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But de cette série : étudier quelques propriétés des métaux qui sont bien décrites par le modèle
des électrons libres

1. Emission thermoélectronique

En 1873, Guthrie a découvert qu’un métal chaud émet des élec-
trons. Pour quitter le métal, les électrons doivent avoir suffisam-
ment d’énergie cinétique dans la direction perpendiculaire à la
surface pour échapper à l’attraction des ions. Dans cet exercice
on cherche à quantifier cette émission d’électrons, dite thermo-
électronique (parfois thermoionique).
Une surface métallique plane (cathode) perpendiculaire à l’axe
z est portée à la température T . φ est le potentiel d’extraction
des électrons libres (de conduction), eφ est le travail de sortie.
Par simplicité, on va approximer le potentiel chimique µ(T ) par
sa valeur à T = 0, c’est-à-dire EF .
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(a) Dans l’espace des vecteurs d’onde, on repère par kx, ky et kz la position d’un élément de
volume de dimensions dkx, dky et dkz. Quelle condition, exprimée sous la forme d’une in-
égalité, est imposée sur la composante kz du vecteur d’onde pour que les électrons contenus
dans cet élément de volume soient susceptibles de sortir du métal ?

Indication : passer d’une condition sur la composante de la vitesse à une condition sur la
composante de k.

(b) Montrer que la densité d’électrons dn dans l’élément dkxdkydkz à la température T est
donné par :

dn =
dkxdkydkz

4π3
f(E)

(c) Déduire l’expression de la densité de courant élémentaire djz en fonction de T :

djz = − e

4π3
~kz
m

exp(
EF
kBT

) exp(− ~2k2

2mkBT
) dkxdkydkz

Indication : faire une approximation pour la distribution de Fermi-Dirac en tenant compte
du fait que eφ� kBT .

(d) En déduire la densité de courant totale émise par la cathode. Montrer que le résultat final
peut se mettre sous la forme (loi de Richardson-Dushman) :

jz = AT 2 exp

(
− eφ

kBT

)
Expliciter l’expression et la valeur numérique de A.

Indications :

- dans l’intégration, pour les valeurs de kz on considère bien la condition trouvée dans la
partie (a) ;
+∞∫
−∞

e−αx
2
dx =

√
π

α
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(e) En réalité les valeurs expérimentales de A dependent du matériau et sont inférieures à la
valeur théorique qui néglige en particulier la réflexion interne, sur l’interface métal/vide,
des électrons susceptibles de sortir de la cathode. A partir des données expérimentales de
A et de φ données dans le tableau ci-dessous, évaluer les densités de courant émises par
les cathodes respectives, chacune étant portée à une température de fonctionnement Tfonct
légèrement inférieure à la température de fusion.

cathodes

W BaO + SrO sur Ni LaB6

A (104 A m−2 K−2) 75 0.05 40

φ (V) 4.5 1 2.4

Tfonct (K) 2700 1100 1800

2. Conductivité électrique dans le modèle de Sommerfeld - Temps de vol

Dans le modèle de Sommerfeld, la probabilité de collision d’un électron avec un ion du réseau est
supposée indépendante du temps. La probabilité qu’un électron subisse une collision durant l’in-

tervalle de temps infinitésimal dt est proportionnelle à dt, soit
dt

τ
. La constante τ qui caractérise

la collision s’appelle temps de relaxation.

(a) Montrer qu’un électron pris au hasard à l’instant t = 0 ne subira aucune collision pendant
le temps t à venir avec une probabilité e−t/τ .

(b) Montrer que la probabilité qu’il subisse sa première collision entre t et t + dt est donnée

par
dt

τ
e−t/τ .

(c) Montrer que, pour un électron donné, le temps moyen entre deux collisions (ou temps de
vol moyen ou temps de relaxation) est égal à τ .

Indication :

∞∫
0

xne−axdx =
n!

an+1
(n > 0, a > 0).

3. Conductivité électrique dans le modèle de Sommerfeld

Dans le modèle de Sommerfeld la densité de courant s’écrit

j = − e2

4π3 ~

∞∫
−∞

d3k τ(k)

(
E · ∂f0

∂k

)
v(k)

τ est le temps de vol. f0 est la distribution de Fermi-Dirac en termes de k. v est la vitesse des
électrons. E est le champ électrique appliqué. Nous considérons ici E = (Ex, 0, 0).

