
Physique du Solide II Examen 25.06.2024 Prof. H. Brune

Sujet 1

Questions de compréhension (tot 17 pts)

(a) Electrons libres et potentiel chimique (2 pts)
Dans un gaz tridimensionnel d’électrons libres, la densité d’états g(E) ∝

√
E. Expliquer

pourquoi le potentiel chimique µ doit varier en passant de T = 0 à T > 0. Décrire
qualitativement µ(T ) et en donner l’expression générale.

(b) Résistivité des métaux (1 pt )
Tracer la résistivité ρ d’un métal en fonction de la température, discuter les différents
régimes et les processus de diffusion que subissent les électrons.

(c) Hamiltonien dans l’approximation des liaisons fortes (2 pts)
On décrit l’Hamiltonien dans le modèle de liaisons fortes par la somme de l’Hamiltonien
de l’atome et un potentiel ∆U , qui est la différence entre le potentiel de l’atome et celui
ressenti par les électrons dans le solide. Tracer ∆U(r) le long d’une ligne droite passant
par les sites atomiques et discuter cette courbe.

(d) Intégrales dans l’approximation des liaisons fortes (2 pts)
Expliquer la signification des trois intégrales α, β et γ, et expliquer pourquoi en général
on peut négliger α et β.

(e) Masse effective (1 pt )
Donner l’expression de la masse effective. Expliquer sa signification et son utilité.

(f) Potentiel chimique d’un semiconducteur intrinsèque (2 pts)
A l’aide d’un schéma, expliquer la dépendance du potentiel chimique µ en fonction de la
température pour un semiconducteur intrinsèque.

(g) Densité de porteurs et conductivité d’un semiconducteur dopé (3 pts)
Tracer dans un plot Arrhenius (ln vs 1/T ) la densité de porteurs de charge n dans la
bande de conduction en fonction de la température. Indiquer les régimes intrinsèque et
extrinsèque.

Tracer la conductibilité électrique du même semiconducteur dans un plot Arrhenius
et indiquer les deux régimes dominés par la densité de porteurs n et le régime où les
interactions électron-phonon limitent la conduction. Justifier les réponses.

(h) Supraconductivité et chaleur spécifique (2 pts)
Tracer la chaleur spécifique d’un supraconducteur en fonction de la température dans
un diagramme cv/T vs T 2, pour le matériau dans l’état supra et dans l’état normal.
Comment peut-on conclure d’un tel diagramme qu’un supra forme un état électronique
avec une bande d’énergie interdite (gap) ?

(i) Supraconductivité et phonons (1 pt )
Quelle expérience prouve que les vibrations du réseau sont impliquées dans la supracon-
ductivité ? Expliquer brièvement pourquoi.

(j) Paires de Cooper (1 pt )
Dans un métal dans l’état supraconducteur, quels sont les électrons qui forment des paires
de Cooper ?
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Sujet 2

Problème : Susceptibilité paramagnétique de Pauli (7 pts)

Considérer un gaz bidimensionnel d’électrons libres dans le plan xy, à température T = 0 K. La
densité du gaz est n et la densité d’états est g(E).

(a) Représenter graphiquement la densité d’états des électrons de spin-up g+(E) et la
densité d’états des électrons de spin-down g−(E) en présence d’un champ magnétique
B = (0, 0, B) avec B > 0.

(b) Exprimer n+ et n−, c’est-à-dire la densité d’électrons de spin-up et d’électrons spin-down,
en présence de B, ainsi que la différence (n+ − n−).

(c) La susceptibilité paramagnétique de Pauli est donnée par χPauli ≈ µ0
Mz

B
, où Mz est l’ai-

mantation du gaz électronique en présence de B.

Trouver l’expression de χPauli pour le gaz bidimensionnel d’électrons en fonction de n et
de la température de Fermi TF.

(d) Commenter le résultat obtenu pour χPauli. En quoi diffère-t-il du cas d’un gaz tridimen-
sionnel ?

