
Physique du Solide I Examen 29.01.2024 Prof. H. Brune

Sujet 1 - Réseaux, cristaux et liaisons

Question 1 (0.5 pt)
Considérez les réseaux cubique simple (sc) et cubique à faces centrées (fcc). Décrivez en
mots ou avec un dessin clair les cellules (ou mailles) conventionnelles respectives. Est-ce
qu’elles cöıncident avec les cellules primitives respectives ? Quel est le volume des cellules
primitives par rapport au volume des cellules conventionnelles respectives ?

Question 2 (0.5 pt)
Dans la liaison covalente, il n’y a pas de transfert de charge entre les atomes. Expliquez
l’origine de cette liaison. Prenez le diamant comme exemple. Quel est le nombre de coor-
dination (c.-à-d. le nombre de plus proches voisins) et quelles sont les orbitales formant
les liaisons ?

Problème (2 pts)
On considère un réseau de Bravais 2D rectangulaire avec un espacement entre les points
de a
√

2 selon l’axe x et de a selon l’axe y.

(a) Faites un dessin pour indiquer un plan d’un réseau cubique simple en 3D correspon-
dant à ce réseau 2D.

(b) Dessinez le réseau 2D, identifiez une cellule primitive ainsi que deux vecteurs primi-
tifs. Donnez l’expression des vecteurs primitifs.

(c) Donnez l’expression des vecteurs primitifs du réseau réciproque. Dessinez le réseau
réciproque et représentez les deux premières zones de Brillouin en traçant les plans
de Bragg pertinents.

Pour obtenir un cristal à partir de ce réseau 2D, nous devons y placer des atomes. On
choisit une base constituée d’un atome de césium (Cs) en (x = 0, y = 0) et d’un atome
de chlore (Cl) en (x = a/

√
2, y = a/2) dans une maille primitive. Le césium est un métal

alcalin (1ère colonne dans le tableau périodique) et le chlore un halogène (avant-dernière
colonne dans le tableau périodique).

(d) La liaison dans ce cristal CsCl est la liaison ionique. Expliquez ce que cela signifie
et donnez les différentes énergies impliquées dans le calcul de l’énergie de cohésion.

(e) Donnez les 3 premiers termes de la constante de Madelung pour ce cristal 2D en
partant d’un atome Cl.

(f) On appelle r+ et r− les rayons des ions Cs+ et Cl− dans le cristal 2D. Exprimez
les conditions sur r+, r− et a pour que les ions de signes opposés se touchent et en
tenant compte du fait qu’il ne peut y avoir de recouvrement entre ions de même
signe.

(g) Montrez que l’expression pour le taux de remplissage t2D pour ce cristal 2D en
fonction du rapport α = r−/r+ est :

t2D =
3π

4
√

2

1 + α2

(1 + α)2
. (1)
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Sujet 2 - Dynamique du réseau

Question 1 (0.5 pt)
Pour décrire les vibrations des atomes d’un solide, il suffit de se restreindre aux modes
propres correspondant à des vecteurs d’ondes dans la première zone de Brillouin. Démon-
trez pour une châıne 1D avec paramètre de maille a qu’un vecteur d’onde k′ν = kν + 2π/a
donne lieu au même déplacement des atomes que le vecteur d’onde kν dans la première
zone de Brillouin.

Question 2 (0.5 pt)
Pourquoi les valeurs k sont-elles discrètes ? Combien de ces valeurs k se trouvent dans la
première zone de Brillouin pour un réseau avec N atomes et a) un atome par maille, b)
deux atomes par maille ? Combien de modes propres existent en 3D pour les cas a) et
b) ?

Problème (2 pts)
On considère une châıne semi-infinie d’atomes équidistants de a et numérotés
0, 1, 2..., n, .... La masse de l’atome de surface (n = 0) est M2. Tous les autres atomes
de la châıne ont une masse égale à M1. Les atomes plus proches voisins sont reliés entre
eux par des ressorts de constante de rappel C.

(a) Ecrire les équations du mouvement de l’atome n = 0 et des autres (n ≥ 1).

En raison de la brisure de symétrie de translation, il peut exister des modes de vibration
localisés à la surface de la chaine, à proximité de n = 0. Dans la suite on se focalise sur le
mode acoustique de surface de fréquence maximale (c.-à-d. pour k = π/a), pour lequel le
déplacement des atomes peut être modélisé de la manière suivante :

u0(t) = Aeiωt (2)

un(t) = B(−1)n e−αna eiωt; n ≥ 1 (3)

avec les amplitudes A,B > 0. Le facteur e−αna, avec α > 0, décrit la décroissance expo-
nentielle de l’amplitude de ce mode lorsque on s’éloigne de la surface.

