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Exercices de Physique du Solide Prof. H. Brune

Série No. 8 8 Avril 2025

But de cette série : étudier quelques propriétés des métaux qui sont bien décrites par le modéle
des électrons libres

1. Emission thermoélectronique

En 1873, Guthrie a découvert qu’un métal chaud émet des élec-

trons. Pour quitter le métal, les électrons doivent avoir suffisam- E1
ment d’énergie cinétique dans la direction perpendiculaire a la
surface pour échapper a 'attraction des ions. Dans cet exercice |
on cherche a quantifier cette émission d’électrons, dite thermo- Ep+ed ed
électronique (parfois thermoionique).

. o Er f
Une surface métallique plane (cathode) perpendiculaire a 1’axe
z est portée a la température T'. ¢ est le potentiel d’extraction 0

des électrons libres (de conduction), e¢ est le travail de sortie.
Par simplicité, on va approximer le potentiel chimique p(7") par
sa valeur a T' = 0, c’est-a-dire Ep.

(a)

Dans 'espace des vecteurs d’onde, on repere par k;, ky et k. la position d'un élément de
volume de dimensions dk, dk, et dk.. Quelle condition, exprimée sous la forme d’une in-
égalité, est imposée sur la composante k, du vecteur d’onde pour que les électrons contenus
dans cet élément de volume soient susceptibles de sortir du métal ?

Indication : passer d’une condition sur la composante de la vitesse a une condition sur la
composante de k.

Montrer que la densité d’électrons dn dans I'élément dk,dkydk. a la température T' est
donné par :
_ dkydkydk,

dn 13

J(E)
Déduire I’expression de la densité de courant élémentaire dj, en fonction de T :

_ e hks
413 m

Ep h2k2

eXp(kBT) eXp(_2kaT

Indication : faire une approximation pour la distribution de Fermi-Dirac en tenant compte
du fait que e¢ > kpT.

dj, = ) dkydkydk.

En déduire la densité de courant totale émise par la cathode. Montrer que le résultat final
peut se mettre sous la forme (loi de Richardson-Dushman) :

S 2 . ep
j.=AT exp( kBT>

Expliciter 'expression et la valeur numérique de A.

Indications :

- dans l'intégration, pour les valeurs de k, on consideére bien la condition trouvée dans la
partie (a);

+oo

/ e dy = \/?
a

—00



(e) En réalité les valeurs expérimentales de A dependent du matériau et sont inférieures a la
valeur théorique qui néglige en particulier la réflexion interne, sur l'interface métal/vide,
des électrons susceptibles de sortir de la cathode. A partir des données expérimentales de
A et de ¢ données dans le tableau ci-dessous, évaluer les densités de courant émises par
les cathodes respectives, chacune étant portée a une température de fonctionnement Tiopnct
légerement inférieure a la température de fusion.

cathodes
W | BaO + SrO sur Ni | LaBg
A(10* Am2K?2) || 75 0.05 40
o (V) 4.5 1 2.4
Ttonet (K) 2700 1100 1800

2. Conductivité électrique dans le modele de Sommerfeld - Temps de vol

Dans le modele de Sommerfeld, la probabilité de collision d’un électron avec un ion du réseau est
supposée indépendante du temps. La probabilité qu’un électron subisse une collision durant I’in-

dt

tervalle de temps infinitésimal dt est proportionnelle a dt, soit —. La constante 7 qui caractérise
T

la collision s’appelle temps de relaxation.

(a) Montrer qu’'un électron pris au hasard a l'instant ¢ = 0 ne subira aucune collision pendant
le temps t & venir avec une probabilité e~t/7.

(b) Montrer que la probabilité qu’il subisse sa premiere collision entre ¢ et t + dt est donnée
@ —t/T
par —e .
T
(¢) Montrer que, pour un électron donné, le temps moyen entre deux collisions (ou temps de
vol moyen ou temps de relaxation) est égal a 7.

o0
n!
Indication : /:c"e“xdfz: =— (n>0,a > 0).
a
0

3. Conductivité électrique dans le modéle de Sommerfeld

Dans le modele de Sommerfeld la densité de courant s’écrit

e? 7 0
N / d*k7(k) <E a{f) v(k)

—0o0

T est le temps de vol. fy est la distribution de Fermi-Dirac en termes de k. v est la vitesse des
électrons. E est le champ électrique appliqué. Nous considérons ici E = (E,,0,0).

