
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Exercices de Physique du Solide Prof. H. Brune

Série No. 9 15 Avril 2025

But de cette série : comprendre l’effet d’un potentiel périodique faible sur les états d’électron
libre (électrons quasi-libres)

1. Electrons libres à 1D, approximation du réseau vide

On considère un gaz d’électrons libres à une dimension dans réseau de constante a. Dans l’ap-
proximation du réseau vide, le potentiel associé aux ions est nul.

(a) Esquisser quelques points du réseau réciproque. Indiquer la première, la deuxième et troi-
sième zone de Brillouin.

(b) Représenter E(k) en fonction de k (schéma de zone étendue).
Representer aussi E(k −G) pour G = ±2π

a (schéma de zone répétée).

(c) Représenter E(k − G) en fonction de k uniquement dans la première zone de Brillouin
(schéma de zone réduite), en considérant les vecteurs du réseau réciproque G = 0,

G = ±2π
a , G = ±4π

a . (Axe vertical : unités de ~2
2m(πa )2.)

(d) Expliquer la signification et l’utilité des trois représentations (schéma de zone étendue,
répétée, réduite).

(e) Considérer un système composé de N cellules primitives.
- Quel est le nombre de vecteurs d’onde k dans la première zone de Brillouin ?

Déterminer la position de l’énergie de Fermi (T = 0 K) en unités de ~2
2m(πa )2 dans le cas

d’un système comportant :
- un atome par cellule et un électron de valence par atome ;
- un atome par cellule et deux électrons de valence par atome ;
- deux atomes par cellule et un électron de valence par atome.

2. Electrons à 1D dans un potentiel périodique faible

On considère un gaz d’électrons libres à une dimension dans un réseau de constante a, avec un
atome (ion) par maille comme montré dans la figure ci-dessous. Considérer qu’il y a un atome
en x = 0.

x0

a

La relation entre énergie et vecteur d’onde pour les électrons libres est donnée par :

E0
k−Gi =

~2(k −Gi)2

2m
(1)
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Pour k = π
a (au bord de la première zone de Brillouin) les bandes générées par les vecteurs Gi

du réseau réciproque G1 = 0 et G2 = 2π
a ont la même énergie (voir exercice 1).

On considère maintenant le gaz électronique en présence d’un potentiel périodique faible U(x).
Pour des états presque dégénérés, au premier ordre l’énergie E(k) est donnée par la relation
(voir polycopié, éq. 5.41) :

(E0
k−Gi − E) ck−Gi +

m∑
j=1

UGj−Gi ck−Gj = 0 (2)

i, j = 1 . . .m tels que |E0
k−Gi − E

0
k−Gj | . U

Les ck−G sont les coefficients de Fourier des fonctions d’onde, les UG les coefficients de Fourier
du potentiel.

(a) Considérer un potentiel périodique simple de la forme suivante :

U(x) = −2Ū cos(
2π

a
x) avec Ū une constante, Ū > 0

Representer U(x) : par rapport à la position des ions, où le potentiel est-il attrac-
tif/répulsif ?
Déterminer quels sont les vecteurs G du réseau réciproque pour lesquels les coefficients
UG sont non nuls, et trouver la valeur de UG.

(b) En utilisant la relation (2), écrire le système d’équations pour les niveaux d’énergie
proches du point k = π

a .
Résoudre le système pour obtenir l’expression pour E±(k) en fonction de E0

k et de Ū .
Représenter E±(k) en fonction de k, en comparaison avec E0

k .

(c) Les fonctions d’onde pour des électrons de Bloch sont de la forme :

ψk(x) =
∑
j

ck−Gj exp[i(k −Gj)x]

En utilisant les équations trouvées au point (b), déterminer l’expression pour les deux
fonctions d’onde relatives aux solutions E± pour k = π

a .