(b) Montrer que, pour ce mode

ω2 =
C

M1

(
eαa + e−αa + 2

)
. (4)

(c) En utilisant les expressions pour les déplacements et les équations du mouvement,
trouver le système d’équations suivant :

A
[
−ω2M2 + C

]
+B

[
Ce−αa

]
= 0 (5)

A[−Ceαa] +B
[
M1ω

2 − Ce−αa − 2C
]

= 0 (6)

A partir du système d’équations trouvé au point précédent, on peut montrer que α doit
être tel que (cette démonstration n’est pas demandée) :

eαa =
M1

M2

− 1 (7)
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et que la condition sur ω2 devient (cette démonstration n’est pas demandée) :

ω2 =
C

M2

M1

M1 −M2

(8)

(d) Sachant que e−αa < 1 (le mode est localisé à la surface), déduire si la fréquence
du phonon de surface est supérieure, inférieure ou égale à la fréquence maximale
(c.-à-d. la fréquence pour k = π/a) trouvée dans le cas où la châıne est infinie et où
tous les atomes ont la même masse M1.

Sujet 3 - Propriétés thermiques

Question 1 (0.5 pt)
Pourquoi le modèle de Debye décrit mieux le comportement de cv à basse température
que le modèle d’Einstein ?

Question 2 (0.5 pt)
Considérer les trois matériaux du tableau ci-contre, ayant
tous une structure fcc avec base monoatomique. Les tem-
pératures de Debye θD sont, dans le désordre : 225 K,
105 K, 428 K.
Associez la bonne θD à chaque matériau et justifiez vos
réponses.

masse Ecoh

(amu) (eV/atome)

Al 27 3.39
Ag 108 2.95
Pb 207 2.03

Problème (3 pts)
Le graphène est un matériau bidimensionnel formé par des atomes de carbone et a une
structure en nid d’abeille. Le réseau de Bravais est un réseau hexagonal avec deux atomes
par maille. La relation de dispersion phononique du graphène est montré dans la figure
ci-dessous. Même si le graphène est purement bidimensionnel, il existe dans un monde
tridimensionnel, ce qui implique l’existence d’un degré de liberté hors plan. Les vibrations
des atomes de carbone perpendiculairement au plan du réseau impliquent l’existence des
branches “hors plan” appelées ZA et ZO.

(a) Pourquoi dans les courbes de dispersion du graphène il y a des branches acoustiques
et des branches optiques ? Pourquoi il n’y a pas de bande interdite au point M de
la zone de Brillouin entre la branche LA et la branche LO ?

Dans la suite de l’exercice nous allons nous concentrer sur les branches acoustiques et en
particulier sur leur comportement au centre de la zone de Brillouin. Nous décrivons les
branches LA et TA par un modèle type Debye avec relation de dispersion ωLA = vLAk et
ωTA = vTAk respectivement. Cependant, la branche hors plan ZA ne peut pas être décrite
convenablement de la même façon, et la relation de dispersion s’écrit ωZA = vZAk

2.

(b) Quelle est la signification physique des constantes vLA et vTA ? Quelles sont les unités
de vZA ?

(c) Démontrez que dans un système 2D, pour une branche isotrope dans l’espace (c.-à-d.
que la relation de dispersion ne dépend que de k et non de sa direction), la densité
de modes peut s’écrire comme :

g(ω) =
1

2π

k

dω/dk
. (9)
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Figure 1 – Relation de dispersion du graphene calculée par deux méthodes différentes
(lignes pleine et pointillée) et expérimentale (symboles). Les notations L, T, Z corres-
pondent aux branches longitudinales, transversales et hors plan (voir énoncé). Les nota-
tions A et O indiquent les branches acoustiques et optiques. [Mann et al., RSC Adv. 6,
12158–12168 (2016)].

A basse température la chaleur spécifique du graphène est dominée par la contribution
de la branche ZA car dω/dk est plus petite. Pour commencer nous allons considérer
uniquement cette branche et sa relation de dispersion ωZA = vZAk

2.

(d) Trouvez la densité de modes g(ω) pour la branche ZA.

