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But de cette série : étudier quelques propriétés des métaux qui sont bien décrites par le modèle
des électrons libres

1. Emission thermoélectronique

En 1873, Guthrie a découvert qu’un métal chaud émet des élec-
trons. Pour quitter le métal, les électrons doivent avoir suffisam-
ment d’énergie cinétique dans la direction perpendiculaire à la
surface pour échapper à l’attraction des ions. Dans cet exercice
on cherche à quantifier cette émission d’électrons, dite thermo-
électronique (parfois thermoionique).
Une surface métallique plane (cathode) perpendiculaire à l’axe
z est portée à la température T . φ est le potentiel d’extraction
des électrons libres (de conduction), eφ est le travail de sortie.
Par simplicité, on va approximer le potentiel chimique µ(T ) par
sa valeur à T = 0, c’est-à-dire EF .
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(a) Dans l’espace des vecteurs d’onde, on repère par kx, ky et kz la position d’un élément de
volume de dimensions dkx, dky et dkz. Quelle condition, exprimée sous la forme d’une in-
égalité, est imposée sur la composante kz du vecteur d’onde pour que les électrons contenus
dans cet élément de volume soient susceptibles de sortir du métal ?

Indication : passer d’une condition sur la composante de la vitesse à une condition sur la
composante de k.

(b) Montrer que la densité d’électrons dn dans l’élément dkxdkydkz à la température T est
donné par :

dn =
dkxdkydkz
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f(E)

(c) Déduire l’expression de la densité de courant élémentaire djz en fonction de T :

djz = − e
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Indication : faire une approximation pour la distribution de Fermi-Dirac en tenant compte
du fait que eφ� kBT .

(d) En déduire la densité de courant totale émise par la cathode. Montrer que le résultat final
peut se mettre sous la forme (loi de Richardson-Dushman) :

jz = AT 2 exp

(
− eφ

kBT

)
Expliciter l’expression et la valeur numérique de A.

Indications :

- dans l’intégration, pour les valeurs de kz on considère bien la condition trouvée dans la
partie (a) ;
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(e) En réalité les valeurs expérimentales de A dependent du matériau et sont inférieures à la
valeur théorique qui néglige en particulier la réflexion interne, sur l’interface métal/vide,
des électrons susceptibles de sortir de la cathode. A partir des données expérimentales de
A et de φ données dans le tableau ci-dessous, évaluer les densités de courant émises par
les cathodes respectives, chacune étant portée à une température de fonctionnement Tfonct
légèrement inférieure à la température de fusion.

cathodes

W BaO + SrO sur Ni LaB6

A (104 A m−2 K−2) 75 0.05 40

φ (V) 4.5 1 2.4

Tfonct (K) 2700 1100 1800

2. Conductivité électrique dans le modèle de Sommerfeld - Temps de vol

Dans le modèle de Sommerfeld, la probabilité de collision d’un électron avec un ion du réseau est
supposée indépendante du temps. La probabilité qu’un électron subisse une collision durant l’in-

tervalle de temps infinitésimal dt est proportionnelle à dt, soit
dt

τ
. La constante τ qui caractérise

la collision s’appelle temps de relaxation.

(a) Montrer qu’un électron pris au hasard à l’instant t = 0 ne subira aucune collision pendant
le temps t à venir avec une probabilité e−t/τ .

(b) Montrer que la probabilité qu’il subisse sa première collision entre t et t + dt est donnée

par
dt

τ
e−t/τ .

(c) Montrer que, pour un électron donné, le temps moyen entre deux collisions (ou temps de
vol moyen ou temps de relaxation) est égal à τ .

Indication :

∞∫
0

xne−axdx =
n!

an+1
(n > 0, a > 0).

3. Conductivité électrique dans le modèle de Sommerfeld

Dans le modèle de Sommerfeld la densité de courant s’écrit

j = − e2
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τ est le temps de vol. f0 est la distribution de Fermi-Dirac en termes de k. v est la vitesse des
électrons. E est le champ électrique appliqué. Nous considérons ici E = (Ex, 0, 0).

Montrer que pour un gaz d’électrons libres à T = 0 K

j = σE avec σ =
ne2τ(EF )

m
.

Indications :

∂f0
∂E

= −δ(E − EF ) (E est l’énergie) ;

utiliser les coordonnées sphériques pour calculer les intégrales ;∫
cos2 x dx = x

2 + sin 2x
4 + C

∫
sin3 x dx = cos3 x

3 − cosx+ C .
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