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Exercices de Physique du Solide Prof. H. Brune

Méthode des liaisons fortes : bandes π du graphène

Le graphène est un système bidimensionnel composé d’atomes de carbone arrangés dans une
structure à nid d’abeille. La maille primitive du graphène (paramètre de maille a) comporte
deux atomes de carbone (voir schéma ci-dessous) que nous noterons A et B. Pour le réseau de
Bravais, nous utiliserons les vecteurs primitifs suivants : a1 = a(1, 0) et a2 = a(−1/2,

√
3/2), où

a = 2.46 Å.

Le réseau du graphène peut se décomposer en deux sous-réseaux A et B formés à partir des
atomes A etB de la maille élémentaire. Les sites de types A (noirs) sont situés en r = n1a1+n2a2,
et les sites de types B (blancs) en r = n1a1 + n2a2 + rAB, où rAB = a(0, 1/

√
3).

Note : l’ensemble des sites de type A constitue un réseau de Bravais, comme l’ensemble des sites
de type B, alors que le réseau en nid d’abeille n’est pas un réseau de Bravais.

Figure 1 – Réseau et première zone de Brillouin du graphène

Parmi les quatre (2s2 2p2) électrons de valence de chaque atome de carbone, trois participent à
des liaisons dans le plan. Nous considèrerons seulement le quatrième électron qui se trouve dans
une orbitale de type pz. La fonction d’onde associée à cette orbitale est notée φp(r). Elle est telle
que :

Hat|φp〉 = εp|φp〉 avec 〈φp|φp〉 = 1

La méthode des liaisons fortes consiste à décomposer la fonction d’onde à un électron sur une
base de fonctions d’onde atomiques. Ici nous séparons donc la structure entre les deux sous-
réseaux A et B et nous introduisons la base orthonormée formée à partir des fonctions de Bloch
(φkA, φ

k
B) localisées sur chaque sous-réseau :
φkA(r) = 1√

NR

∑
R

eik·Rφp(r−R)

φkB(r) = 1√
NR

∑
R

eik·(R+rAB)φp(r− rAB −R)

où R est un vecteur du réseau de Bravais et NR est le nombre de mailles. φkA et φkB sont norma-
lisées (〈φkA|φkA〉 = 〈φkB|φkB〉 = 1) et on néglige les recouvrements entre les orbitales positionnées
sur des sites différents, ce qui implique 〈φkA|φkB〉 = 0.
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Dans cette base :

— une fonction d’onde de Bloch à un électron s’écrit : ψk(r) = akφkA(r) + bkφkB(r) et peut
être représentée par le vecteur :

ψk =

(
ak

bk

)
,

— l’hamiltonien est représenté par une matrice de la forme :

Hk =

〈φkA|H|φkA〉 〈φkA|H|φkB〉
〈φkB|H|φkA〉 〈φkB|H|φkB〉

 =

 εkA ∆k

∆k∗ εkB


où H = Hat + ∆V ,

— l’équation de Schrödinger Hkψk = E(k)ψk se réduit à l’équation aux valeurs propres :[
εkA ∆k

∆k∗ εkB

](
ak

bk

)
= E(k)

(
ak

bk

)
.

Pour trouver la relation de dispersion E(k), on cherche à résoudre cette équation dans l’approxi-
mation des premiers voisins avec les conditions suivantes :

1. On considère que l’intégrale de transfert γ(r) =
∫
φ∗p(r

′)∆V φp(r
′ − r)dr′ définie entre deux

sites distants de r est non-nulle uniquement entre les sites A et B plus proches (premiers)
voisins. Pour deux sites A et B premiers voisins, on pose γ(r) = −γ.

2. On néglige le terme de champ cristallin : 〈φp|∆V |φp〉 = 0.

3. On néglige les termes de recouvrement entre orbitales p positionnées sur des sites différents :∫
φ∗p(r)φp(r− x)dr = 0 pour x 6= 0.

(a) Montrer que :

εkA = εkB = εp.

Indication : remarquer que∑
R,R′

eik·(R
′−R)

∫
φ∗p(r−R)Hφp(r−R′)dr = NR

∑
R

eik·R
∫
φ∗p(r)Hφp(r−R)dr

et que la plupart des termes de la somme s’annulent quand on applique les conditions
données précédemment sur les intégrales de recouvrement et de transfert.

(b) Montrer que :

∆k = −
∑
di

γeik·di ,

où les vecteurs di correspondent aux trois vecteurs liant le site A de la maille primitive à
ses trois premiers voisins de type B.