Montrer que pour un gaz d’électrons libres à T = 0 K

j = σE avec σ =
ne2τ(EF )

m
.

Indications :

∂f0
∂E

= −δ(E − EF ) (E est l’énergie) ;

utiliser les coordonnées sphériques pour calculer les intégrales ;∫
cos2 x dx = x

2 + sin 2x
4 + C

∫
sin3 x dx = cos3 x

3 − cosx+ C .
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Corrigé série No. 8 8 Avril 2025

1. Emission thermoélectronique

(a) Les électrons susceptibles de sortir de la cathode doivent avoir une vitesse dont la compo-
sante suivant z est telle que :

1

2
mv2z ≥

1

2
mv2z0 = EF + eφ

~2k2z
2m

≥ ~2k2z0
2m

= EF + eφ

où nous avons utilisé la relation entre quantité de mouvement et vecteur d’onde. kz0 et vz0
correspondent à l’énergie minimale pour pouvoir sortir du métal.

E

EF

0

EF+eφ

E

0 1
f(E)

kx

dkx

ky

dkykz

dkz

kz0

kF

0

(b) La densité d’électrons dn dans l’élément dkxdkydkz en fonction de T est donné par

dn =
2

V

dkxdkydkz
(2π)3/V

f(E) =
dkxdkydkz

4π3
f(E)

où le facteur 2 tient compte des deux orientations du spin, on a divisé par V parce que on
cherche une densité, (2π)3/V est le volume occupé par un état (correspondant à un vecteur
k), et la fonction f(E) est la distribution de Fermi-Dirac qui décrit la probabilité d’occupa-

tion en fonction de la température. L’énergie est donnée par E =
~2k2

2m
et k2 = k2x+k2y+k2z .

(c) La densité de courant élémentaire djz est donnée par :

djz = − dn e vz = −dkxdkydkz
4π3

f(E) e
~kz
m

On s’intéresse seulement aux électrons qui ont une énergie E suffisante pour sortir du
métal, c.-à-d. que E ≥ EF + eφ.

De plus, on a précisé dans l’énoncé que eφ� kBT , ce qui implique que E � kBT est aussi
vrai.

Par conséquent on peut approximer la fonction de Fermi-Dirac comme suit :

f(E) =
1

exp E−EF
kBT

+ 1
≈ exp(

EF
kBT

) exp(− E

kBT
)

On peut donc récrire la densité de courant élémentaire :

djz = − e

4π3
~kz
m

exp(
EF
kBT

) exp(− ~2k2

2mkBT
) dkxdkydkz
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(d) La densité de courant est donnée par l’intégrale djz sur l’espace tel que kz > kz0. En
omettant le signe −, qui précise simplement que le courant est compté positivement dans

le sense opposé au mouvement des électrons, et en définissant α =
~2

2mkBT
on trouve :

jz =
e ~

4π3m
exp(

EF
kBT

)

+∞∫
−∞

exp(−αk2x)dkx

+∞∫
−∞

exp(−αk2y)dky

+∞∫
kz0

exp(−αk2z) kz dkz

(poser k2z = ξ )

=
e ~

4π3m
exp(

EF
kBT

)
(π
α

)1/2 (π
α

)1/2 1

2α
exp(−αk2z0)

=
emk2

B

2π2 ~3
T 2 exp(

EF
kBT

) exp(− ~2k2z0
2mkBT

)

=
4πemk2

B

h3
T 2 exp(− eφ

kBT
)

=AT 2 exp(− eφ

kBT
)