(d) Représenter la densité de probabilité |ψ(x)|2 en fonction de x pour les deux fonctions
d’onde. Où est localisé la charge électronique dans les deux cas ? Quelle est la corrélation
avec le potentiel U(x) ?
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Corrigé série No. 9 15 Avril 2025

1. Electrons à 1D, approximation du réseau vide

(a) Vecteur primitif : a ; vecteur primitif du réseau réciproque : b =
2π

a
; vecteurs du réseau

réciproque : G = n
2π

a
avec n ∈ Z0. Remarque : chaque zone de Brillouin doit avoir le

même ”volume”.

1ère 
ZB 2ème 

ZB
2ème 

ZB

3ème 
ZB

3ème 
ZB

––––– –– 04π
a – ––2π

a
2π
a

4π
a G

(b) En rouge : E(k) ; en vert E(k −G) pour G = 2π
a , en bleu pour G = −2π

a . On a représenté
aussi une partie des paraboles pour G = ±4π

a , G = ±6π
a , G = ±8π

a . On a indiqué en
trait continu / traitillé les portions des paraboles qui donnent lieu à différentes bandes en
présence d’un potentiel périodique (voir figures 5.5 et 5.9 du polycopié).

E(k)

––––– –– 04π
a – ––2π

a
2π
a

4π
a

k

(c) Première zone de Brillouin : −π
a à π

a . On appelle Γ le centre de la zone de Brillouin, A le
point correspondant à k = π

a , A′ le point correspondant à k = −π
a .

On utilise la relation E(k−G) = ~2(k−G)2

2m . Pour G = 0 : E(Γ) = 0, E(A) = E(A′) = ~2
2m

π2

a2

En unités de ~2
2m

π2

a2
et pour les G demandés :

Pour G = 0 : E(Γ) = 0, E(A) = 1, E(A′) = 1

Pour G = 2π
a : E(Γ) = 4, E(A) = 1, E(A′) = 9

Pour G = −2π
a : E(Γ) = 4, E(A) = 9, E(A′) = 1

Pour G = 4π
a : E(Γ) = 16, E(A) = 9, E(A′) = 25

Pour G = −4π
a : E(Γ) = 16, E(A) = 25, E(A′) = 9

(d) Dans le schéma de zone étendue : on dessine la relation E(k) comme s’il n’y avait pas de
réseau, avec des valeurs k qui obéissent au conditions aux bords périodiques.

Dans la représentation de zone réduite on considère les vecteurs k dans la première zone
de Brillouin (1ZB). Les parties de la parabole qui sortent de la 1ZB sont décalées dans la
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E

0 kπ
a

π
a

G=0

G=2π/a

G=4π/aG=-4π/a

G=-2π/a

(   )2h2

2m
π
a

1

4

9

16

25

1BZ d’un vecteur du réseau réciproque G. La relation E(k) est représentée entièrement
dans la 1BZ. On met en évidence le fait que pour un k donné il y a plusieurs (en fait
une infinité, puisque il y a une infinité de vecteurs G) valeurs possibles pour
E.

Dans le schéma de zone répétée on répète l’information contenue dans la 1BZ dans tout
l’espace réciproque. Cette représentation est redondante, mais elle a l’avantage de mettre
en évidence la périodicité de l’énergie en fonction de k pour un indice de bande
donné.

(e) Soit N = nombre de mailles primitives, L = Na est le “volume” du solide 1D.
Le nombre de valeurs k dans la 1BZ est donné par :
(volume de la 1BZ) × densité k, où la densité des valeurs k admises est déterminée par le
conditions de bord périodiques : 2π

a ×
L
2π = 2π

a ×
Na
2π = N.

Il y a autant de vecteurs d’onde admis dans la première zone de Brillouin que il y a de
mailles primitives dans le solide.

