ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Exercices de Physique du Solide Prof. H. Brune

Méthode des liaisons fortes : bandes 7 du graphéne

Le graphene est un systeme bidimensionnel composé d’atomes de carbone arrangés dans une
structure a nid d’abeille. La maille primitive du graphéne (parametre de maille a) comporte
deux atomes de carbone (voir schéma ci-dessous) que nous noterons A et B. Pour le réseau de
Bravais, nous utiliserons les vecteurs primitifs suivants : a; = a(1,0) et ag = a(—1/2, V3/2), olt
a=2.46 A.

Le réseau du grapheéne peut se décomposer en deux sous-réseaux A et B formés a partir des
atomes A et B de la maille élémentaire. Les sites de types A (noirs) sont situés en r = njaj+noag,
et les sites de types B (blancs) en r = njay + ngas +rap, ot rap = a(0,1/v/3).

Note : I’ensemble des sites de type A constitue un réseau de Bravais, comme 1’ensemble des sites
de type B, alors que le réseau en nid d’abeille n’est pas un réseau de Bravais.

FIGURE 1 — Réseau et premiere zone de Brillouin du graphene

Parmi les quatre (2s22p?) électrons de valence de chaque atome de carbone, trois participent &
des liaisons dans le plan. Nous considérerons seulement le quatrieme électron qui se trouve dans
une orbitale de type p.. La fonction d’onde associée a cette orbitale est notée ¢,(r). Elle est telle
que :

Hat|pp) = €p|op) avec  (¢p|dp) =1

La méthode des liaisons fortes consiste a décomposer la fonction d’onde a un électron sur une
base de fonctions d’onde atomiques. Ici nous séparons donc la structure entre les deux sous-
réseaux A et B et nous introduisons la base orthonormée formée a partir des fonctions de Bloch
((;51151, (blg,) localisées sur chaque sous-réseau :

i) = 7z T T —R)

PE(r) = 4= z e BRiran)g (v —ryp — R)

ol R est un vecteur du réseau de Bravais et Ny est le nombre de mailles. gblj‘ et gblfg sont norma-
lisées ((¢K%]0%) = (#%|0%) = 1) et on néglige les recouvrements entre les orbitales positionnées
sur des sites différents, ce qui implique (g% |¢k) = 0.



Dans cette base :

— une fonction d’onde de Bloch & un électron s’écrit : %(r) = k¢ (r) + b¥¢%(r) et peut
étre représentée par le vecteur :

k
wk = <Zk> )

— T’hamiltonien est représenté par une matrice de la forme :
(G5IH|) (ok[H|el) i AF
HK — -
(o5lH|OY) (olH|OY)] [A%
ou H = Hat + AV,

— T’équation de Schrodinger HXy¥ = E(k)y* se réduit & 'équation aux valeurs propres :

% 55 () =2 ()

Pour trouver la relation de dispersion E(k), on cherche & résoudre cette équation dans ’approxi-
mation des premiers voisins avec les conditions suivantes :

1. On considere que I'intégrale de transfert v(r) = [ ¢5(r')AV¢,(r' — r)dr’ définie entre deux
sites distants de r est non-nulle uniquement entre les sites A et B plus proches (premiers)
voisins. Pour deux sites A et B premiers voisins, on pose y(r) = —v.

2. On néglige le terme de champ cristallin : (¢,|AV|¢p,) = 0.

3. On néglige les termes de recouvrement entre orbitales p positionnées sur des sites différents :
J #5(r)dp(r — x)dr = 0 pour x # 0.

(a) Montrer que :
ek =ef =¢,
Indication : remarquer que
D ek ®R) / ¢r(r = R)Hgp(r — R')dr = Ng ) &R / @5 (r)Hep(r — R)dr
R,R’ R

et que la plupart des termes de la somme s’annulent quand on applique les conditions
données précédemment sur les intégrales de recouvrement et de transfert.

(b) Montrer que :
AK — _ Z,yeikdi’
d;

ou les vecteurs d; correspondent aux trois vecteurs liant le site A de la maille primitive a
ses trois premiers voisins de type B.