On peut calculer la valeur numérique de A =
4πemk2

B

h3
= 1.2 · 106A m−2K−2

(e) Tableau des résultats :

cathodes

W BaO + SrO sur Ni LaB6

A (104 A m−2 K−2) 75 0.05 40

φ (V) 4.5 1 2.4

Tfonct (K) 2700 1100 1800

eφ/kBT 19.3 10.5 15.5

j (A cm−2) 2.27 1.6 24

Le pouvoir thermoélectrique du tungstène (W) est comparable et même légèrement supé-
rieur à celui des cathodes à oxydes, mais ces dernières nécessitent la mise en oeuvre d’une
puissance de chauffage beaucoup plus faible et la largeur énergétique des faisceaux émis est
plus étroite ; par contre elles sont sensibles à la contamination et supportent mal les remises
à l’air ; elles sont donc presque exclusivement utilisées dans les tubes scellés (oscilloscopes,
diodes à vide, etc.). En microscopie électronique, l’emploi de filaments de tungstène est
concurrencé par des cathodes en hexaborure de lanthane (LaB6) qui délivrent des densités
de courant au mois dix fois plus importantes et constituent des sources émissives de taille
plus réduite.
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2. Conductivité électrique dans le modèle de Sommerfeld - Temps de vol

(a) La probabilité qu’un électron subisse une collision durant l’intervalle de temps infinitésimal

dt est
dt

τ
.

La probabilité qu’un électron ne subisse pas de collision pendant dt est (1− dt

τ
).

Soit Pnc(0, t) la probabilité de non-collision entre 0 et t. On divise l’intervalle de temps
[0, t] en n intervalles de durée ∆t = t

n . On obtient :

Pnc(0, t) = lim
n→∞

(
1− ∆t

τ

)n
= lim

n→∞

(
1− t

nτ

)n
= e−t/τ

par définition du nombre e.

Méthode alternative :

Pnc(0, t+ dt) = Pnc(0, t)

(
1− dt

τ

)
puisque la probabilité d’avoir une collision entre t et t+dt est indépendante du temps dans
ce modèle. On trouve :

Pnc(0, t+ dt)− Pnc(0, t)
dt

= −Pnc(0, t)
τ

=
dPnc(0, t)

dt
.

La solution de cette équation différentielle est Pnc(0, t) = Ae−t/τ . Pour t→ 0, la probabilité
de non-collision tend vers 1. On a : Pnc(0, 0) = 1 = A. La probabilité de non-collision entre
0 et t est donc

Pnc(0, t) = e−t/τ

(b) Soit un électron qui subit une première collision à t = 0. On cherche, pour le même électron,
la probabilité qu’il ne subisse pas de collision entre 0 et t et qu’il en subisse une entre t et
t+ dt. Puisque ces probabilités sont indépendantes, on a :

Pnc(0, t)
dt

τ
= e−t/τ

dt

τ
=
e−t/τ

τ
dt = Pc(0, t)dt.

On voit que la densité de probabilité Pc(0, t) a la forme d’une distribution exponentielle :

Pc(0, t) =
1

τ
e−t/τ .

NB : Pc(0, t) n’est pas la densité de probabilité de subir une collision entre 0 et t, mais
celle de subir la première collision après un temps t.

(c) En utilisant Pc(0, t), on peut calculer la valeur moyenne de t, 〈t〉, c’est-à-dire le temps
moyen entre deux collisions (ou le temps de vol moyen) pour un électron :

〈t〉 =

∞∫
0

t Pc(0, t) dt =
1

τ

∞∫
0

t e−t/τ dt = τ.
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3. Conductivité électrique dans le modèle de Sommerfeld

j = − e2

4π3 ~

∞∫
−∞

d3k τ(k)

(
E · ∂f0

∂k

)
v(k) = − e2

4π3 ~

∞∫
−∞

d3k τ(k)

(
E · ∂f0

∂E

∂E

∂k

)
v(k)

attention, E est l’énergie, E est le champ électrique

∂E

∂k
= (

∂E

∂kx
,
∂E

∂ky
,
∂E

∂kz
) =

~2

2m
(2kx, 2ky, 2kz) =

~2

m
k

v(k) =
~
m

k

= − e2

4π3 ~

∞∫
−∞

d3k τ(k)
∂f0
∂E

(
E · ~

2k

m

)
~k

m
= − e2

4π3

∞∫
−∞

d3k τ(k)
∂f0
∂E

~2

m2
(E · k) k

Comme E = (Ex, 0, 0), E · k = Exkx

j = − e2

4π3

∞∫
−∞

d3k τ(k)
∂f0
∂E

~2

m2
Ex kx k

On peut regarder les différentes composantes de j :