On peut déterminer l’énergie de Fermi à partir de kF . Pour déterminer kF nous utilisons
la relation : volume de la “sphère” de Fermi × densité de valeurs k × 2 (pour le spin) =
nombre d’électrons dans le système. A 1D, pour les cas de l’énoncé, on trouve :

- un atome par maille et un électron de valence par atome :

2kF ×
Na

2π
× 2 = N × 1× 1 → kF =

π

2a
→ EF =

~2k2F
2m

=
~2

2m

( π
2a

)2
=

~2

2m

(π
a

)2 1

4

- un atome par maille et deux électrons de valence par atome :

2kF ×
Na

2π
× 2 = N × 1× 2 → kF =

π

a
→ EF =

~2k2F
2m

=
~2

2m

(π
a

)2

- deux atomes par maille et un électron de valence par atome :

2kF ×
Na

2π
× 2 = N × 2× 1 → kF =

π

a
→ EF =

~2k2F
2m

=
~2

2m

(π
a

)2
On voit que ce qui compte dans la détermination de EF est le nombre d’électrons. Lorsque
on prendra en compte la présence du potentiel périodique et l’ouverture des gaps (voir
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exercice 2), on verra que la position du niveau de Fermi et le remplissage des bandes sont
cruciaux pour les propriétés (conducteur vs isolant) du système.

2. Electrons à 1D dans un potentiel périodique faible

(a) Le potentiel U(x) = −2Ū cos(2πa x) est représenté sur la figure ci-dessous. Avec référence
à cette figure, U(x) est attractif autour de la position des ions, et répulsif entre deux ions
adjacents.

a

U(x)

x

U(x) peut être exprimé comme somme de Fourier, avec les UG les coefficients de Fourier :

U(x) =
∑
G

UGe
iGx

Dans notre cas :

U(x) = −2Ū cos(
2π

a
x) = −Ū

(
e−i

2πx
a + e+i

2πx
a

)
≡ U− 2π

a
e−i

2π
a
x + U 2π

a
ei

2π
a
x

et donc les seuls coefficients non nuls sont ceux pour G = ±2π
a . On peut en déduire que

UG =

{
−Ū pour G = ±2π

a ,

0 pour tous les autres G .

Ce résultat peut être obtenu aussi en utilisant la formule générale pour le calcul des coef-
ficients de Fourier :

UG =
1

a

a∫
0

U(x)e−iGxdx = −2Ū

a

a∫
0

cos(
2π

a
x)e−iGxdx = − Ū

a

a∫
0

(
ei(

2π
a
−G)x + e−i(

2π
a
+G)x

)
dx

On remarque que, en général, avec G = 2π
a n :

a∫
0

e−iGxdx =


− 1
iG

(
e−iGa − 1

)
= − 1

iG

(
e−i2πn − 1

)
= 0, G 6= 0

∫ a
0 dx = a, G = 0

ce qui nous permet de trouver pour UG

UG =


0 G 6= ±2π

a

−Ū G = ±2π
a

(b) Avec référence à l’Eq. (2) de l’énoncé, on a un système de deux équations (une pour chaque
Gi tel que il y a dégénérescence en k = π

a ). Donc i, j = 1, 2, et G1 = 0, G2 = 2π
a . (On
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considère ici les Gi et Gj qui correspondent aux états à plus basse énergie, mais on pourrait
considérer d’autres paires Gi et Gj telles qu’il y a dégénérescence). Le système est :{

(E0
k−G1

− Ek)ck−G1 + UG1−G1ck−G1 + UG2−G1ck−G2 = 0

(E0
k−G2

− Ek)ck−G2 + UG1−G2ck−G1 + UG2−G2ck−G2 = 0

On remarque que

UG1−G1 = UG2−G2 = 0, UG2−G1 = U 2π
a

= −Ū , UG1−G2 = U− 2π
a

= −Ū , et que

E0
k−G1

= E0
k−G2

≡ E0
k (puisque on est en k = π

a ). On obtient alors{
(E0

k − Ek)ck−G1 − Ū ck−G2 = 0

(E0
k − Ek)ck−G2 − Ū ck−G1 = 0

Sous forme matricielle :(
E0
k − Ek −Ū
−Ū E0

k − Ek

)(
ck−G1

ck−G2

)
= 0

On résout ce problème aux valeurs propres en posant égal à zero le déterminant de la
matrice :

