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But de cette série : se familiariser avec la description des électrons libres de Fermi

1. La distribution de Fermi-Dirac

La statistique de Fermi-Dirac tient compte de la nature quantique des électrons et remplace
donc la statistique de Maxwell-Boltzmann.

La distribution de Fermi-Dirac décrit la probabilité qu’un niveau électronique d’énergie E soit
occupé à la température T :

f(E, T ) =
1

exp

(
E − µ
kBT

)
+ 1

(a) Tracer f(E) pour le cas T → 0 et pour T > 0 (avec µ paramètre donné).

(b) Pour T > 0, estimer la largeur de la région de transition. (Considérer les intersections de
la tangente à f(E) en E = µ avec les droites f = 1 et f = 0.)

2. Densité d’états du gaz d’électrons libres à N = 1, 2 et 3 dimensions

Considérer des électrons libres confinés dans un système unidimensionnel (un segment de lon-
gueur L), dans un système bidimensionnel (un carré de côté L), et dans un système tridimen-
sionnel (un cube de côté L).

Chaque état électronique est caracterisé par un vecteur d’onde k et par un spin s dont la
projection peut prendre deux valeurs.

Pour des électrons libres, la relation entre vecteurs d’onde et énergie est de la forme E(k) =

E(k) =
~2k2

2m
.

(a) Trouver l’expression pour le volume de l’espace réciproque occupé par chaque état électro-
nique (i.e. par chaque vecteur k) pour les trois systèmes (N = 1, 2, 3).

En considérant la forme de E(k), trouver l’expression pour le volume infinitésimal de
l’espace réciproque dΩ (en termes de k et de dk), pour N = 1, 2, 3.

(b) g(E)dE représente le nombre de niveaux d’énergie (c.-à-d. le nombre d’états) à un électron,
par unité de volume, compris entre les énergies E et E + dE. Ce nombre d’états dans
l’intervalle d’énergie dE est égal au nombre de valeurs k permises (×2 pour le spin) dans
le volume de l’espace réciproque dΩ correspondant.

En utilisant les résultats du point précédent, ainsi que la relation de dispersion E(k) pour
opérer le changement de variable, trouver l’expression de la densité d’états g(E) pour le
gaz d’électrons libres à N = 1, 2 et 3 dimensions.

(c) Tracer le graphe de g(E), ainsi que de la fonction produit g(E)f(E) (pour T = 0 et pour
T > 0), pour N = 1, 2, 3. f(E) est la fonction de Fermi-Dirac.

(d) Décrire l’évolution du potentiel chimique µ en fonction de la température, pour N = 1, 2,
3.

(e) Application numérique : Considérer le cas du potassium avec une concentration atomique
égale à 1.40 ·1028 m−3. Calculer l’énergie de Fermi en utilisant le modèle du gaz d’électrons
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libres à 3 dimensions. Ensuite, calculer la densité d’états au niveau de Fermi. À température
ambiante, quel est le nombre d’électrons dans la zone de transition de la distribution de
Fermi-Dirac ? (Considérer une largeur de 4kBT .) Comparer ce nombre avec le nombre total
d’électrons libres.

(Réponses : EF = 2.12 eV ; g(EF ) = 9.9 · 1027m−3eV−1 ; 1 · 1027 m−3 ; 7.1 %)

3. Questions de compréhension - Chapitres 1, 2 3

(a) Considérez les réseaux cubique simple (sc) et cubique à faces centrées (fcc). Décrivez en
mots ou avec un dessin clair les cellules (ou mailles) conventionnelles respectives. Est-ce
qu’elles cöıncident avec les cellules primitives respectives ? Sans faire de gros calcul,
pouvez-vous dire quel est le volume des cellules primitives par rapport au volume des
cellules conventionnelles respectives ?

(b) Dans la liaison covalente, il n’y a pas de transfert de charge entre les atomes. Expliquez
l’origine de cette liaison. Prenez le diamant comme exemple. Quel est le nombre de
coordination (c’est-à-dire le nombre de plus proches voisins) et quelles sont les orbitales
formant les liaisons ?

(c) Pour décrire les vibrations des atomes d’un solide, il suffit de se restreindre aux modes
propres correspondant à des vecteurs d’ondes dans la première zone de Brillouin. Démon-
trez pour une châıne 1D avec paramètre de maille a qu’un vecteur d’onde k′ν = kν + 2π/a
donne lieu au même déplacement des atomes que le vecteur d’onde kν dans la première
zone de Brillouin.

