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But de cette série : se familiariser avec la description des électrons libres de Fermi

1. La distribution de Fermi-Dirac

La statistique de Fermi-Dirac tient compte de la nature quantique des électrons et remplace
donc la statistique de Maxwell-Boltzmann.

La distribution de Fermi-Dirac décrit la probabilité qu’un niveau électronique d’énergie F soit
occupé a la température T :

1

E —
exp(kB M)—i—l

(a) Tracer f(E) pour le cas T'— 0 et pour 7" > 0 (avec pu parametre donné).

f(EvT) =

(b) Pour T > 0, estimer la largeur de la région de transition. (Considérer les intersections de
la tangente & f(FE) en E = u avec les droites f =1 et f =0.)

2. Densité d’états du gaz d’électrons libres & N = 1, 2 et 3 dimensions

Considérer des électrons libres confinés dans un systéme unidimensionnel (un segment de lon-
gueur L), dans un systéme bidimensionnel (un carré de c6té L), et dans un systéme tridimen-
sionnel (un cube de coté L).

Chaque état électronique est caracterisé par un vecteur d’onde k et par un spin s dont la
projection peut prendre deux valeurs.

Pour des électrons libres, la relation entre vecteurs d’onde et énergie est de la forme E(k) =

27.2
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(a) Trouver 'expression pour le volume de I’espace réciproque occupé par chaque état électro-
nique (i.e. par chaque vecteur k) pour les trois systemes (N = 1, 2, 3).
En considérant la forme de E(k), trouver lexpression pour le volume infinitésimal de
Pespace réciproque df) (en termes de k et de dk), pour N = 1, 2, 3.

(b) g(FE)dE représente le nombre de niveaux d’énergie (c.-a-d. le nombre d’états) a un électron,
par unité de volume, compris entre les énergies E et E + dE. Ce nombre d’états dans
I'intervalle d’énergie dE est égal au nombre de valeurs k permises (x2 pour le spin) dans
le volume de ’espace réciproque df) correspondant.

En utilisant les résultats du point précédent, ainsi que la relation de dispersion F(k) pour
opérer le changement de variable, trouver I’expression de la densité d’états g(E) pour le
gaz d’électrons libres & N = 1, 2 et 3 dimensions.

(c) Tracer le graphe de g(E), ainsi que de la fonction produit g(E)f(E) (pour T'= 0 et pour
T >0), pour N =1, 2, 3. f(E) est la fonction de Fermi-Dirac.

(d) Décrire I’évolution du potentiel chimique p en fonction de la température, pour N = 1, 2,
3.

e ication numérique : Considérer le cas du potassium avec une concentration atomique
Applicati ériq Considérer 1 du potassi trati tomiq
égale & 1.40-10?® m~3. Calculer I’énergie de Fermi en utilisant le modele du gaz d’électrons




libres a 3 dimensions. Ensuite, calculer la densité d’états au niveau de Fermi. A température
ambiante, quel est le nombre d’électrons dans la zone de transition de la distribution de
Fermi-Dirac 7 (Considérer une largeur de 4k gT'.) Comparer ce nombre avec le nombre total
d’électrons libres.

(Réponses : Ep = 2.12eV; g(Er) =9.9-10*"m3eV~1; 1-10*" m=3; 7.1 %)

3. Questions de compréhension - Chapitres 1, 2 3

(a)

(2)
(h)

Considérez les réseaux cubique simple (sc) et cubique a faces centrées (fcc). Décrivez en
mots ou avec un dessin clair les cellules (ou mailles) conventionnelles respectives. Est-ce
qu’elles coincident avec les cellules primitives respectives? Sans faire de gros calcul,
pouvez-vous dire quel est le volume des cellules primitives par rapport au volume des
cellules conventionnelles respectives ?

Dans la liaison covalente, il n’y a pas de transfert de charge entre les atomes. Expliquez
lorigine de cette liaison. Prenez le diamant comme exemple. Quel est le nombre de
coordination (c’est-a-dire le nombre de plus proches voisins) et quelles sont les orbitales
formant les liaisons ?

Pour décrire les vibrations des atomes d’un solide, il suffit de se restreindre aux modes
propres correspondant a des vecteurs d’ondes dans la premiere zone de Brillouin. Démon-
trez pour une chaine 1D avec parameétre de maille a qu'un vecteur d’onde k], = k, + 27 /a
donne lieu au méme déplacement des atomes que le vecteur d’onde k, dans la premiere
zone de Brillouin.