(e) Trouvez l’expression la chaleur spécifique pour la branche ZA dans la limite des
basses températures (kBT � ~ω).
Indication : Vous pouvez utiliser la formule :

∫∞
0

xdx
ex−1 = π2

6

On s’intéresse maintenant aux branches LA et TA.

(f) Trouvez la densité de modes à 2D pour une branche avec une relation de dispersion
de type Debye ω = vk.

(g) Trouvez la chaleur spécifique à basse température pour une branche avec la relation
de dispersion de type Debye dans le cas 2D.
Indication : Vous pouvez utiliser la formule :

∫∞
0

x2dx
ex−1 ' 2.4

(h) Comparez qualitativement la chaleur spécifique à basse température que vous avez
trouvée pour la branche hors plan ZA et celle pour les branches acoustiques linéaires
LA et TA.
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Sujet 4 - Effets anharmoniques

Question 1 (0.5 pt)
Pourquoi la conductibilité thermique d’un cristal parfait et harmonique est infinie ?

Question 2 (0.5 pt) :
Pourquoi uniquement les processus Umklapp réduisent la conductibilité thermique ?

Problème (2 pts) :
Dans ce problème nous allons traiter un effet anharmonique : la dilatation thermique.

(a) Montrer que l’énergie libre d’un mode de vibration ω(k) (pour alléger la notation,
la polarisation s du mode n’est pas indiquée) peut être exprimée comme :

Fk = kBT ln

(
2 sinh

~ω(k)

2kBT

)
. (10)

Indications : sinh = ex−e−x

2
, cosh = ex+e−x

2

On définit ∆ = δV/V la variation relative de volume liée à un changement de température,
avec V le volume initial. Dans le modèle quasi-harmonique, l’énergie de chaque mode de
vibration dépend de ∆. Pour un mode donné, on peut exprimer cette dépendance en
fonction du volume et donc de ∆ en introduisant la constante de Grüneisen γ :

ω̃(k,∆) = (1− γ∆) ω̃(k, 0) ≡ (1− γ∆)ω(k) . (11)

En tenant compte du terme correspondant au potentiel d’interaction entre les atomes
et du terme correspondant à l’ensemble des modes de vibration, l’énergie libre totale du
cristal peut s’écrire comme (avec B le module de compression) :

F (∆, T ) =
1

2
BV∆2 + kBT

∑
k

ln

(
2 sinh

~ω̃(k,∆)

2kBT

)
. (12)

La dilatation thermique ∆ du système est celle qui minimize F .

(b) Trouver l’expression pour
∂F

∂∆
.

Evaluer cette expression en faisant l’hypothèse que ω̃(k) = ω(k), et montrer que F
est minimale par rapport à ∆ lorsque

∆ =
γ

BV

∑
k

1

2
~ω(k) coth

~ω(k)

2kBT
. (13)

(c) Montrer que l’expression (??) pour la variation relative du volume peut être expri-
mée comme :

∆ =
γ

B
u (14)

avec u la densité d’énergie interne :

u(T ) =
1

V

∑
k

(
〈nk〉+

1

2

)
~ω(k) . (15)
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Sujet 1 - Solution

Question 1 (0.5 pt)
sc : la cellule conventionnelle est un cube, avec un point (ou un noeud) du réseau de
Bravais dans chaque vertex du cube. Cela fait 1 point du réseau par maille, donc la maille
primitive cöıncide avec la maille conventionnelle, et elles ont le même volume V .

fcc : la cellule conventionnelle est un cube, avec un point (ou un noeud) du réseau de
Bravais dans chaque vertex du cube et un point au centre de chaque face du cube. Cela
fait 8× 1/8 + 6× 1/2 = 4 points du réseau par maille conventionnelle. La maille primitive
ne peut pas cöıncider avec la maille conventionnelle. Comme elle doit contenir un seul
point du réseau de Bravais, on en déduit que son volume est V/4.

sc fcc

Question 2 (0.5 pt)
La liaison covalente est due au partage des électrons entre les atomes. Elle est favorable
lorsqu’on est en présence d’orbitales de valence partiellement remplies. Pour le diamant,
le nombre de coordination est 4. A partir des orbitales atomiques 2s et 2px, 2py, 2pz, les
atomes forment 4 orbitales hybrides sp3 qui accueillent les 4 électrons de valence d’un
atome de carbone (2s2 2p2).

Problème (2 pts)

(a) (0.25 pt)

Il s’agit d’un plan de la famille {110} (dans système de coordonnées 3D qui sont
différentes de celles 2D données).