Montrer que pour un gaz d’électrons libres a T'=0 K

ne’r(Er)
—

j=ocE avec o=

Indications :

0
a—‘g = —(F — EF) (E est Iénergie) ;
utiliser les coordonnées sphériques pour calculer les intégrales ;

. . 3
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1. Emission thermoélectronique

(a) Les électrons susceptibles de sortir de la cathode doivent avoir une vitesse dont la compo-

sante suivant z est telle que :

1 1
imvz > §mv§0 = Er+eo

h%? S th:zO
2m T 2m

= Er+eg

ol nous avons utilisé la relation entre quantité de mouvement et vecteur d’onde. k. et v,

correspondent a I’énergie minimale pour pouvoir sortir du métal.

dk,

K, dk,

dn — 2 dkgdkydk, _ dkydk,dk
vV (2m)3)V
ol le facteur 2 tient compte des deux orientations du spin, on a divisé par V' parce que on

cherche une densité, (277)3/V est le volume occupé par un état (correspondant & un vecteur

k), et la fonction f(F) est la distribution de Fermi-Dirac qui décrit la probabilité d’occupa-
2 k,2

tion en fonction de la température. L’énergie est donnée par £ = o et k? = k2 +k:§ +k2.
m

La densité de courant élémentaire dj, est donnée par :

dkydkydk. hk.
T F(E
s (Ee—

dj, =—dnev, = —

On g’intéresse seulement aux électrons qui ont une énergie E suffisante pour sortir du
métal, c.-a-d. que £ > Ep + e¢.

De plus, on a précisé dans 1’énoncé que ep > kpT', ce qui implique que E > kpT est aussi
vrai.

Par conséquent on peut approximer la fonction de Fermi-Dirac comme suit :

1 Er E
Y= ————— ~exp(—) exp(———
J(E) exp Ek;?rF +1 p(kBT) p( kBT)

On peut donc récrire la densité de courant élémentaire :

e hk, Er R2k?

eXp(m) exp(—m) dkrdkydkz

dj, =~ M=
Jz A3 m

3



(d) La densité de courant est donnée par l'intégrale dj, sur l'espace tel que k, > k,o. En
omettant le signe —, qui précise simplement que le courant est compté positivement dans
2

le sense opposé au mouvement des électrons, et en définissant « = ———— on trouve :
2mkpgT
h E e oo +o0
. e F
b=, eXp(kBT) / exp(—ak?)dk, / exp(—akz)dky / exp(—ak?) k. dk,
- - kzO

(poser k2 =€)

_eh Ep  /m\1/2 /m\1/2 1 9
C4mm eXp(kBT) (&) (E) EeXp(_akZO)

emky o Er h2k?,
— T =F _ R0
oy 1 Pl p) g T
4re kaB ep
"B 72 —
CAT? exp(— -2
exp(—7)
. 4me kaB 6 —91r—9
On peut calculer la valeur numérique de A = s = 1.2-10°A m—°K
(e) Tableau des résultats :
cathodes
W | BaO + SrO sur Ni | LaBg
A(10* Am2K?2) || 75 0.05 40
¢ (V) 45 1 2.4
Ttonct (K) 2700 1100 1800
ep/kpT 19.3 10.5 15.5
j (A cm™?) 2.27 1.6 24

Le pouvoir thermoélectrique du tungstene (W) est comparable et méme légerement supé-
rieur a celui des cathodes a oxydes, mais ces dernieres nécessitent la mise en oeuvre d’une
puissance de chauffage beaucoup plus faible et la largeur énergétique des faisceaux émis est
plus étroite ; par contre elles sont sensibles a la contamination et supportent mal les remises
a lair; elles sont donc presque exclusivement utilisées dans les tubes scellés (oscilloscopes,
diodes a vide, etc.). En microscopie électronique, ’emploi de filaments de tungsténe est
concurrencé par des cathodes en hexaborure de lanthane (LaBg) qui délivrent des densités
de courant au mois dix fois plus importantes et constituent des sources émissives de taille
plus réduite.



2. Conductivité électrique dans le modéele de Sommerfeld - Temps de vol

(a)

La probabilité qu’un électron subisse une collision durant 'intervalle de temps infinitésimal

dt
dt est —.
T

dt
La probabilité quun électron ne subisse pas de collision pendant dt est (1 — —).
T

Soit P,.(0,t) la probabilité de non-collision entre 0 et t. On divise l'intervalle de temps

[0,¢] en n intervalles de durée At = L. On obtient :
A n n
Ppe(0,t) = lim <1 — t) = lim (1 - t> =t/
n—00 T n—00 nT

par définition du nombre e.
Méthode alternative :

Poc(0, 1+ dt) = Poe(0,1) <1 _ dt)

T

puisque la probabilité d’avoir une collision entre ¢ et £+ dt est indépendante du temps dans
ce modele. On trouve :

Poc(0,t+dt) = Poe(0,8)  Pae0,8)  dPpc(0,1)

dt T dt

La solution de cette équation différentielle est P,.(0,t) = Ae /7 Pour t — 0, la probabilité
de non-collision tend vers 1. On a : P,:(0,0) =1 = A. La probabilité de non-collision entre
0 et t est donc

Pye(0,t) = e7'/7

Soit un électron qui subit une premiere collision a t = 0. On cherche, pour le méme électron,
la probabilité qu’il ne subisse pas de collision entre 0 et ¢ et qu’il en subisse une entre t et
t + dt. Puisque ces probabilités sont indépendantes, on a :

—t/T

T T T

Ppe(0, 1) dt = P,(0,t)dt.