Indication : remarquer que les trois premiers voisins du site A appartiennent a des mailles
différentes et sont séparés du site A par les trois vecteurs d; = rap + R; (i = 1,3), ou

R; =0, Ry = —as et R3 = —a; — as. Dans 'approximation des premiers voisins, les
intégrales de transfert sont non-nulles uniquement entre les sites séparés par I'un de ces 3
vecteurs.

(c) Calculer les trois vecteurs d;. En déduire que :

.kya . kya
AK = — <el§5 + 26_22%/5 cos k;a) .



(d) Trouver les valeurs propres de la matrice H k et montrer que :

ky ky k
Ek) =¢, :E’Y\/l + 4 cos? Ta +4cosTacos ya2\/§.

(e) Calculer Iénergie aux points I', M et K de la PZB, ou I' = (0,0), M= 2Z(4, ﬁg) et
K= 2{(%,0) En supposant que la variation de l’énergie avec k entre ces points est

monotone, tracer qualitativement E en fonction de k le long du chemin 'MKT".

(f) Pour modéliser ce systeme, nous considerons les conditions aux limites de Born von
Karman. Donner le nombre de vecteurs k possibles dans la PZB. En déduire la position
du niveau de Fermi par rapport a e, a T' = 0.

(g) D’apres la mesure par photoemission
de la relation de dispersion F(k) mon-
trée a la figure ci-contre, estimer la va-
leur de 7. [A. Bostwick et al., Nature
Physics 3, 36 (2007)]
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Corrigé

(a)

e = (¢A|H|¢A> (8| Hap + AV|K)

_ LN k@R /¢ r— R)(Ha + AV)o,(r — R')dr
RR’

= ZeZkR/gbp Hyi + AV)¢,(r — R)dr.

Les intégrales [ ¢5(r) AV ¢,(r — R)dr sont nulles car on néglige le champ cristallin (cas
=0) et les mtegrales de transfert entre sites non premiers voisins (cas R # 0). Il reste
é évaluer :

- sz/¢ Hat¢p(r — R)dr

=&, Z ek R / @5 (r)dp(r — R)dr
R

Les intégrales [ QS* r)¢,(r — R)dr sont nulles pour R # 0 car on néglige les recouvrements
entre les orbltales positionnées sur des sites différents. Pour le cas R = 0, la condition de
normalisation de lorbitale ¢, donne [ ¢ (r)dp(r)dr = (¢pldp) = 1. On en déduit e¥ = ¢,

Les sous-réseaux A et B étant équivalents, 61]‘3 = 512 = &p.

= (¢k|H|o)
= (¢S Hasl@'s) + (#5]AV65)
= ep(¢510%) + (P5I1AV]gE)
= (¢K]1AV|gls)

ol on a utilisé 'absence de recouvrement enter les orbitales ¢¥ et ¢k ((¢X|¢%) = 0). 11
reste a évaluer :

= (pK|AV|¢f)

1 zk R'4+rap—R)
= M Rz;{, ABT /qbp R)AV¢y(r — R’ —rap)dr

_ Z ok (Rtran) /¢;(r)Av¢p(r —R —ryp)dr.
R

Dans lapproximation des premiers voisins, les intégrales de transfert | ¢y (r) AV dp(r —
R — r4p)dr sont non-nulles uniquement entre les sites premiers voisins, c¢’est-a-dire quand
R+rap = R;+rap = d; ol les vecteurs d; sont les vecteurs séparant les premiers voisins.
Il reste donc trois termes non-nuls dans la somme :

k _ Z pikedi /gzb;;(r)AVd)p(r —d;)dr = — Z eheds
d; "

ol on a utilisé la définition de ~.



