ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

Exercices de Physique du Solide Prof. H. Brune

Série No. 9 15 Avril 2025

But de cette série : comprendre l'effet d’un potentiel périodique faible sur les états d’électron
libre (électrons quasi-libres)

1. Electrons libres a 1D, approximation du réseau vide

On considere un gaz d’électrons libres & une dimension dans réseau de constante a. Dans ’ap-
proximation du réseau vide, le potentiel associé aux ions est nul.

(a) Esquisser quelques points du réseau réciproque. Indiquer la premiere, la deuxiéme et troi-
sieme zone de Brillouin.

(b) Représenter E(k) en fonction de k (schéma de zone étendue).
Representer aussi E(k — G) pour G = £2% (schéma de zone répétée).

(c) Représenter E(k — G) en fonction de k uniquement dans la premiére zone de Brillouin

(schéma de zone réduite), en considérant les vecteurs du réseau réciproque G = 0,
— 2 _ 41 . . “ . h2 T\2
G =+, G =+, (Axe vertical : unités de 5-(%)°.)

(d) Expliquer la signification et 'utilité des trois représentations (schéma de zone étendue,
répétée, réduite).

(e) Considérer un systéme composé de N cellules primitives.
- Quel est le nombre de vecteurs d’onde k dans la premiere zone de Brillouin ?
Déterminer la position de I’énergie de Fermi (7' = 0 K) en unités de %(g)Z dans le cas
d’un systéme comportant :
- un atome par cellule et un électron de valence par atome;
- un atome par cellule et deux électrons de valence par atome;
- deux atomes par cellule et un électron de valence par atome.

2. Electrons a 1D dans un potentiel périodique faible

On considere un gaz d’électrons libres a une dimension dans un réseau de constante a, avec un
atome (ion) par maille comme montré dans la figure ci-dessous. Considérer qu’il y a un atome
en z = 0.
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La relation entre énergie et vecteur d’onde pour les électrons libres est donnée par :

R2(k — Gy)?

0
Erc. = 2m



Pour k = 7 (au bord de la premiere zone de Brillouin) les bandes générées par les vecteurs G;

du réseau réciproque G = 0 et G = 2% ont la méme énergie (voir exercice 1).
On considére maintenant le gaz électronique en présence d’un potentiel périodique faible U(x).
Pour des états presque dégénérés, au premier ordre ’énergie E(k) est donnée par la relation

(voir polycopié, éq. 5.41) :

m
(Ep_q, — E)cr—c, + > _Uc,~c, ch—c, =0 @
=1

i,j=1...m tels que |E,8,Gi - E,Q,Gj\ SU

Les ¢i_¢ sont les coefficients de Fourier des fonctions d’onde, les Ug les coefficients de Fourier
du potentiel.

(a) Considérer un potentiel périodique simple de la forme suivante :
_ T _ _
U(z) = —2U cos(—x) avec U une constante, U >0
a

Representer U(z) : par rapport & la position des ions, ou le potentiel est-il attrac-
tif /répulsif 7

Déterminer quels sont les vecteurs G du réseau réciproque pour lesquels les coefficients
Ug sont non nuls, et trouver la valeur de Ug.

(b) En utilisant la relation (2), écrire le systéme d’équations pour les niveaux d’énergie
proches du point k£ = 7.
Résoudre le systéme pour obtenir ’expression pour Ei(k) en fonction de E,g et de U.
Représenter E* (k) en fonction de k, en comparaison avec EY.

(c) Les fonctions d’onde pour des électrons de Bloch sont de la forme :

Yp(x) = Z ck—c, expli(k — G;)z]

J

En utilisant les équations trouvées au point (b), déterminer I'expression pour les deux
s

fonctions d’onde relatives aux solutions E* pour k = -

(d) Représenter la densité de probabilité |1 (z)|? en fonction de x pour les deux fonctions
d’onde. Ou est localisé la charge électronique dans les deux cas? Quelle est la corrélation
avec le potentiel U(z) ?
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1. Electrons a 1D, approximation du réseau vide
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(a) Vecteur primitif : a; vecteur primitif du réseau réciproque : b = — ; vecteurs du réseau
a
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réciproque : G = n— avec n € Zg. Remarque : chaque zone de Brillouin doit avoir le
a
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(b) En rouge : E(k); en vert E(k — G) pour G = 2%, en bleu pour G = —2%. On a représenté
aussi une partie des paraboles pour G = :l:‘%r, G = :t%”, G = :t%”. On a indiqué en
trait continu / traitillé les portions des paraboles qui donnent lieu a différentes bandes en