jx = − e2

4π3

∞∫
−∞

d3k τ(k)
∂f0
∂E

~2

m2
Ex kx kx

jy = − e2

4π3

∞∫
−∞

d3k τ(k)
∂f0
∂E

~2

m2
Ex kx ky

jz = − e2

4π3

∞∫
−∞

d3k τ(k)
∂f0
∂E

~2

m2
Ex kx kz

On utilise les coordonnées sphériques pour résoudre ce type d’intégrale et faire apparâıtre la
norme k, pour pouvoir intégrer ensuite en fonction de l’énergie E. En coordonnées sphériques
on a

kx = k sin θ cosϕ

ky = k sin θ sinϕ

kz = k cos θ

d3k = k2dk sin θ dθ dϕ

On va aussi remplacer τ(k) = τ(k) puisque E(k) est isotrope.

jx = − e2

4π3
Ex

∞∫
−∞

d3k τ(k)
∂f0
∂E

~2

m2
(kx)2 = − e2

4π3
Ex

2π∫
0

π∫
0

∞∫
0

k2dk sin θ dθ dϕ
∂f0
∂E

~2

m2
k2 sin2 θ cos2 ϕ =

= − e2

4π3
Ex

2π∫
0

cos2 ϕdϕ

π∫
0

sin3 θ dθ

∞∫
0

k4dk τ(k)
∂f0
∂E

~2

m2

6



L’intégrale en dk : on fait un changement de variable de k à E, avec E = ~2k2/(2m) :

∞∫
0

k4dk τ(k)
∂f0
∂E

~2

m2
=

∞∫
0

(
2mE

~2

)3/2 m

~2
~2

m2
τ(E)

∂f0
∂E

dE = −
∞∫
0

(
2mE

~2

)3/2 τ(E)

m
δ(E − EF )dE =

= −
(

2mEF
~2

)3/2 τ(EF )

m
= −k3F

τ(EF )

m
= −3π2 n

τ(EF )

m

En calculant aussi les intégrales sur dϕ et dθ on trouve :

jx = − e2

4π3
Ex π

4

3
· (−3π2 n)

τ(EF )

m
=
n e2 τ(EF )

m
Ex

Les intégrales pour jy et jz sont nulles. Par exemple :

jz = − e2

4π3
Ex

2π∫
0

cosϕdϕ

π∫
0

sin2 θ cos θdθ

∞∫
0

k4dk τ(k)
∂f0
∂E

~2

m2

L’intégrale de cosϕ de 0 à 2π est nulle.

Donc on trouve que j = σE

Si le champ électrique est dans une direction quelconque E = (Ex, Ey, Ez) on a que

j ∝ −
∞∫
−∞

d3k (E · k) k = −
∞∫
−∞

d3k (Exkx + Eyky + Ezkz) k

Pour jx :

jx ∝ −
∞∫
−∞

d3k (Exkx + Eyky + Ezkz) kx

seulement le premier terme, celui en kxkx, est différent de zéro.

De façon équivalente pour jy on trouve que seulement le terme en kyky est non nul, et pour et
jz c’est le terme en kzkz.

On a montré que j est parallèle à E, que σ est un scalaire. Ceci est vrai dans le modèle des
électrons libres (relation E(k) isotrope), mais pas en général.

σ est un tenseur σαβ avec α, β = x, y, z, qui n’est pas forcement diagonal (dans l’expression, E
est l’énergie et Eβ une composante du champ électrique) :

jα = − e2

4π3 ~

∞∫
−∞

d3k τ(k)
∂f0
∂E

∑
β

Eβ
∂E

∂kβ
vα = − e2

4π3 ~

∞∫
−∞

d3k τ(k)
∂f0
∂E

∑
β

vα
∂E

∂kβ
Eβ =

=
∑
β

− e2

4π3 ~

∞∫
−∞

d3k τ(k)
∂f0
∂E

vα
∂E

∂kβ

Eβ =
∑
β

σαβ Eβ
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