Sujet 3

Problème : Electrons dans un potentiel périodique faible

Ce problème est séparé en 3 parties (presque) indépendantes

On considère un gaz d’électrons libres dans un réseau bidimensionnel rectangulaire décrit par
des vecteurs primitifs a1 = a(1, 0) et a2 = 2a(0, 1).

Partie 1 : Electrons libres, approximation du réseau vide (8 pts)

(a) Déterminer les vecteurs primitifs du réseau réciproque b1 et b2.

Dessiner la première zone de Brillouin (1ZB). Identifier les points de haute symétrie
suivants : Γ = (0, 0), A = (0, π2a), B = (πa ,

π
2a), C = (πa , 0).

(b) Dessiner les plans de Bragg pertinents pour déterminer la dégénérescence des niveaux
d’énergie pour les électrons libres aux points A, B et C, et donner la dégénérescence.

(c) Les valeurs de l’énergie E0
k−Gi

, avec k = (kx, ky) ∈ 1ZB, dans les points Γ, A, B et C,

sont données dans le tableau ci-dessous, pour les vecteurs G0 = (0, 0) et G3 = (2πa ,
π
a ).

Les énergies sont données en unités de ~2
2m(πa )2.

Γ A B C

G0 0 0.25 1.25 1

G3 5 4.25 1.25 2

Calculer les valeurs E0
k−Gi

dans les points Γ, A, B et C pour les vecteurs G1 = (0, πa ) et

G2 = (2πa , 0).

(d) Représenter toutes les valeurs E0
k−Gi

en unités de ~2
2m(πa )2, et dessiner la structure de

bande le long du chemin ΓABCΓ (distances entre les points de la 1ZB en unités de π
a ).
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Partie 2 : Effet d’un potentiel périodique faible, électrons quasi-libres (6 pts)

(e) On considère le même gaz d’électrons en présence d’un potentiel périodique faible :

U(y) = −2V0 cos(
π

a
y)

Déterminer les vecteurs du réseau réciproque G pour lesquels les coefficients de Fourier
UG sont non-nuls.

(f) Démontrer que la dégénérescence des niveaux électroniques de plus basse énergie est levée
au point A, et que la largeur du gap est 2V0.

(g) Au total, la structure de bande E(k) est modifiée par la présence du potentiel U(y) de la
façon suivante :

• en A, ouverture d’un gap de largeur 2V0 ;

• en B, ouverture d’un gap de largeur 2V0, avec bandes dégénérées à deux à deux ;

• en C, pas d’ouverture de gap.

Représenter qualitativement la structure de bande pour les électrons quasi-libres. Consi-
dérer uniquement les parties des bandes ayant une énergie E(k) < 2 ~2

2m(πa )2.

Partie 3 : Surfaces de Fermi (8 pts)

(h) On considère le cas où il y a deux électrons par maille. Calculer le vecteur d’onde de Fermi
kF et l’énergie de Fermi EF dans le cas des électrons libres. Reporter EF dans la structure
de bande du point (c).

Valeurs numériques utiles pour répondre à cette question et aux deux questions suivantes :
2/π ≈ 0.65,

√
2/π ≈ 0.8.

(i) Reporter EF aussi dans la structure de bande en présence du potentiel, trouvée au point
(f). Est-ce qu’en augmentant suffisamment V0 le système pourrait devenir isolant ?

(j) Représenter la surface de Fermi dans le cas des électrons libres et, qualitativement, dans
le cas des électrons quasi-libres.

(k) On considère le cas des électrons quasi-libres. On applique un champ magnétique B per-
pendiculaire au plan xy (sortant de la feuille). Identifier les types d’orbites et indiquer le
sens de parcours. Si besoin, utiliser un schéma de zones répétées.