présence d’'un potentiel périodique (voir figures 5.5 et 5.9 du polycopié).
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(c) Premiere zone de Brillouin : —7 & 7. On appelle I' le centre de la zone de Brillouin, A le

point correspondant & k = 7, A" le point correspondant & k = —T.
On utilise la relation E(k—G) = 4= Pour G = 0: E(T) = 0, E(A) = E(A') = [2=

s 2 2 .
En unités de —2h T et pour les G demandés :
m a

Pour G=28: E(I') =4, E(A)=1, E(4) =9
Pour G = —27 : E(T) =

Pour G = 4™ . E(T') = 16, E(A) =9, E(A’) =25
Pour G = —4" . E(I') = 16, E(A) = 25, E(A") =9

(d) Dans le schéma de zone étendue : on dessine la relation E(k) comme s’il n’y avait pas de
réseau, avec des valeurs k qui obéissent au conditions aux bords périodiques.
Dans la représentation de zone réduite on considere les vecteurs k dans la premiere zone
de Brillouin (1ZB). Les parties de la parabole qui sortent de la 1ZB sont décalées dans la
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1BZ d’un vecteur du réseau réciproque G. La relation E(k) est représentée entierement
dans la 1BZ. On met en évidence le fait que pour un k£ donné il y a plusieurs (en fait
une infinité, puisque il y a une infinité de vecteurs ) valeurs possibles pour
E.

Dans le schéma de zone répétée on répete I'information contenue dans la 1BZ dans tout
I’espace réciproque. Cette représentation est redondante, mais elle a ’avantage de mettre
en évidence la périodicité de ’énergie en fonction de k¥ pour un indice de bande
donné.

Soit N = nombre de mailles primitives, L = Na est le “volume” du solide 1D.

Le nombre de valeurs k dans la 1BZ est donné par :

(volume de la 1BZ) x densité k, ou la densité des valeurs k admises est déterminée par le
conditions de bord périodiques : 27” X % = 27” X % = N.

Il y a autant de vecteurs d’onde admis dans la premiere zone de Brillouin que il y a de
mailles primitives dans le solide.

On peut déterminer 1’énergie de Fermi a partir de kr. Pour déterminer kr nous utilisons
la relation : volume de la “sphere” de Fermi x densité de valeurs k x 2 (pour le spin) =

nombre d’électrons dans le systeme. A 1D, pour les cas de I’énoncé, on trouve :

- un atome par maille et un électron de valence par atome :
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2kF><—a><2:N><1><1 — k’F:l — FEp
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- un atome par maille et deux électrons de valence par atome :

N Rk R 2
2kF><2—“><2:Nx1><2—>kF=f—>EF= F_ (f)
T a
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- deux atomes par maille et un électron de valence par atome :

N h2k’2 ﬁ2 2
2I<:F><2—a><2:N><2><1—>k:F:E—>EF: F—i(ﬂ)

T a 2m  2m \a

On voit que ce qui compte dans la détermination de Er est le nombre d’électrons. Lorsque
on prendra en compte la présence du potentiel périodique et l'ouverture des gaps (voir



exercice 2), on verra que la position du niveau de Fermi et le remplissage des bandes sont
cruciaux pour les propriétés (conducteur vs isolant) du systeme.
2. Electrons a 1D dans un potentiel périodique faible
(a) Le potentiel U(z) = —2U cos(2Ex) est représenté sur la figure ci-dessous. Avec référence

a cette figure, U(x) est attractif autour de la position des ions, et répulsif entre deux ions
adjacents.

U(x)

: a

U(z) peut étre exprimé comme somme de Fourier, avec les Ug les coefficients de Fourier :

U(z) =Y Uge
G

Dans notre cas :
)

_ 2 — - 27T - 27X 227 s
U(z) = —2Ucos(—7r:z) =-U (ffzzT + 6+7’2T> =U 2z 0% 4 Usy e ®

a

et donc les seuls coefficients non nuls sont ceux pour G = :l:%”. On peut en déduire que

U —U pour G = :t%’r )
G =
0 pour tous les autres G .