(b) (0.25 pt)

On a deux vecteurs primitifs a1 et a2 tels que : a1 = (a
√

2, 0) et a2 = (0, a)

x

y
a1

a2
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(c) (0.25 pt)

Les vecteurs primitifs du réseau réciproque sont trouvables grâce à ai bj = 2πδij.

On obtient les vecteurs : b1 = (
2π

a
√

2
, 0) et b2 = (0,

2π

a
)

b2

b1

1ère ZB

2ème ZB

(d) (0.25 pt)

Le Cs possède un seul électron dans la couche électronique de valence, et au Cl
manque un électron pour remplir sa couche de valence. Le Cs cède un électron au
Cl, ce qui résulte en deux ions avec couches électroniques complètes. Nous obtenons
un ion Cs+ et un ion Cl− s’attirant par interaction coulombienne. L’énergie de
cohésion dépendra de l’énergie d’ionisation du Cs, de l’affinité électronique du Cl et
de l’énergie d’attraction de Coulomb entre les deux charges.

(e) (0.5 pt)
On part d’un Cl :
premiers voisins : 4 Cs à a

√
3/2

deuxièmes voisins : 2 Cl à a
troisièmes voisins : 2 Cl à a

√
2

Cl-
Cs+

On obtient alors :

E(Cl) ≈ (−4 · 2√
3

+ 2 · 1 + 2 · 1√
2

)
e2

4πaε0
donc Md ≈

8√
3
− 2−

√
2

(f) (0.25 pt)

r+ + r− = a
√

3/2

r+ ≤ a/2, r− ≤ a/2

(g) (0.25 pt)

t2D =
π(r2+ + r2−)

a2
√

2
=

π(r2+ + r2−)

4
√

2(r+ + r−)2/3
=

3π

4
√

2

1 + α2

(1 + α)2
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Sujet 2 - Solution

Question 1 (0.5 pt)
Pour le mode identifiée par k′ν , le déplacement de l’atome n est tel que

un ∝ exp (ik′νna) = exp (i(kν + 2π/a)na) = exp (ikνna) · exp (i2πn) = exp (ikνna)

Question 2 (0.5 pt)
Les vecteurs d’onde k sont discrets parce que le solide est de taille finie. Les conditions de
bord (fixes ou périodiques) déterminent les valeurs k admises. Nombre de k dans PZB :
a) N ; b) N/2. a) N valeurs k, 3 polarisations (L, T1, T2) donc on a 3N modes ; b) N/2
valeurs k, 3 polarisations (branches) acoustiques, 3 polarisation (branches) optiques, donc
on a 3N modes.

Problème (2 pts)

(a) (0.5 pt)

M2ü0 = C(u1 − u0) (16)

M1ün = C(un+1 − 2un + un−1) (17)

(b) (0.5 pt)

En substituant un(t) = B(−1)n e−αna eiωt dans (??) :

M1(−ω2)un = C(−e−αa − 2− eαa)un

=⇒ ω2 =
C

M1

(
eαa + e−αa + 2

)
(18)

(c) (0.5 pt)

En substituant les expressions pour u0 and u1 dans (??) et (??) respectivement, on
trouve :

M2(−ω2)Aeiωt = C(−Be−αa − A)eiωt

M1(−ω2)(−B)e−αaeiωt = C(Be−2αa + 2Be−αa + A)eiωt

On résout pour A et B :

A
[
−ω2M2 + C

]
+B

[
Ce−αa

]
= 0 (19)

A[−Ceαa] +B
[
M1ω

2 − Ce−αa − 2C
]

= 0 (20)

ou, de façon équivalente :(
−ω2M2 + C Ce−αa

−Ceαa M1ω
2 − Ce−αa − 2C

)(
A
B

)
= 0
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(d) (0.5 pt)

e−αa < 1 =⇒ M2 <
M1

2
.

Pour M2 →
M1

2
on a que ω2 → 4

C

M1

, la valeur de ω au bord de la zone de Brillouin

(c.-à-d. pour k = π/a) pour une châıne infinie.

On voit facilement que pour des valeurs de M2 plus petites ω2 > 4
C

M1

.

Par exemple, on peut vérifier que pour M2 � M1/2 → ω2 ≈ C/M2, qui est plus
grande que la limite trouvée ci-dessus.

Donc, la fréquence du phonon localisé à la surface est supérieure à celle des phonons
de volume.