Si l’on effectue une expérience de type de Haas - van Alphen, combien de périodicités
différentes va-t-on observer dans le signal en fonction de 1/B ?
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Sujet 4

Problème : Jonction p− n (14 pts)

Considérer un semiconducteur non dégénéré, c’est-à-dire tel que Ec−µ� kBT et que µ−Ev �
kBT . Dans ces conditions, les relations suivantes sont valables, avec β = (kBT )−1 :

• densité d’électrons dans la bande de conduction n = N(T ) exp[−β(Ec − µ)]

• densité de trous dans la bande de valence p = P (T ) exp[−β(µ− Ev)]

• loi d’action de masse : np = N(T )P (T ) exp[−β(Ec − Ev)] = n2i

N(T ) et P (T ) sont les densités maximales de porteurs (électrons et trous, respectivement) en
fonction de T , et ni est la densité de porteurs intrinsèques.

(a) On considère deux pièces séparées de ce matériau semiconducteur. L’une est dopée p, avec
Na accepteurs uniquement, l’autre est dopée n, avec Nd donneurs uniquement. On suppose
que toutes les impuretés sont ionisées.

Exprimer la densité d’électrons np et de trous pp dans le semiconducteur dopé p en
fonction de Na et de ni, ainsi que la densité d’électrons nn et de trous pn dans le
semiconducteur dopé n en fonction de Nd et de ni.

(b) Faire un schéma représentant les énergies de la bande de conduction (Ec,p) et de valence
(Ev,p) ainsi que le potentiel chimique µ dans le semiconducteur dopé p.

Faire un schéma représentant les énergies de la bande de conduction (Ec,n) et de valence
(Ev,n) ainsi que le potentiel chimique µ dans le semiconducteur dopé n.

Il n’est pas nécessaire de représenter les niveaux d’impuretés Ed et Ea.

(c) Les pièces p et n sont mises en contact. Un potentiel électrostatique de contact ∆φ entre
les deux côtés du système apparâıt. Esquisser le schéma d’énergie à l’équilibre. Quelle est
la condition sur le potentiel chimique µ ? Quelle est l’expression de e∆φ en termes de Ec,p
et Ec,n ?

(d) Trouver les expressions pour la densité d’électrons nn (porteurs majoritaires du côté n) et
np (porteurs minoritaires du côté p) en fonction de la température T .

A partir des deux expressions, expliciter µ, et en déduire l’expression pour e∆φ en termes
de Na, Nd, ni.
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Sujet 1 - corrigé (tot 17 pts)

(a) (2 pts) n, la densité d’électrons par unité de volume, doit rester constante (car on suppose
que le solide ne se dilate pas). n est donné par l’aire sous la courbe g(E)f(E, T ), avec
f(E, T ) la fonction de Fermi-Dirac. Comme g(E) est une fonction croissante, et la fonction
de FD est symétrique autour de µ, µ diminue en augmentant T pour garantir qu’il y
a autant d’états qui se vident par excitation thermique que d’états qui se remplissent
par cette excitation. Avec le développement de Sommerfeld on trouve µ = EF−const T 2 dg

dE .

(b) (1 pt) ρ est constante à très basse
T et monte ensuite linéairement avec
T . La partie constante vient des col-
lisions électrons - impuretés. La par-
tie linéaire en T vient des collisions
électrons - phonons car le nombre de
phonons d’une énergie donnée est pro-
portionnelle à T pour cette gamme de
température (typiquement RT).

ρ 

T
(c) (2 pts) En R = 0, ∆U(r) est nul

puisque le potentiel atomique Uat(r)
décrit bien le potentiel ressenti par les
électrons au voisinage de ce site.
Ailleurs, le potentiel est négatif parce
que attractif partout.
Aux positions des atomes, le potentiel
est fortement attractif (= Uat).
Entre les sites atomiques ∆U prend
la valeur maximale de U (Uat = 0)
(potentiel atomique qui décroit très
rapidement parce que ecranté).

0

0
sites atomes

(d) (2 pts) α(R) intégrale de recouvrement ; dépend de l’extension des orbitales atomiques.
Apparait au dénominateur de l’expression pour E(k) comme facteur de normalisation. Ne
modifie pas qualitativement le résultat pour E(k), donc en général négligeable.

β intégrale de champ cristallin, décrit l’effet du potentiel des autres atomes au site de
l’atome considéré. Donne un petit décalage (offset) en énergie de toute la bande par rapport
à l’énergie atomique E0 ; par conséquent on peut la négliger dans la détermination de E(k).