Indication : remarquer que les trois premiers voisins du site A appartiennent à des mailles
différentes et sont séparés du site A par les trois vecteurs di = rAB + Ri (i = 1, 3), où
R1 = 0, R2 = −a2 et R3 = −a1 − a2. Dans l’approximation des premiers voisins, les
intégrales de transfert sont non-nulles uniquement entre les sites séparés par l’un de ces 3
vecteurs.

(c) Calculer les trois vecteurs di. En déduire que :

∆k = −γ
(
e
i
kya√

3 + 2e
−i kya

2
√

3 cos
kxa

2

)
.
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(d) Trouver les valeurs propres de la matrice Hk et montrer que :

E(k) = εp ± γ

√
1 + 4 cos2

kxa

2
+ 4 cos

kxa

2
cos

kya
√

3

2
.

(e) Calculer l’énergie aux points Γ, M et K de la PZB, où Γ = (0, 0), M= 2π
a (12 ,

1
2
√
3
) et

K= 2π
a (23 , 0). En supposant que la variation de l’énergie avec k entre ces points est

monotone, tracer qualitativement E en fonction de k le long du chemin ΓMKΓ.

(f) Pour modéliser ce système, nous considèrons les conditions aux limites de Born von
Karman. Donner le nombre de vecteurs k possibles dans la PZB. En déduire la position
du niveau de Fermi par rapport à εp à T = 0.

(g) D’après la mesure par photoemission
de la relation de dispersion E(k) mon-
trée à la figure ci-contre, estimer la va-
leur de γ. [A. Bostwick et al., Nature
Physics 3, 36 (2007)]
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Corrigé

(a)

εkA = 〈φkA|H|φkA〉 = 〈φkA|Hat + ∆V |φkA〉

=
1

NR

∑
R,R′

eik·(R
′−R)

∫
φ∗p(r−R)(Hat + ∆V )φp(r−R′)dr

=
∑
R

eik·R
∫
φ∗p(r)(Hat + ∆V )φp(r−R)dr.

Les intégrales
∫
φ∗p(r)∆V φp(r − R)dr sont nulles car on néglige le champ cristallin (cas

R = 0) et les intégrales de transfert entre sites non premiers voisins (cas R 6= 0). Il reste
à évaluer :

εkA =
∑
R

eik·R
∫
φ∗p(r)Hatφp(r−R)dr

= εp
∑
R

eik·R
∫
φ∗p(r)φp(r−R)dr

Les intégrales
∫
φ∗p(r)φp(r−R)dr sont nulles pour R 6= 0 car on néglige les recouvrements

entre les orbitales positionnées sur des sites différents. Pour le cas R = 0, la condition de
normalisation de l’orbitale φp donne

∫
φ∗p(r)φp(r)dr = 〈φp|φp〉 = 1. On en déduit εkA = εp.

Les sous-réseaux A et B étant équivalents, εkB = εkA = εp.

(b)

∆k = 〈φkA|H|φkB〉
= 〈φkA|Hat|φkB〉+ 〈φkA|∆V |φkB〉
= εp〈φkA|φkB〉+ 〈φkA|∆V |φkB〉
= 〈φkA|∆V |φkB〉

où on a utilisé l’absence de recouvrement enter les orbitales φkA et φkB (〈φkA|φkB〉 = 0). Il
reste à évaluer :

∆k = 〈φkA|∆V |φkB〉

=
1

NR

∑
R,R′

eik·(R
′+rAB−R)

∫
φ∗p(r−R)∆V φp(r−R′ − rAB)dr

=
∑
R

eik·(R+rAB)

∫
φ∗p(r)∆V φp(r−R− rAB)dr.

Dans l’approximation des premiers voisins, les intégrales de transfert
∫
φ∗p(r)∆V φp(r −

R− rAB)dr sont non-nulles uniquement entre les sites premiers voisins, c’est-à-dire quand
R+rAB = Ri+rAB = di où les vecteurs di sont les vecteurs séparant les premiers voisins.
Il reste donc trois termes non-nuls dans la somme :

∆k =
∑
di

eik·di

∫
φ∗p(r)∆V φp(r− di)dr = −γ

∑
di

eik·di ,

où on a utilisé la définition de γ.
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(c) Les vecteurs de premier voisin sont :

d1 = rAB = a

(
0,

1√
3

)
d2 = rAB − a2 = a

(
1

2
,− 1

2
√

3

)
d3 = rAB − a1 − a2 = a

(
−1

2
,− 1

2
√

3

)
On a donc :