(d) Pourquoi les valeurs k sont-elles discrètes ? Combien de ces valeurs k se trouvent dans
la première zone de Brillouin pour un réseau avec N atomes et i) un atome par maille,
ii) deux atomes par maille ? Combien de modes propres existent en 3D pour les cas i) et ii) ?

(e) Pourquoi le modèle de Debye décrit mieux le comportement de cv à basse température
que le modèle d’Einstein ?

(f) Considérer les trois matériaux du tableau ci-
contre, ayant tous une structure fcc avec base
monoatomique. Les températures de Debye
θD sont, dans le désordre : 225 K, 105 K,
428 K. Ecoh est l’énergie de cohésion.
Associez la bonne θD à chaque matériau et
justifiez vos réponses.

masse Ecoh

(amu) (eV/atome)

Al 27 3.39
Ag 108 2.95
Pb 207 2.03

(g) Pourquoi la conductibilité thermique d’un cristal parfait et harmonique est infinie ?

(h) Pourquoi uniquement les processus Umklapp réduisent la conductibilité thermique ?
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Corrigé série No. 7 1 Avril 2025

1. La distribution de Fermi-Dirac

(a) Pour trouver l’allure de la fonction de Fermi-Dirac, on peut faire les considérations sui-
vantes à l’aide de la fonction y = 1/ [exp(x) + 1]. On vérifie que y = 1/2 pour x = 0, que

lim
x→−∞

y = 1 et que lim
x→+∞

y = 0.

On peut estimer numériquement la largeur de la zone de transition en évaluant la fonction
y pour quelques points autour de x = 0, par exemple x = ±1, ±2. On vérifie ainsi que la
zone de transition va environ de x = −2 à x = +2.

La largeur de la zone de transition entre y = 1 et y = 0 va varier si on change la fonction
de cette façon : y = 1/ [exp(x/A) + 1]. Pour A � 1, la zone de transition va s’élargir
beaucoup ; pour A� 1 la zone va devenir beaucoup plus étroite.

Finalement, si au lieu de centrer la fonction y autour de x = 0, on la centre autour de
x = x0, le point d’inflexion sera en x = x0.

On peut revenir maintenant à la fonction de Fermi-Dirac ; par rapport à la fonction y on
a : x = E ≥ 0, x0 = µ et A = kBT .

f(E, T ) =
1

exp

(
E − µ
kBT

)
+ 1

E = μ E

ΔE

1.0

0

0.5

f   (T=0)
f   (T>0)

f

(b) On peut estimer la largeur de la région de transition par la pente de la courbe à E = µ
(où f = 1/2), et ses points d’intersection à f = 0 et f = 1 (voir figure).

∂

∂E
f(E, T ) =

− 1
kBT

exp E−µ
kBT(

exp E−µ
kBT

+ 1
)2

⇒ ∂

∂E
f(E = µ, T ) = − 1

4kBT

Donc on peut écrire que
∆f

∆E
=

1

4kBT
, où nous avons considéré la valeur absolue de la

pente en µ.

Comme ∆f = 1− 0 = 1, on obtient ∆E = 4kBT

A titre indicatif on donne : kBT (300 K) ≈ 26 meV et kBT (10 K) ≈ 0.8 meV.
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2. Densité d’états du gaz d’électrons libres à N = 1, 2 et 3 dimensions

(a) Un état électronique dans l’espace réciproque est defini par le vecteur k dont les com-

posantes peuvent prendre des valeurs discrètes multiples de
2π

L
(conditions aux bords

périodiques). Dans un espace réciproque de dimension N chaque état occupe un volume(
2π

L

)N
.

Le volume infinitésimal de l’espace réciproque dΩ est le volume compris entre les
états k et k + dk, c’est à dire dΩ = dNk. Donc, à 1D le volume infinitésimal d1k
est dk = 2 dk, le facteur 2 tenant compte des k positifs et négatifs. A 2D on obtient
d2k = 2πk dk, ce qui correspond à la circonférence d’un cercle de rayon k multipliée par
une petite variation dk. A 3D on obtient d3k = 4πk2 dk, la surface d’une sphère de rayon
k multipliée par une petite variation dk. En résumé :

dΩ = dNk =


2 dk 1D
2πk dk 2D
4πk2 dk 3D

(1)

(b) Le nombre d’états permis dans le volume de l’espace réciproque dΩ (par unité de volume

dans l’espace direct) en tenant compte du spin est donné par 2

(
1

L

)N ( L

2π

)N
dΩ.