γ(R) intégrale de transfert, en principe pour chaque R, en pratique on se limite au
premiers voire aux deuxièmes voisins. C’est l’intégrale qui décrit le passage (transfert,
hopping) d’un électron d’un site à un autre. C’est le terme qui donne la dependence en k
et qui décrit la création de la bande. La largeur de la bande est proportionnelle à γ.

(e) (1 pt) Dans un cas isotrope, ou cas 1D, 1/m∗ = ∂2E(k)
∂k2

/~2. Inversement liée à la
courbure de bande. La masse effective tient compte de l’effet du potentiel périodique
sur le mouvement des électrons. Ainsi, on peut utiliser des équations du mouvement
qui ont la même forme que celles pour les électrons libres. Description de la dynamique
pour les états proches des minima ou maxima des bandes ; description des bandes
presque remplies par le concept de trou : on aurait des électrons avec masse effective néga-
tive, on les décrit comme des particules chargées positivement avec masse effective positive.

5



(f) (2 pts) Le potentiel chimique est donné
par µi = Ev + 1

2Eg + 3
4kBT ln(mv

mc
). A

température nulle le potentiel chimique est
au milieu du gap pour garantir qu’il y a
autant d’états qui se vident par excitation
thermique que d’états qui se remplissent
par cette excitation dès que la température
s’écarte de zéro (conservation n). Ensuite,
selon le rapport entre mv et mc (et donc
selon le rapport entre gv(E) et gc(E)), µ
va augmenter ou diminuer. En général, le
rapport des masses est tel que µ augmente.

(g) (3 pts) A gauche, figure pour n : on voit la droite qui correspond au régime dominé par le
comportement intrinsèque (haute T , intrinsèque), ensuite on voit un régime où n = const,
donc tous les dopants sont ionisés (T intermédiaire, extrinsèque), ensuite seulement une
partie est ionisée (plus basse T , extrinsèque ionisation).

A droite : pour σ la courbe suit celle de n à basses T et à hautes T , donc la
conductivité est dominée par la densité de porteurs n. A T intermédiaire, là où n
est constante, la conductivité est limitée par la mobilité ν qui à son tour est affectée
par τ et donc par l’interaction entre electrons et phonons. En augmentant la tempéra-
ture dans ce régime la conductivité diminue, il n’y a pas de régime constant pour σ.

T1

lnn

T1

intrinsèque 

extrinsèque

limité par n 

limité par n
et/ou impuretés  

limité par ν 
extrinsèque
ionization

(h) (2 pts) On trace cv/T vs T 2. Pour le métal
dans l’état normal on trouve une droite, son
extrapolation à T = 0 donne le coefficient
de la contribution électronique à la chaleur
spécifique. Dans un métal normal on peut faire
des excitation d’énergie arbitrairement petite
juste en dessus de EF. Dans le supra, cv diminue
(exponentiellement) et tombe à zéro, ce qui
indique la présence d’un gap qui empêche les
excitations d’énergie arbitrairement petites à
très basse température. cv ∝ (−∆/kBT ).

c/T

T 2Tc
2

état normal

état supra

(i) (1 pt) Il s’agit de l’effet isotopique sur la température critique Tc. En changeant la masse
des atomes, la fréquence propre des vibrations du réseau change et donc aussi l’énergie
des phonons. En effet, on trouve que Tc ∝M−1/2.

(j) (1 pt) Seulement les électrons de conduction proches de EF (à des énergies de l’ordre de
kBTc, donc une petite fraction de n).
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Sujet 2 - corrigé (tot 7 pts)

(a) (2 pts) En l’absence de champ magnétique :

g+(E) = g−(E) =
1

2
g(E)

Comme la densité d’états est constante, g(E) =
g(EF).
L’interaction du moment magnétique de spin
avec le champ B résulte en une différence d’éner-
gie entre électrons spin-up et spin-down. Comme
le moment magnétique est par définition opposé
au spin, ces sont les électrons avec spin-down qui
vont gagner de l’énergie dans l’interaction avec
le champ magnétique.
(Dans la figure, la position du zéro de l’énergie
n’est pas importante.)