Pourquoi les valeurs k sont-elles discrétes? Combien de ces valeurs k se trouvent dans
la premiere zone de Brillouin pour un réseau avec N atomes et i) un atome par maille,
ii) deux atomes par maille 7 Combien de modes propres existent en 3D pour les cas i) et ii) ?

Pourquoi le modele de Debye décrit mieux le comportement de ¢, a basse température
que le modele d’Einstein ?

Considérer les trois matériaux du tableau ci-
contre, ayant tous une structure fcc avec base
monoatomique. Les températures de Debye

masse FEeon
(amu) (eV/atome)

fp sont, dans le désordre : 225K, 105K, Al 27 3.39
428 K. Eop est ’énergie de cohésion. Ag 108 2 95
Associez la bonne 0p a chaque matériau et Pb 207 203

justifiez vos réponses.

Pourquoi la conductibilité thermique d’un cristal parfait et harmonique est infinie ?

Pourquoi uniquement les processus Umklapp réduisent la conductibilité thermique ?



Corrigé série No. 7 1 Avril 2025

1. La distribution de Fermi-Dirac

(a) Pour trouver 'allure de la fonction de Fermi-Dirac, on peut faire les considérations sui-
vantes & l'aide de la fonction y = 1/ [exp(x) + 1]. On vérifie que y = 1/2 pour = = 0, que
lim y=1et que lim y=0.
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On peut estimer numériquement la largeur de la zone de transition en évaluant la fonction
y pour quelques points autour de x = 0, par exemple x = £1, £2. On vérifie ainsi que la
zone de transition va environ de x = —2 a z = +2.

La largeur de la zone de transition entre y = 1 et y = 0 va varier si on change la fonction
de cette fagon : y = 1/[exp(x/A) + 1]. Pour A > 1, la zone de transition va s’élargir
beaucoup ; pour A < 1 la zone va devenir beaucoup plus étroite.

Finalement, si au lieu de centrer la fonction y autour de z = 0, on la centre autour de
x = xp, le point d’inflexion sera en x = z.

On peut revenir maintenant a la fonction de Fermi-Dirac; par rapport a la fonction y on
a:x=FE>0,xz9g=pet A=kpT.

f(E7T) =

1.0

0.5+

(b) On peut estimer la largeur de la région de transition par la pente de la courbe & E = p
(o f =1/2), et ses points d’intersection & f = 0 et f =1 (voir figure).
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Donc on peut écrire que AE T ol nous avons considéré la valeur absolue de la
B
pente en u.

Comme Af =1—-0=1, on obtient AE = 4kgT

A titre indicatif on donne : kg7 (300 K) ~ 26 meV et kg7 (10 K) ~ 0.8 meV.



2. Densité d’états du gaz d’électrons libres 4 N = 1, 2 et 3 dimensions

(a)

Un état électronique dans l'espace réciproque est defini par le vecteur k dont les com-

2

posantes peuvent prendre des valeurs discretes multiples de T (conditions aux bords
périodiques). Dans un espace réciproque de dimension N chaque état occupe un volume

2\ ¥

7 .
Le volume infinitésimal de l’espace réciproque df) est le volume compris entre les
états k et k + dk, clest a dire dQ = d k. Donc, & 1D le volume infinitésimal d'k
est dk = 2dk, le facteur 2 tenant compte des k positifs et négatifs. A 2D on obtient
d’k = 2wk dk, ce qui correspond & la circonférence d’un cercle de rayon k multipliée par

une petite variation dk. A 3D on obtient d°k = 47k? dk, la surface d’une sphere de rayon
k multipliée par une petite variation dk. En résumé :

2dk 1D
dQ = d"k ={ 2rkdk 2D (1)
imk?dk 3D
Le nombre d’états permis dans le volume de I’espace réciproque df2 (par unité de volume
N N
1 L
dans 'espace direct) en tenant compte du spin est donné par 2 <L) <2> dsd.
T
Pour obtenir lexpression de g(FE), il faut réécrire cette relation en fonction de E en

27.2
utilisant la relation de dispersion E(k) = o pour faire le changement de variable.
m

Pour le cas a 1D, on a :

Pour le cas a 3D, on a :