On voit que la densité de probabilité P.(0,t) a la forme d’une distribution exponentielle :

1
P.(0,t) = ;e_t/T.

NB : P.(0,t) n’est pas la densité de probabilité de subir une collision entre 0 et ¢, mais
celle de subir la premiere collision apres un temps t.

En utilisant P.(0,t), on peut calculer la valeur moyenne de t, (t), c’est-a-dire le temps
moyen entre deux collisions (ou le temps de vol moyen) pour un électron :

oo 1 o
(t) :/t P.(0,t) dt = /t e VT dt = 7.
T
0 0



3. Conductivité électrique dans le modele de Sommerfeld

9o 2 7 0y OF
_ 3 _ 3  0hOF
i=- 47r3h/d < 8k> vik) = 47r3h/dkT(k) (E oE ok ) V)
attention, F est ’énergie, E est le champ électrique
OE OE OE O0E. I? "
oy (gt 2k, 2ky, 2
Bk (8kx’8ky’8kz) o (Phis 2y 2hz) =
h
k)= 'k
Vi) = "
e T /s Pk\ ik & [ afy h2
;Mﬁh/dmw“m<Eﬁn>m__M3 k() 5p (Bl K
Comme E = (E,,0,0), E-k = E, k,
3, 8fo h? K
47T3 a3k Bk,

On peut regarder les différentes composantes de j :

, 2 [ afy h2
Jo= 13 Pk (k) ag Ey kg ky
. e? T 8f0 h?
v="713 Pk (k) - 55 73 Pokaky
, ez [ dfy h2
je=—1g | @k aﬁ‘? Ey kg ks

On utilise les coordonnées sphériques pour résoudre ce type d’intégrale et faire apparaitre la
norme k, pour pouvoir intégrer ensuite en fonction de I’énergie F. En coordonnées sphériques
on a

k. = ksinf cos ¢

ky = ksin @ sin ¢

k, = kcos6

d®k = k2*dk sin 6 df dy

On va aussi remplacer 7(k) = 7(k) puisque E(k) est isotrope.

SR ) i Ofo I,
jx——WEw/dkT( 3E m2 (ky)? = EI/// 2dk sm@d@dcpaE k sin? 6 cos? p =
9 2 ™ 00 af h2
__“ 2 -3 4 Ojo ™
= 47T3E$/COS pdyp /sm 9d9/k: dk‘T(k:)aE 3
0 0 0



L’intégrale en dk : on fait un changement de variable de k & E, avec E = h%k?/(2m) :

i ofo 2 [ (2mEN?m 2 9 [ (2mBE\*? ~(E
0 0 0

3/2
_ (277;12%) T(iF) _ _k%T(fLF) _ 3.2, T(f;F)

En calculant aussi les intégrales sur dy et df on trouve :

Jo = —f;,,Em m % (3m2p) TER) _ne ;(EF)Em
Les intégrales pour j, et j. sont nulles. Par exemple :
. e? i f -2 i 4 dfo ?
Jz = —WEI/Cosgodgo /sm 0 cos Odb /k: dkT(k)@?W
0 0 0

L’intégrale de cos¢ de 0 a 27 est nulle.
Donc on trouve que j = oE

Si le champ électrique est dans une direction quelconque E = (E,, E,, E.) on a que

joc — / Pk(E-k) k=— / d*k (Eyky + Byky + E k) k
Pour j, :
Jr X — / Bk (Epky + Eyky + E.k,) ky

seulement le premier terme, celui en k,k,, est différent de zéro.

De facon équivalente pour j, on trouve que seulement le terme en kyk, est non nul, et pour et
j» c’est le terme en k. k..

On a montré que j est parallele & E, que o est un scalaire. Ceci est vrai dans le modele des
électrons libres (relation E(k) isotrope), mais pas en général.

o est un tenseur o,g avec o, f = x,y, z, qui n’est pas forcement diagonal (dans 'expression, £
est I'énergie et E3 une composante du champ électrique) :

, e T, 9o OF e T /o OF
ja——47r3h/dkT(k)aEzﬂzE’gakﬁva——ZmSh/dkT(k)aE 3 UQ%EB_

RN afy OE
= _471'3 A / d kT(k) @va% E,B = ZUQIB E/g
B B

— 00