Sujet 3 - Solution

Question 1 (0.5 pt)
A basse température uniquement les phonons avec ω petit contribuent à cv. Ces phonons
se trouvent dans les branches acoustiques, à proximité du centre de la BZ. Les branches
acoustiques sont linéaires à proximité du centre de la BZ, ce qui correspond au modèle de
Debye. Par conséquent cv est très bien décrite par ce modèle. Le modèle de Einstein consi-
dère une fréquence unique pour tous les modes, et donc il n’y a pas de modes qui peuvent
être excités à basse température. Par conséquent, dans le modèle de Einstein cv décroit
trop vite (exponentiellement) en descendant en température au lieu d’être proportionnelle
à T 3.

Question 2 (0.5 pt)
Dans le modèle de Debye ω ∝

√
C/m|k|. Il s’en suit que ωD dépend directement de la

constante de rappel C et inversement de la masse m. Qualitativement, pour une énergie
de cohesion Ecoh grande, C sera grande.

Donc on trouve : θD(Al) = 428 K ; θD(Ag) = 225 K ; θD(Pb) = 105 K.

Problème (3 pts)

(a) (0.5 pt)

On a des branches acoustiques et des branches optiques parce que la base contient
plus qu’un atome. Il n’y a pas de gap entre LA et LO parce que les atomes de la
base sont identiques (2 carbones) et les liaisons (covalentes) entre eux aussi.

(b) (0.25 pt)

Ces constantes correspondent à la vitesse du son des branches longitudinale et trans-
versale, respectivement. On observe que la vitesse du son est plus grande pour la
branche longitudinale que pour la transversale.

Comme ωZA = vZAk
2, les unités de vZA sont m2s−1, donc il ne s’agit pas d’une vitesse

comme dans le cas des branches acoustiques linéaires.

(c) (0.5 pt)

Comme on est dans un cas isotrope, la relation qui permet de trouver g(ω) à 2D se
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simplifie à

g(ω)dω =
1

(2π)2
d2k =

1

(2π)2
2πkdk

où nous avons explicité l’élément d2k pour un cas isotrope en coordonnées polaires.
Donc

g(ω) =
1

(2π)2
2πk

dω/dk
=

1

2π

k

dω/dk
(21)

(d) (0.25 pt)

dω

dk
= 2vZAk (22)

g(ω) =
1

2π

k

2vZAk
=

1

4πvZA
(23)

(e) (0.5 pt)

u =

ωmax∫
0

~ωg(ω)

(
1

e
~ω

kBT − 1
+

1

2

)
dω =

1

4πvZA

ωmax∫
0

~ω

(
1

e
~ω

kBT − 1
+

1

2

)
dω

(24)

Le terme d’énergie de point zéro ne dépend pas de la température. Pour cv on trouve :

cv =
∂u

∂T
=

∂

∂T

1

4πvZA

ωmax∫
0

~ω

e
~ω

kBT − 1
dω (25)

A basse T seulement les modes à plus basses fréquences contribuent à l’intégrale
donc

∫ ωmax

0
→
∫∞
0

et on a pour la chaleur spécifique :

cv =
∂

∂T

1

4πvZA

∞∫
0

~ω

e
~ω

kBT − 1
dω (26)

Avec le changement de variable x = ~ω
kBT

et dω = kBT
~ dx :

cv =
∂

∂T

1

4πvZA

(kBT )2

~

∞∫
0

xdx

ex − 1
=

∂

∂T

1

4πvZA

(kBT )2

~
π2

6
=

πkB
2

12vZA~
T (27)

(f) (0.25 pt)

Pour une branche linéaire

dω

dk
= v (28)

g(ω) =
1

2π

k

v
=

ω

2πv2
(29)
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(g) (0.5 pt)

En utilisant la même approximation
∫ ωmax

0
→
∫∞
0

et ensuite le même changement

de variable x = ~ω
kBT

et dω = kBT
~ dx que dans la question sur ZA on trouve :

cv =
∂u

∂T
=

∂

∂T

1

2πv2

∞∫
0

~ω2

e
~ω

kBT − 1
dω (30)

cv =
∂

∂T

1

2πv2
(kBT )3

~2

∞∫
0

x2dx

ex − 1
' ∂

∂T

2.4

2πv2
(kBT )3

~2
=

3.6

πv2
kB

3

~2
T 2 (31)

(h) (0.25 pt)

Pour la branche ZA on a trouvé que la chaleur spécifique à basse température dépend
linéairement de T . Pour les branches LA et TA qui ont une relation de dispersion
de type Debye la dépendance est quadratique en T . Donc, à très basse température
la contribution de la branche ZA domine comme anticipé dans l’énoncé.

