∏
i

φXi−µ
√
κ2

(
t√
N

)
= expN log

(
φX−µ√

κ2

(
t√
N

))
(74)

= expN log

(
1 + 0− m2

2κ2

(
t√
N

)2

− i

6

κ3

κ
3/2
2

(
t√
N

)3

+O(1/N2)

)
(75)

= expN

(
− t2

2N
− i

6

κ3
σ3

t3

N
√
N

+O(1/N2)

)
= exp

(
− t2

2
− iκ3t

3

6σ3
√
N

+O(1/N)

)
.

(76)

b) Définissons maintenant k′ = κ3

6σ3
√
N

et utilisons la relation entre la fonction caractéristique
et la fdp pour écrire:

pGN
(x) =

1

2π

∫ ∞

−∞
e−t2/2−itxe−it3k′dt =

1

2π

∫ ∞

−∞
e−t2/2−itx(1− it3k′ +O(1/N))dt (77)

=
1

2π

∫ ∞

−∞
e−t2/2−itxdt− ik′

2π

∫ ∞

−∞
t3e−t2/2−itxdt+O(1/N) (78)

Pour le premier terme, nous pouvons remarquer qu’il s’agit de la transformée de Fourier
d’une gaussienne standard. Alternativement, nous pouvons compléter les carrés au niveau
de l’exposant et écrire

pGN
(x) =

1

2π

∫ ∞

−∞
e−

1
2
(t−ix)2−x2

2 dt+
ik′

2π

∫ ∞

−∞
e−

1
2
(t−ix)2−x2

2 t3dt+O(1/N) (79)

≈ 1√
2π

e−
x2

2

(
1− ik′√

2π

∫ ∞

−∞
e−

1
2
(t−ix)2t3dt

)
(80)
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En effectuant le changement de variables t′ = t+ ix, on peut écrire

pGN
(x) =

1√
2π

e−
x2

2

(
1− ik′√

2π

∫ ∞

−∞
e−

t′2
2
(
t′3 − 3ixt′2 + 3x2t′ + ix3

)
dt′
)

(81)

= γ0,1(x)
(
1− ik′(−3ix+ ix3)

)
= γ0,1(x)

(
1 + k′(x3 − 3x)

)
. (82)

Si nous substituons l’expression de k′, nous retrouvons le résultat souhaité.
c) L’approximation a une signification si x3

√
N

≪ 1. Ça veut dire x ≪ N1/6.

Q2. En intégrant Eq.(71) par rapport à x, on obtient

FGN
(x) := Φ(x) +

f(x)√
N

+O(N−1) (83)

avec f(x) :=
κ3,X

6σ3

∫ x
He3(y)γ0,1(y)dy et donc ||FGN

(x) − Φ(x)||∞ = O(∥f(x)∥∞/
√
N) et on

obtient le résultat désiré avec C = ∥f(x)∥∞.

Q3. Voir le Notebook

Exercise 4 Théorème de Cramer

Pour la variable aléatoire SN , nous venons de voir qu’il existe un intervalle de taille Nα (avec
un certain α ∈ (0, 1) calculée en Q1.b de l’Exercise 3) dans laquelle l’approximation Gaussienne
s’applique pour N très grand. La taille de cet intervalle est donc petite par rapport à la valeur typique
(espérance) de SN qui est d’ordre N . On s’intéresse ici à comprendre le probabilité que SN prennent
des valeurs dans un intervalle de taille N ≫ Nα. De manière équivalente, on cherche à comprendre la
probabilité que µ̂N dévie de O(1) de sa valeur typique. On rappelle que HX(t) := logφX(t).

Q1. Écrivez la densité de probabilité de µ̂N en fonction de sa fonction caractéristique puis celles des
Xi. En déduire en utilisant la méthode du col 3, montrez que pµ̂N

(u) ≍ exp[−NIX(u)], où la
“fonction des grandes déviations” IX(u) est donnée par

IX(u) = iz⋆u−HX(z⋆) , (85)

z⋆ étant la solution de H ′
X(z) = iu.

Q2. On définit la fonction génératrice des cumulants comme

KX(t) = log
(
E
[
etX
])

(86)

et l’on pose maintenant z∗ = −it∗. Justifier pourquoi, si tout les moments existent, on trouve
bien que IX(u) = ut∗−κX(t∗) (avec κX(t) = logMX(t)) avec t∗ tel que ∂t(ut−logMX(t))|t∗ = 0,
ce qui est bien le théorème de Cramer.

Q3. Supposons que la distribution de X soit une gaussienne de largeur 1, i.e. pX(x) = γ0,1(x).
Calculer HX(t) et, en utilisant l’equation (85), calculer IX(u). Est-ce que dans ce cas on peut
calculer IX(u) d’une facon plus simple?

Q4. On veut déterminer la loi de la moyenne empirique µ̂N , où les Xi sont des variables aléatoires
indépendantes et identiquement distribuées selon une loi exponentielle de paramètre λ.