(b) (2 pts) Grâce à la forme simple de g(E) et puisque on est à T = 0, on peut calculer les
intégrales pour obtenir n+ et n− comme aires des rectangles. Calcul de n+ et n− :

n+ =
1

2
g(EF)(EF − µBB)

n− =
1

2
g(EF)(EF + µBB)

Pour la différence on a :

n+ − n− = −g(EF)µBB

(c) (2 pts) Pour B = (0, 0, B), l’aimantation Mz est donnée par Mz = −µB(n+ − n−).

Calcul de la susceptibilité :

χPauli = µ0
Mz

B
= −µ0µB

n+ − n−
B

= µ0µ
2
B g(EF) = µ0µ

2
B

n

EF
= µ0n

µ2B
kBTF

où on a utilisé le fait que g(EF)EF = n.

(d) (1 pt) Comme dans le cas 3D, la susceptibilité ne depend pas de T . On trouve une
même dépendance en n et en 1/TF. Seulement la constante numérique multiplicative est
différente, avec la susceptibilité du gaz 2D inférieure à celle du gaz 3D.
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Sujet 3 - corrigé (tot 22 pts)

(a) (2 pts) Les vecteurs primitifs du réseau réciproque sont donnés par ai · bj = 2πδij .

On obtient b1 = 2π
a (1, 0) et b2 = π

a (0, 1).

(b) (2 pts) Les points A et C sont traversés par un plan de Bragg chacun, donc il y a deux
états dégénérés dans chaque point.

Le point B est traversé par trois plans de Bragg, donc il y a quatre états dégénérés.

(c) (2 pts) Tableau des valeurs de E0
k−Gi

en unités de ~2
2m(πa )2 :

Γ = (0, 0) A= (0, π2a) B= (πa ,
π
2a) C= (πa , 0)

G0 : k2x + k2y 0 + 0 = 0 0 + 1/4 = 0.25 1 + 1/4 = 1.25 1 + 0 = 1

G1 : k2x + (ky − π
a )2 0 + 1 = 1 0 + 1/4 = 0.25 1 + 1/4 = 1.25 1 + 1 = 2

G2 : (kx − 2π
a )2 + k2y 4 + 0 = 4 4 + 1/4 = 4.25 1 + 1/4 = 1.25 1 + 0 = 1

G3 : (kx − 2π
a )2 + (ky − π

a )2 4 + 1 = 5 4 + 1/4 = 4.25 1 + 1/4 =1.25 1 + 1 = 2

(d) (2 pts) Figure

5

4

3

2

1

0 G0

G0

G0

G0

G0

G1

G1

G1

G1
G1

G2

G2

G2

G2

G2G3

G3

G3

G3

G3
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(e) (2 pts) Par la forme du potentiel : le potentiel est un cosinus selon y. Les composantes
non-nulles sont les UG avec G = (0,±π

a ).

Par identification. Le développement du potentiel en série de Fourier, avec G = (Gx, Gy) :

U(x, y) =
∑
G

UG exp(i(Gxx+Gyy)) =
∑
G

UG exp(iGxx) exp(iGyy)

U(y) = −2V0 cos(
π

a
y)

= −V0(exp(i
π

a
y) + exp(−iπ

a
y)) = −V0(exp(i0x) exp(i

π

a
y) + exp(i0x) exp(−iπ

a
y))

UG = −V0 pour G = (0,±π
a

)

UG = 0 pour les autres G

(f) (2 pts) Au point A, avec G0 = (0, 0), G1 = (0, πa ) :

Le système d’équations linéaires pour les deux coefficients ak−G0 = ak et ak−G1 est :

(E0
k − E)ak + UG1ak−G1 = 0

(E0
k−G1

− E)ak−G1 + U−G1ak = 0

On vérifie que UG1 = U−G1 = −V0. Le potentiel a un effet au point A, la dégénérescence
sera levée.