Pour obtenir l’expression de g(E), il faut réécrire cette relation en fonction de E en

utilisant la relation de dispersion E(k) =
~2k2

2m
pour faire le changement de variable.

Pour le cas à 1D, on a :

g(E)dE = 2
1

L

L

2π
2dk =

1

π

(
2m

~2

)1/2

E−1/2dE

Pour le cas à 2D, on a :

g(E)dE = 2
1

L2

(
L

2π

)2

2πk dk =
1

π

(
2m

~2

)1/2

E1/2
( m

2~2
)1/2

E−1/2dE =
m

π~2
dE

Pour le cas à 3D, on a :

g(E)dE = 2
1

L3

(
L

2π

)3

4πk2 dk =
1

π2
2m

~2
E
( m

2~2
)1/2

E−1/2dE =
1

2π2

(
2m

~2

)3/2

E1/2 dE

En résumé :

g(E) =



1

π

(
2m

~2

)1/2

E−1/2 1D

m

~2π
2D

1

2π2

(
2m

~2

)3/2

E1/2 3D

(2)
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(c) On obtient les courbes suivantes :

g f

EE = μ

g
 

 g f  (T=0)
 

 g f  (T>0)
 Densité d’états g(E) et produit

g(E) f(E) à une dimension (1D).

g f

EE = μ

g 
 

 g f  (T=0)
 

 g f  (T>0)

Densité d’états g(E) et produit
g(E) f(E) à deux dimensions (2D).

g f

EE = μ

g
 

  g f  (T=0)
 

  g f  (T>0)

Densité d’états g(E) et produit
g(E) f(E) à trois dimensions (3D).

(d) L’aire sous la courbe g(E)f(E) correspond au nombre de particules. g(E) donne la densité
des états et f(E) donne la probabilité de les occuper. On peut écrire :

n =

∞∫
0

g(E)f(E) dE =

EF∫
0

g(E) dE. (3)

µ est défini de façon telle que le nombre de particules reste constant si la température
augmente ou diminue. µ doit donc varier de telle façon à ce que l’aire sous la courbe
g(E)f(E) reste constante si on change T .
On considère d’abord le cas 3D : l’intégrant de l’équation 3 est le produit entre une fonction
croissante et une fonction antisymmétrique par rapport au point (µ, 1/2) (voir Figure). Si
on augmente T , une partie de l’aire à gauche de µ (E < µ) passe à droite de E = µ. Vu
que la partie qui passe de gauche à droite va recevoir plus de “poids” à droite dû au fait
que g(E) est croissante, il faut déplacer µ vers des énergies plus basses pour garder l’aire
(et donc le nombre d’électrons) constante.

Pour les autres dimensions on trouve : pour le cas 1D, comme g(E) est une fonction
decroissante, µ se déplace vers des énergies plus hautes pour garder l’aire constante ; pour
le cas 2D, g(E) est constante, donc µ = EF à toutes les températures.

Ces résultats peuvent aussi être obtenus de façon plus quantitative en utilisant la relation
(voir expression 4.48, Ch. 4 du cours) :

µ = EF −
π2

6
(kBT )2

∂g/∂E

g(E)

∣∣∣∣
E=EF
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On trouve alors :

µ(T ) =



EF

(
1 +

π2

12

(
kBT

EF

)2
)

1D

EF 2D

EF

(
1− π2

12

(
kBT

EF

)2
)

3D

(4)

En notant que kBT/EF = T/TF , où TF ≈ 5 × 104 K, on obtient qu’à température
ambiante la variation de µ par rapport à EF est de l’ordre de 0.01%.

(e) L’équation 4.17 du polycopié donne la relation suivante entre l’énergie Fermi et la densité
des électrons de conduction, n :

EF =
~2

2m
(3π2n)2/3 (5)

En substituant les valeurs nous obtenons EF = 2.12 eV.

Maintenant que nous connaissons EF , nous pouvons calculer la densité d’états au niveau
de Fermi :

g(EF ) =
1

2π2

(
2m

~2

)3/2

E
1/2
F =

3

2

n

EF
= 6.19 · 1046m−3J−1 = 9.9 · 1027m−3eV−1 (6)

La largeur de la zone de transition de la distribution de Fermi-Dirac à température am-
biante est environ 100 meV correspondant à 1.6 ·10−20 J. En multipliant par la densité
d’états à EF on obtient qu’il y a ≈ 1 ·1027 électrons m−3 qui participent à la redistribution,
ce qui correspond à ≈ 7.1% du nombre total d’électrons libres du potassium.