Sujet 4 - Solution

Question 1 (0.5 pt)
Les modes normaux sont les états stationnaires du hamiltonien harmonique. En l’absence
de défauts et de surfaces (bords), ces états stationnaires sont imperturbés. Si une distribu-
tion de phonons ayant une vitesse de groupe moyenne non nulle se crée, cette distribution
n’est pas modifiée lors de sa propagation dans le cristal et le courant thermique se propage
indéfiniment.

Question 2 (0.5 pt)
Le transport de chaleur se fait par paquet d’ondes, donc par une superposition de plusieurs
modes propres. Dans les processus normaux la quantité de mouvement n’est pas altéré,
puisque le sens de propagation des phonons impliqués est le même avant et après collision.
Donc la composition de ce paquet d’onde change légèrement, mais la propagation de la
chaleur est peu affectée. Les processus Umklapp impliquent des modes avec de vecteurs
k plus grands et la conservation de la quantité de mouvement fait intervenir des vecteurs
du réseau réciproque non nuls : k1 +k2 = k3 +G. Le sens du vecteur k3 est opposé à celui
de k1 et k2. Ces processus changent la direction de propagation pour les modes propres
après la collision. Cela modifie considérablement la propagation du paquet d’onde et donc
la propagation de la chaleur, ce qui affecte la conductibilité thermique.
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Problème (2 pts)

(a) (0.5 pt)

F =
~ω
2

+ kBT ln

(
1− exp(− ~ω

kBT
)

)
x =

~ω
kBT

1− e−x =
ex/2 − e−x/2

ex/2
=

2 sinh x
2

ex/2

F =
~ω
2

+ kBT ln

(
2 sinh x

2

ex/2

)
=

~ω
2

+ kBT
[
ln(2 sinh

x

2
)− ln(ex/2)

]
= kBT ln

(
2 sinh

~ω
2kBT

)
Equivalent :

F = −kBT lnZ

x =
~ω

kBT

Z =
e−x/2

1− e−x
=

1

ex/2 − e−x/2
=

1

2 sinh x
2

F = −kBT lnZ = kBT ln

(
2 sinh

~ω
2kBT

)
(b) (1 pt)

Ici par simplicité de notation : ω̃(∆)→ ω̃ et ω̃(0)→ ω

∂F

∂∆
= BV∆ +

∂

∂∆
kBT

∑
k

ln

(
2 sinh

~ω̃(k,∆)

2kBT

)

∂

∂∆
ln

(
2 sinh

~ω̃
2kBT

)
=

1

2 sinh
~ω̃

2kBT

2 cosh
~ω̃

2kBT
· ~

2kBT
· (−γω)

=− γ ~ω
2kBT

coth
~ω̃

2kBT

∂F

∂∆
= BV∆− γ

∑
k

~ω
2

coth
~ω̃

2kBT
= BV∆− γ

∑
k

~ω
2

coth
~ω

2kBT

où nous avons appliqué l’hypothèse que ω̃(k,∆) ≈ ω(k).

On minimize F par rapport à ∆ :

∂F

∂∆
= BV∆− γ

∑
k

~ω
2

coth
~ω

2kBT
= 0

∆ =
γ

BV

∑
k

~ω(k)

2
coth

~ω(k)

2kBT
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(c) (0.5 pt)

x =
~ω

kBT

〈n〉+
1

2
=

1

ex − 1
+

1

2
=

1

2

ex + 1

ex − 1
=

1

2

ex/2 + e−x/2

ex/2 − e−x/2
=

1

2
coth

x

2

u(T ) =
1

V

∑
k

(
〈nk〉+

1

2

)
~ω(k) =

1

V

∑
k

~ω(k)

2
coth

~ω(k)

2kBT

∆(T ) =
γ

B
u(T )

Equivalent :

u = − 1

V

∑
k

∂ lnZ

∂β
= − 1

V

∑
k

∂

∂β
ln

1

sinh(β~ω/2)
=

1

V

∑
k

∂

∂β
ln(sinh(β~ω/2)) =

=
1

V

∑
k

cosh(β~ω/2))

sinh(β~ω/2))

~ω
2

=
1

V

∑
k

~ω
2

coth
β~ω

2

13