Ce résultat peut étre obtenu aussi en utilisant la formule générale pour le calcul des coef-
ficients de Fourier :

a

1 A o [ 2w T [0 (2
Ug = /U(w)e_Zszx =—— /cos(ﬂx)e_ZGxdx = —— / (e’(%_ )Ty e_z(%J“G)z) dx
a a a a

0 0 0

On remarque que, en général, avec G = %’Tn :

’ “L(eviGa 1) = —L (¢ 1) =0,  G#£0

7
/ e 0Ty =

0 Jo dz = a, G=0

ce qui nous permet de trouver pour Ug
2
0 G#+£5"
Ug =
-U G==+Z

(b) Avec référence a I’'Eq. (2) de ’énoncé, on a un systeme de deux équations (une pour chaque
G; tel que il y a dégénérescence en k = 7). Donc i,j = 1,2, et G; = 0, Gp = %’r (On



considere ici les G; et Gj qui correspondent aux états a plus basse énergie, mais on pourrait
considérer d’autres paires G; et G telles qu’il y a dégénérescence). Le systeme est :

(BR_c, — Er)er—c1 + Uci—crcr—Gy + Uy—Gy k-G, = 0
(EQ_c, — Ex)ek—cy + Ucy—Gyh-cy + Ucy—GyCh-y = 0

On remarque que
Ucgi—¢, = Ugy—g, = 0, Ugy—q, = U%n = U, Ug,—g, = U_%ﬂ = U, et que
E,g_Gl = E,g_Gz = E} (puisque on est en k =

7). On obtient alors

(EY — Ex)er-c, —Uck—g, =0
(E]g — Ek)ck—Gg - UCk_G1 =0

Sous forme matricielle :
E-E, U -1\ _ g
~U  EY—Ey) \ck-cs

On résout ce probleme aux valeurs propres en posant égal a zero le déterminant de la
matrice :

0= (E) - Ey)> - U? = E} —2E,E) + E)? — U*

Les valeurs propres sont
+ 0 1 7
E =FE;, U

Nous avons indiqué avec I, I’énergie en k = 7 de la bande avec énergie plus basse (relative
au vecteur G1), et E,j Iénergie de la bande avec énergie plus haute (relative au vecteur
G2).

L’introduction du potentiel faible U(z) leéve la dégénérescence en énergie au point k = 7,
avec l'ouverture d’une bande interdite (gap) d’amplitude

AE =E; —E, =2U

L’ouverture du gap en bord de zone est visible sur la figure ci-dessous. En réalité, la

dégénérescence est levée aussi a proximité de k = T, dans une région pour laquelle \Eg_Gl —
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Au point (b) nous avons trouvé les valeurs propres du probleme a deux niveaux. Maintenant
nous nous intéressons aux vecteurs propres. On définit 1, (x) et ¥ _(z) les fonctions d’onde
relatives aux énergies E,j e F, respectivement, c’est-a-dire :

Hipy(z) = Efys(a)

Dans I'expression des fonctions d’onde on aura seulement deux termes, puisque pour chaque
fonction d’onde il y a seulement deux coefficients non-nuls :

V() = 6, 'O 4 g O
Pour ¢4 (z) :
U -U\ (¢ + +
o o) (e)-0 - da-—ta
—L2
Et pour ¥_(x)
v 7)) o=
_ _ k- =0 — c =c
k-G k—G
(—U U Ch_ay ! 2
En résumé, en renommant ¢ = ]c}f_Gl\ et ¢” =g, |

) . o o 2 + o3 us
"L/Ji($) — ot <€z(k7G1)z T ez(kag)x) e (@ZEx T efzgx) _ ZC_ sin (ﬂaﬂ?) pour ¥4
2¢™ cos (Ea:) pour _

Si on veut trouver une normalisation, on peut imposer la normalisation des fonctions
d’onde pour un cristal de longueur L = Na. Les amplitudes A, = 2ic™ et A_ = 2¢~ sont
en général complexes, mais leurs modules |A4| et |A_| sont réels :

Jfwwide =1 gy =\/2sin(%2)

[Fyp_yrde=1 — ¢ = /2cos(Zx)

Les densités de probabilité associées aux fonctions d’onde trouvées au point (c) sont :

Elles sont représentées sur la figure ci-dessous avec le potentiel (en rouge). La densité de
probabilité associée a la bande d’énergie inférieure (E, ), c’est-a-dire a ’état fondamental
du systéme a deux niveaux, est celle qui est maximale sur les positions des atomes/ions,
ou le potentiel est négatif (attractif). L’état excité (a plus haute énergie) du systeme a le
comportement inverse (densité de probabilité maximale entre les ions).

densité |1P_ |2 |1p+\2
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