(c) Les vecteurs de premier voisin sont :

1
di=rap=al0,—
PR ( \/§>

dy=ragp—ax=a o1
e=rap-az=al g, 53

1 1
d; = — — = S
3 rAB ai an (I< 2, 2\/§>

On a donc :

Ak = 4§ gikeds
T

= (eikya/\/ﬁ | gilksa/2—kya/2v3) | ei(—kxa/2—kya/2\/§)>
— 5 (eikya/\/ﬁ + e—ikya/Q\/g(eikza/Q X e—ikza/2)>
= — (6

v (ehv/V3 4 ge=ikya/2V3 cos(kxa/2)>

(d) Les valeurs propres E(k) de la matrice hamiltonienne sont solutions de I’équation :

ey — E(k) Ak
Ak* ep — E(k)

‘ =0, soit (g, — E(k))* — AkAk* = .
On a donc :
e, — B(k) = £|AK] et E(k) =¢, + |AK].
La relation de dispersion est alors :
Ek)=¢p£ty [(eiky“/‘/g + 2¢ha/2V3 cos(k‘xa/2)> *
(e—ikya/\/g 1 9eihya/2v3 Cos(kma/z)ﬂ 1/2
=¢ep (1 + 2(6"]”“?/‘“/5/2 + eiikya‘/g/z) cos(kga/2) +4 cosz(kgca/Q)) i

=gt (1 + 4 cos(kyav/3/2) cos(kya/2) + 4cos2(kxa/2)) i

(e) Les points I', M et K ont respectivement pour coordonnées (0, 0), Qf(%, ﬁ) et Qf(%, 0)
On trouve :
EI)=¢,+3y
EM) =¢,+7
EK)=¢,

On voit ainsi que les deux bandes d’énergie sont dégénérées au point K.

La figure a gauche a la page suivante montre le résultat du calcul dans les directions 'MKI'.
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(f) Si le cristal comporte N mailles, il y a N valeurs k possibles dans la PZB et 2N états en
comptant les deux valeurs de spin différentes. Dans les deux bandes d’énergie qui dérivent
des orbitales p, il y a 4N états électroniques disponibles. Chaque atome du graphene
possede un électron dans 'orbitale p, et il y a deux atomes dans la maille primitive. Il y a
donc 2N électrons décrits par la méthode des liaisons fortes appliquée aux orbitales p,. On
en déduit que le niveau ou énergie de Fermi se trouve au milieu des deux bandes : Er = ¢).

(g) On voit que la bande occupée s’étend de E' ~ —9eV a 0eV. On en déduit que v ~ 3eV.

Notes sur les bandes 7. La figure a droite montre les bandes 7 et 7" dans une representa-
tion tridimensionnelle (figure adaptée de https://en.wikipedia.org/wiki/Electronic_properties_
of_graphene). On voit que les bandes forment 6 cones aux points de type K de la premiere zone
de Brillouin. La surface de Fermi est constituée par les 6 points (appelés Dirac points) ou les
bandes sont dégénérées.

Si le graphéne est en contact avec la surface d’un metal, un transfert d’électrons peut avoir lieu
(du métal au graphéne ou vice-versa) ; ceci va “doper” le graphene, et le niveau (ou énergie) de
Fermi E'r ne coincide plus avec I’énergie Ep des points de Dirac. Si on regarde de pres, cet effet
est visible dans les données expérimentales de la figure de I’énoncé.

La relation F(k) a proximité de Er est linéaire et & peu pres isotrope lorsque on se situe sur un
des points K et si on reste suffisamment proche de Ep.

Note sur les orbitales et I’hybridation (figure ci-dessous, adaptée de https://en.wikipedia.org/
wiki/Graphene). Les orbitales 2s, 2p, et 2p, de chaque C s’hybrident en sp? et forment les
orbitales (et les liaisons) o, dans le plan. Les orbitales p,, perpendiculaires au plan, s’hybrident
et forment les orbitales (et les liaisons) 7. (On parle de liaison de type o lorsque la liaison se fait
entre orbitales selon leur axe, et de type 7 lorsque la la liaison se fait latéralement par rapport
a l'axe.) A droite, les orbitales p, ont été indiquées seulement sur un atome et ses plus proches
voisins.
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