0 = (E0
k − Ek)2 − Ū2 = E2

k − 2EkE
0
k + E0 2

k − Ū2

Les valeurs propres sont

E±k = E0
k ± Ū

Nous avons indiqué avec E−k l’énergie en k = π
a de la bande avec énergie plus basse (relative

au vecteur G1), et E+
k l’énergie de la bande avec énergie plus haute (relative au vecteur

G2).
L’introduction du potentiel faible U(x) lève la dégénérescence en énergie au point k = π

a ,
avec l’ouverture d’une bande interdite (gap) d’amplitude

∆E = E+
k − E

−
k = 2Ū

L’ouverture du gap en bord de zone est visible sur la figure ci-dessous. En réalité, la
dégénérescence est levée aussi à proximité de k = π

a , dans une région pour laquelle |E0
k−G1

−
E0
k−G2

| . Ū .

0 π
a

E +

E

k

E –
2 U

–
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(c) Au point (b) nous avons trouvé les valeurs propres du problème à deux niveaux. Maintenant
nous nous intéressons aux vecteurs propres. On définit ψ+(x) et ψ−(x) les fonctions d’onde
relatives aux énergies E+

k e E−k , respectivement, c’est-à-dire :

Hψ±(x) = E±k ψ±(x)

Dans l’expression des fonctions d’onde on aura seulement deux termes, puisque pour chaque
fonction d’onde il y a seulement deux coefficients non-nuls :

ψ±(x) = c±k−G1
ei(k−G1)x + c±k−G2

ei(k−G2)x

Pour ψ+(x) :(
−Ū −Ū
−Ū −Ū

)(
c+k−G1

c+k−G2

)
= 0 → c+k−G1

= −c+k−G2

Et pour ψ−(x) :(
Ū −Ū
−Ū Ū

)(
c−k−G1

c−k−G2

)
= 0 → c−k−G1

= c−k−G2

En résumé, en renommant c+ = |c+k−G1
| et c− = |c−k−G1

|

ψ±(x) = c±
(
ei(k−G1)x ∓ ei(k−G2)x

)
= c±

(
ei
π
a
x ∓ e−i

π
a
x
)

=

{
2ic+ sin

(
π
ax
)

pour ψ+

2c− cos
(
π
ax
)

pour ψ−

Si on veut trouver une normalisation, on peut imposer la normalisation des fonctions
d’onde pour un cristal de longueur L = Na. Les amplitudes A+ = 2ic+ et A− = 2c− sont
en général complexes, mais leurs modules |A+| et |A−| sont réels :

∫ L
0 ψ+ψ

∗
+ dx = 1 → ψ+ =

√
2
L sin

(
π
ax
)

∫ L
0 ψ−ψ

∗
− dx = 1 → ψ− =

√
2
L cos

(
π
ax
)

(d) Les densités de probabilité associées aux fonctions d’onde trouvées au point (c) sont :{
|ψ+|2 ∝ sin2

(
π
ax
)

|ψ−|2 ∝ cos2
(
π
ax
)

Elles sont représentées sur la figure ci-dessous avec le potentiel (en rouge). La densité de
probabilité associée à la bande d’énergie inférieure (E−k ), c’est-à-dire à l’état fondamental
du système à deux niveaux, est celle qui est maximale sur les positions des atomes/ions,
où le potentiel est négatif (attractif). L’état excité (à plus haute énergie) du système a le
comportement inverse (densité de probabilité maximale entre les ions).

|ψ+|
2|ψ-|2

U(x)

densité 
de
probabilité
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