3la méthode du col est l’analogue complexe de la méthode de Laplace. Si on considere un integrale sur un chemin C∫
C

g(z)eλf(z)dz ≈ g (z∗) eλf(z
∗) (84)

ou l’on a f ′(z∗) = 0.
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Distribution, Symbol Forme densité pX(x) Fonction Caractéristique
Bernoulli, B(p) pδ(x− 1) + (1− p)δ(x+ 1) 1− p+ peit

Geometric, Geom(p)
∑∞

k=0(1− p)k−1pδ(x− k) peit

1−(1−p)eit

Uniform continuous, Unif([a, b]) 1
b−a1[x ∈ [a, b]] eitb−eita

it(b−a)

Laplace, Laplace(a, b) 1
2b exp

(
− |x−µ|

b

)
eitµ

1+b2t2

Gaussian, N (µ, σ2) 1√
2πσ2

exp
(
− (x−µ)2

2σ2

)
eitµ−

1
2
σ2t2

Gamma, Γ(α, β) xα−1e−βxβα

Γ(α) ∀α, β > 0
(
1− it

β

)−α

Chi squared, χ2(k) xk/2−1e−x/2

2k/2Γ(k/2)
k ∈ {1, 2, 3, . . . } (1− 2it)−

k
2

Binomial, B(n, p)
∑N

k=0

(
n
k

)
pk(1− p)n−kδ(x− k)

(
1− p+ peit

)N
Cauchy, Cauchy(x0, γ) 1

π

[
γ

(x−x0)
2+γ2

]
eitµ−θ|t|

a) Trouvez la fonction caractéristique du φµ̂N
(t) du somme de variables aléatoires indépen-

dantes. Quelle loi est µ̂N?
b) Calculez la moyenne et la variance de la loi trouvée.

Q5. En utilisant le théorème de Cramér, calculez la fonction de grandes déviations IX(x) pour la
moyenne empirique de N variables aléatoires indépendentes suivant la distribution calculée en
Q1 de l’Exercise 1.

* Q6. (Simulations numériques)
a) Comparez graphiquement la fonction de grandes déviations obtenue à la question précé-

dente avec les résultats de simulations pour des valeurs de N ∈ {4, 32, 256} (nombre
d’échantillons). Discutez de la convergence observée.

b) Commentez les différences entre ces approximations et la fonction de grandes déviations,
en particulier pour les événements rares.

Solution of Exercise 4

Q1. Commençons par exprimer la probabilité Pµ̂N
(u) en termes de la fonction caractéristique

Pµ̂N
(u) = P (SN/N = u) =

∫ ∞

−∞

dt

2π
e−ituE[eitSN/N ] =

∫ ∞

−∞

dt

2π
e−itu(φX(t/N))N (87)

=

∫ ∞

−∞

dt

2π
exp[−itu+NHX(t/N)] (88)

ou on a utilisez la définition HX(t) = logφX(t).
Pour N grand, on peut appliquer la méthode du col. On va definir z = t/N e on cherche le
point z⋆ qui maximise l’exposant

d

dz
[−izu+HX(z)] = −iu+H ′

X(z) = 0 (89)

Ce qui donne la condition H ′
X(z⋆) = iu.

En développant l’exposant autour de z⋆ et en gardant les termes dominants pour N grand, on
obtient

Pµ̂N
(u) ≍ CNe−N(iz⋆u−HX(z⋆)) (90)

où CN est un facteur de normalisation. En identifiant avec l’expression donnée, on trouve bien

IX(u) = iz⋆u−HX(z⋆) (91)

Ce qui démontre le résultat demandé.
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Q2. On a le relation

H ′
X(z) =

ϕ′(z)

ϕ(z)
, (92)

H ′
X(z) = i · M

′(iz)

M(iz)
(93)

et donc en posant z = −it, l’équation du point col se réécrit:

i · M
′(t∗)

M(t∗)
= iu (94)

c’est à dire

K ′
X(t∗) = u , (95)

on peut donc réécrire

IX(u) = t∗u−HX(−it∗) , (96)
IX(u) = t∗u−KX(t∗) , (97)

ce qui est le résultat souhaité.

Q3. Pour une distribution gaussienne standard X ∼ N (0, 1), la fonction caractéristique et son log
sont

φX(t) = e−t2/2 , HX(t) = logφX(t) = − t2

2
. (98)

Pour calculer fX(u), on doit d’abord trouver z⋆ tel que H ′
X(z⋆) = iu et il est z⋆ = −iu.