∆k = −γ
∑
di

eik·di

= −γ
(
eikya/

√
3 + ei(kxa/2−kya/2

√
3) + ei(−kxa/2−kya/2

√
3)
)

= −γ
(
eikya/

√
3 + e−ikya/2

√
3(eikxa/2 + e−ikxa/2)

)
= −γ

(
eikya/

√
3 + 2e−ikya/2

√
3 cos(kxa/2)

)

(d) Les valeurs propres E(k) de la matrice hamiltonienne sont solutions de l’équation :∣∣∣∣εp − E(k) ∆k

∆k∗ εp − E(k)

∣∣∣∣ = 0, soit (εp − E(k))2 −∆k∆k∗ = 0.

On a donc :

εp − E(k) = ±|∆k| et E(k) = εp ± |∆k|.

La relation de dispersion est alors :

E(k) = εp ± γ
[(
eikya/

√
3 + 2e−ikya/2

√
3 cos(kxa/2)

)
∗(

e−ikya/
√
3 + 2eikya/2

√
3 cos(kxa/2)

)]1/2
= εp ± γ

(
1 + 2(eikya

√
3/2 + e−ikya

√
3/2) cos(kxa/2) + 4 cos2(kxa/2)

)1/2
= εp ± γ

(
1 + 4 cos(kya

√
3/2) cos(kxa/2) + 4 cos2(kxa/2)

)1/2

(e) Les points Γ, M et K ont respectivement pour coordonnées (0, 0), 2π
a (12 ,

1
2
√
3
) et 2π

a (23 , 0).

On trouve :

E(Γ) = εp ± 3γ

E(M) = εp ± γ

E(K) = εp

On voit ainsi que les deux bandes d’énergie sont dégénérées au point K.

La figure à gauche à la page suivante montre le résultat du calcul dans les directions ΓMKΓ.
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M KΓ Γ 

εp 

εp -  γ

εp +  γ

εp -  3γ

εp +  3γ

EF 

(f) Si le cristal comporte N mailles, il y a N valeurs k possibles dans la PZB et 2N états en
comptant les deux valeurs de spin différentes. Dans les deux bandes d’énergie qui dérivent
des orbitales pz il y a 4N états électroniques disponibles. Chaque atome du graphène
possède un électron dans l’orbitale pz et il y a deux atomes dans la maille primitive. Il y a
donc 2N électrons décrits par la méthode des liaisons fortes appliquée aux orbitales pz. On
en déduit que le niveau ou énergie de Fermi se trouve au milieu des deux bandes : EF = εp.

(g) On voit que la bande occupée s’étend de E ≈ −9 eV à 0 eV. On en déduit que γ ' 3 eV.

Notes sur les bandes π. La figure à droite montre les bandes π et π∗ dans une representa-
tion tridimensionnelle (figure adaptée de https://en.wikipedia.org/wiki/Electronic properties
of graphene). On voit que les bandes forment 6 cones aux points de type K de la première zone
de Brillouin. La surface de Fermi est constituée par les 6 points (appelés Dirac points) où les
bandes sont dégénérées.

Si le graphène est en contact avec la surface d’un metal, un transfert d’électrons peut avoir lieu
(du métal au graphène ou vice-versa) ; ceci va “doper” le graphène, et le niveau (ou énergie) de
Fermi EF ne coincide plus avec l’énergie ED des points de Dirac. Si on regarde de près, cet effet
est visible dans les données expérimentales de la figure de l’énoncé.

La relation E(k) à proximité de EF est linéaire et à peu près isotrope lorsque on se situe sur un
des points K et si on reste suffisamment proche de EF .

Note sur les orbitales et l’hybridation (figure ci-dessous, adaptée de https://en.wikipedia.org/
wiki/Graphene). Les orbitales 2s, 2px et 2py de chaque C s’hybrident en sp2 et forment les
orbitales (et les liaisons) σ, dans le plan. Les orbitales pz, perpendiculaires au plan, s’hybrident
et forment les orbitales (et les liaisons) π. (On parle de liaison de type σ lorsque la liaison se fait
entre orbitales selon leur axe, et de type π lorsque la la liaison se fait latéralement par rapport
à l’axe.) A droite, les orbitales pz ont été indiquées seulement sur un atome et ses plus proches
voisins.
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