3. Questions de compréhension - Chapitres 1, 2 3

(a) sc : la cellule conventionnelle est un cube, avec un point (ou un noeud) du réseau de Bravais
dans chaque vertex du cube. Cela fait 1 point du réseau par maille, donc la maille primitive
cöıncide avec la maille conventionnelle, et elles ont le même volume V .

fcc : la cellule conventionnelle est un cube, avec un point (ou un noeud) du réseau de
Bravais dans chaque vertex du cube et un point au centre de chaque face du cube. Cela
fait 8×1/8+6×1/2 = 4 points du réseau par maille conventionnelle. La maille primitive ne
peut pas cöıncider avec la maille conventionnelle. Comme elle doit contenir un seul point
du réseau de Bravais, on en déduit que son volume est V/4.

sc fcc

(b) La liaison covalente est due au partage des électrons entre les atomes. Elle est favorable
lorsqu’on est en présence d’orbitales de valence partiellement remplies. Pour le diamant,
le nombre de coordination est 4. A partir des orbitales atomiques 2s et 2px, 2py, 2pz, les
atomes forment 4 orbitales hybrides sp3 qui accueillent les 4 électrons de valence d’un
atome de carbone (2s2 2p2).
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(c) Pour le mode identifié par k′ν , le déplacement de l’atome n est tel que

un(k′ν) ∼ exp (ik′νna) = exp (i(kν + 2π/a)na) = exp (ikνna) · exp (i2πn) = exp (ikνna) ∼
un(kν)

(d) Les vecteurs d’onde k sont discrets parce que le solide est de taille finie. Les conditions de
bord (fixes ou périodiques) déterminent les valeurs k admises.

Nombre de k dans PZB : i) N ; ii) N/2.

Pour i), il y a N valeurs k, 3 polarisations (L, T1, T2) donc on a 3N modes.

Pour ii) il y a N/2 valeurs k, 3 polarisations (branches) acoustiques, 3 polarisation
(branches) optiques, donc on a 3N modes.

(e) A basse température uniquement les phonons avec ω petit contribuent à cv. Ces phonons
se trouvent dans les branches acoustiques, à proximité du centre de la BZ. Les branches
acoustiques sont linéaires à proximité du centre de la BZ, ce qui correspond au modèle de
Debye. Par conséquent cv est très bien décrite par ce modèle. Le modèle de Einstein consi-
dère une fréquence unique pour tous les modes, et donc il n’y a pas de modes qui peuvent
être excités à basse température. Par conséquent, dans le modèle de Einstein cv décroit trop
vite (exponentiellement) en descendant en température au lieu d’être proportionnelle à T 3.

(f) Dans le modèle de Debye ω ∝
√

C
m |k|. Il s’ensuit que ωD dépend directement de la constante

de rappel C et inversement de la masse m. Qualitativement, pour une énergie de cohesion
Ecoh grande, C sera grande. La température de Debye est définie comme θD = ~ωD/kB.

On déduit que : θD(Al) = 428 K ; θD(Ag) = 225 K ; θD(Pb) = 105 K.

(g) Les modes normaux sont les états stationnaires du hamiltonien harmonique. En l’absence
de défauts et de surfaces (bords), ces états stationnaires sont imperturbés. Si une distribu-
tion de phonons ayant une vitesse de groupe moyenne non nulle se crée, cette distribution
n’est pas modifiée lors de sa propagation dans le cristal et le courant thermique se propage
indéfiniment.

(h) Le transport de chaleur se fait par paquets d’ondes, donc par une superposition de plusieurs
modes propres. Dans les processus normaux la quantité de mouvement n’est pas altéré,
puisque le sens de propagation des phonons impliqués est le même avant et après collision.
Donc la composition de ce paquet d’onde change légèrement, mais la propagation de la
chaleur est peu affectée. Les processus Umklapp impliquent des modes avec de vecteurs k
plus grands et la conservation de la quantité de mouvement fait intervenir des vecteurs du
réseau réciproque non nuls : k1 + k2 = k3 + G. Le sens du vecteur k3 est opposé à celui
de k1 et k2. Ces processus changent la direction de propagation pour les modes propres
après la collision. Cela modifie considérablement la propagation du paquet d’onde et donc
la propagation de la chaleur, ce qui affecte la conductibilité thermique.
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