En substituant dans l’équation pour IX(x)

IX(u) = i(−iu)u−HX(−iu) = u2 +
(−iu)2

2
=

u2

2
(99)

On peut en effet calculer IX(u) d’une façon plus simple dans ce cas. Comme SN/N est la
moyenne de N variables aléatoires gaussiennes indépendantes de moyenne 0 et variance 1, sa
distribution est une gaussienne de moyenne 0 et variance 1/N . Donc

PuN (u) =

√
N√
2π

e−N u2

2 (100)

En identifiant avec la forme e−NIX(u), on retrouve bien

IX(u) =
u2

2
(101)

Q4. Sous l’hypothèse que tous les cumulants de X existent, on peut exprimer HX(z) comme une
série de Taylor

HX(z) =

∞∑
n=1

κn,X
(iz)n

n!
(102)

Notons que tous les κn,X sont réels. La condition H ′
X(z⋆) = iu devient donc

∞∑
n=1

κn,Xin

(n− 1)!
(z⋆)n−1 =

∞∑
n=1

κn,X
(n− 1)!

inw(µ2 + ζ2)
n−1
2 ei(n−1)θ = iu (103)
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ou on pose z⋆ = µ+ iζ et θ = arctan(ζ/µ). On peut d’abord diviser la partie reelee

0 =

∞∑
n=1

κ2n,X
(2n− 1)!

(−1)n(µ2 + ζ2)
2n−1

2 cos ((2n− 1)θ) (paire)

+
∞∑
n=1

κ2n−1,X

(2n− 2)!
(−1)n−1(µ2 + ζ2)

2n−2
2 sin ((2n− 2)θ) (impaire)

et la partie imaginaire

u =

∞∑
n=1

κ2n,X
(2n− 1)!

(−1)n(µ2 + ζ2)
2n−1

2 sin ((2n− 1)θ) (paire)

+
∞∑
n=1

κ2n−1,X

(2n− 2)!
(−1)n+1(µ2 + ζ2)

2n−2
2 cos ((2n− 2)θ) (impaire) (104)

La première équation est satisfaite si µ = 0, ce qui implique θ = π/2. La deuxième équation
détermine alors ζ en fonction de u. Ainsi, on a bien montré que z⋆ = µ+ iζ avec ζ réel.
La convexité de IX(u) découle directement de cette relation de Legendre comme on avait vu
dans la premiere serie. En effet, la transformée de Legendre d’une fonction convexe est toujours
convexe.

Q5. a) Nous allons procéder par étapes pour déterminer la loi de la moyenne empirique µ̂N . Dans
l’exercice precedent Q8 on a trouve la fonction characteristique du varaible exponetiel avec
parameter λ. On peut suivre le raisonment dans la question Q6 du meme exo pour dire
que

φµ̂N
(t) = E[eitµ̂N ] = E[eit(

1
N

∑N
i=1 Xi)] = E[e

it
N

∑N
i=1 Xi ] (independance) (105)

=

N∏
i=1

E[e
it
N
Xi ] =

N∏
i=1

φX

(
t

N

)
=

(
λ

λ− t
N

)N

(106)

=

(
Nλ

Nλ− t

)N

=

(
1− t

Nλ

)−N

(107)

Cette forme correspond à la fonction génératrice des moments d’une distribution Gamma
de paramètres α = N et β = 1

Nλ . Donc, la moyenne empirique µ̂N suit une loi Gamma de
paramètres α = N et β = 1

Nλ . La loi Gamma a un densité de probabilité

X ∼ Γ (α, β) , pX(x) =
xα−1e−βxβα

Γ(α)
ou Γ(z) =

∫ ∞

0
tz−1e−t dt (108)

On note que il ne peut pas être un loi chi squared parce que nous avons deux paramètres.
b) On veut démontrer que l’espérance et la variance d’une variable aléatoire X ∼ Γ(α, β)

E[X] =
α

β
, Var(X) =

α

β2
(109)

On pourrait faire les integrales exact mais il est plus facile de developer en taylor la forme
de la fonction characteristique. On a que

HX(t) = −α log

(
1− it

β

)
=

iαt

β
− αt2

2β2
+O

(
t2
)
. (110)

La distribution de µ̂N a donc E[µ̂N ] = 1
λ et Var(µ̂N ) = 1

Nλ2 .
Remarque : Lorsque N tend vers l’infini, cette distribution converge vers une distribution

normale centrée sur 1
λ , conformément au théorème central limite.
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Q6. On a deja trouve dans EX2 la fonction generatrice de moments d’une variable exponentielle
de paramètre λ. Selon le théorème de Cramér, la fonction de grandes déviations I(x) est la
transformée de Legendre-Fenchel de la fonction generatrice de cumulants HX(t). Donc on a que

I(x) = sup
t∈R

{tx−HX(t)} = sup
t∈R

{tx+ log

(
1− t

λ

)
} (111)

Pour trouver le supremum, nous dérivons par rapport à t et égalisons à zéro

d

dt
(tx−HX(t)) = x− 1

λ− t
= 0 (112)

et donc
x =

1

λ− t
⇒ t = λ− 1

x
(113)

Donc, la fonction de grandes déviations pour la moyenne empirique de n variables exponentielles
de paramètre λ est

I(x) = λx− log(λx)− 1, pour x > 0 (114)

Q7. Voir le notebook
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