Pour calculer le gap on impose que le déterminant du système d’équations s’annule :

(E0
k − E)2 − V 2

0 = 0

E±(k) = E0
k ± V0 =

~2k2

2m
± V0

Le gap vaut 2V0.

(g) (2 pts) Figure

2

1

0 G0

G0

G0

G0

G0

G1

G1

G1

G1
G1

G2

G2

G2

G3

G3

G3

(h) (2 pts) La définition de kF, adaptée au cas bidimensionnel

πk2F
A

4π2
=
N

2
· Z

où A est l’aire (volume en 2D) du système, N est le nombre d’atomes (et de mailles puisque
on a considéré un atome par maille) et Z est la valence.
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Ici : A = 2a2 ·N , et on a deux électrons par maille (Z = 2) :

k2F =
1

π

4π2

A

2N

2
= 4π2

1

2a2
=

2π

a2
→ kF =

√
2π

a

On peut aussi faire le raisonnement suivant : chaque ZB peut contenir 2N électrons, donc
si l’on a 2 électrons par maille le volume (aire) de la sphère de Fermi doit être égale au
volume (aire) d’une ZB :

πk2F =
2π

a

π

a
→ kF =

√
2π

a
=

√
2

π

π

a

Pour l’énergie de Fermi on trouve

EF =
~2k2F
2m

=
~2

2m

2π

a2
=

~2

2m

(π
a

)2 2

π

Reporter EF dans structure de bande des électrons libres.

(i) (2 pts) Reporter EF dans structure de bande en présence du potentiel (électrons quasi-
libres).

Puisque il n’y a pas d’ouverture de gap au point C, le système restera toujours conducteur,
même si V0 augmente.

(j) (2 pts) Figures surfaces de Fermi, schéma de zones étendues. Les surfaces de Fermi sont
la circonférence pour le cas des électrons libres et les courbes modifiées en bord de zone
pour les cas des électrons quasi-libres (surface perpendiculaire au bord de la zone). (Pas
nécessaire de dessiner les deuxièmes zones.)

(k) (2 pts) Il y a une orbite ouverte et une orbite de type électron. Le sens de parcours est
indiqué sur la figure (le gradient de l’énergie pointe des états occupés vers les états vides,
le sens de parcours donné par ~ k̇ = −e v ×B = −e 1

~∇kE ×B). Des dessins équivalents
sont acceptés.

Dans ce système 2D, l’orbite à la surface de Fermi correspond automatiquement à une
orbite extrême. Il y a une seule orbite fermée, donc dans le signal il y aura une seule
périodicité (une seule fréquence).

B
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Sujet 4 - corrigé (tot 14 pts)

(a) (4 pts) Dans la région p, toutes les impuretés accepteur sont ionisées et Nd = 0. Donc :

pp = Na et np =
n2i
Na

car nppp = n2i

Dans la région n, toutes les impuretés donneur sont ionisées et Na = 0. On trouve :

nn = Nd et pn =
n2i
Nd

car nnpn = n2i

(b) (2 pts) Diagramme des bandes d’énergie pour les semiconducteurs p et n :

(c) (3 pts) Le potentiel chimique doit s’aligner. e∆φ = Ec,p − Ec,n

+ +
+

- --

(d) (5 pts) A l’aide des équations données dans l’énoncé, on écrit d’abord la densité d’électrons
dans la région p :

np =
n2i
Na

= N(T ) exp[−β(Ec,p − µ)]

On en déduit le potentiel chimique :

− β(Ec,p − µ) = ln
n2i

NaN(T )
→ µ = Ec,p + kBT ln

n2i
NaN(T )

De façon équivalente, dans la région n, la densité d’électrons vaut :

nn = Nd = N(T ) exp[−β(Ec,n − µ)]

d’où :

− β(Ec,n − µ) = ln
Nd

N(T )
→ µ = Ec,n + kBT ln

Nd

N(T )

En combinant les deux équations pour µ, on trouve :

Ec,p − Ec,n = kBT

(
ln

Nd

N(T )
− ln

n2i
NaN(T )

)
= kBT ln

NaNd

n2i
= e∆φ
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