1 (LN, 12m rm\Y2 1 (2m\** 1,
g(E)dE_2L3<27r> 47rk:dk:_ﬁ—E( ) E dE_<> EV? 4R

En résumé :
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(c) On obtient les courbes suivantes :

gf
Densité d’états g¢g(E) et produit
g(F) f(F) a une dimension (1D).
gf —9
gf (T=0)
——gf (T>0)
Densité d’états g¢g(E) et produit
k g(F) f(F) a deux dimensions (2D).
E=u E
9f | —9g
gf (T=0)
— gf (T>0)
Densité d’états ¢(E) et produit
g(E) f(E) a trois dimensions (3D).
E§=u E

(d) L’aire sous la courbe g(F)f(F) correspond au nombre de particules. g(E) donne la densité
des états et f(E) donne la probabilité de les occuper. On peut écrire :

e’} Er
n=[o®)1E)dE = [ g(B)dE. (3)
0 0

v est défini de facon telle que le nombre de particules reste constant si la température
augmente ou diminue. g doit donc varier de telle facon a ce que l'aire sous la courbe
g(E)f(E) reste constante si on change T'.

On considere d’abord le cas 3D : I'intégrant de I’équation 3 est le produit entre une fonction
croissante et une fonction antisymmétrique par rapport au point (i, 1/2) (voir Figure). Si
on augmente T, une partie de l'aire & gauche de p (F < u) passe a droite de E = p. Vu
que la partie qui passe de gauche a droite va recevoir plus de “poids” a droite di au fait
que g(F) est croissante, il faut déplacer p vers des énergies plus basses pour garder aire
(et donc le nombre d’électrons) constante.

Pour les autres dimensions on trouve : pour le cas 1D, comme g(E) est une fonction
decroissante, p se déplace vers des énergies plus hautes pour garder 'aire constante ; pour
le cas 2D, g(F) est constante, donc u = Er a toutes les températures.

Ces résultats peuvent aussi étre obtenus de fagon plus quantitative en utilisant la relation
(voir expression 4.48, Ch. 4 du cours) :

2 0g/0F
9(E) E=Ep
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On trouve alors :
w2 (kT 2
Er|ll4+—| = 1D
F < 12 < Ep >
w(T) =< Ep 2D (4)
w2 (kT 2
Fr|ll——[—=— D
r < 2 ( Er ) ’

En notant que kgT/Er = T/Tr, ou Tr ~ 5 x 104K, on obtient qu’a température
ambiante la variation de p par rapport a Ep est de 'ordre de 0.01%.

L’équation 4.17 du polycopié donne la relation suivante entre 1’énergie Fermi et la densité
des électrons de conduction, n :

h2 2, \2

En substituant les valeurs nous obtenons Frp = 2.12 eV.

Maintenant que nous connaissons Er, nous pouvons calculer la densité d’états au niveau
de Fermi :

3/2
1 (2m 12 _3n 46, —371-1 273 x;-1
La largeur de la zone de transition de la distribution de Fermi-Dirac a température am-
biante est environ 100 meV correspondant & 1.6 -1072° J. En multipliant par la densité
d’états & Er on obtient qu’il y a ~ 1-10%7 électrons m~> qui participent & la redistribution,
ce qui correspond & =~ 7.1% du nombre total d’électrons libres du potassium.

3. Questions de compréhension - Chapitres 1, 2 3

(a)

sc : la cellule conventionnelle est un cube, avec un point (ou un noeud) du réseau de Bravais
dans chaque vertex du cube. Cela fait 1 point du réseau par maille, donc la maille primitive
coincide avec la maille conventionnelle, et elles ont le méme volume V.

fce : la cellule conventionnelle est un cube, avec un point (ou un noeud) du réseau de
Bravais dans chaque vertex du cube et un point au centre de chaque face du cube. Cela
fait 8 x1/8+6x1/2 = 4 points du réseau par maille conventionnelle. La maille primitive ne
peut pas coincider avec la maille conventionnelle. Comme elle doit contenir un seul point
du réseau de Bravais, on en déduit que son volume est V/4.

sc fce

La liaison covalente est due au partage des électrons entre les atomes. Elle est favorable
lorsqu’on est en présence d’orbitales de valence partiellement remplies. Pour le diamant,
le nombre de coordination est 4. A partir des orbitales atomiques 2s et 2p,, 2p,, 2p., les
atomes forment 4 orbitales hybrides sp® qui accueillent les 4 électrons de valence d’un
atome de carbone (2s? 2p?).
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Pour le mode identifié par k/,, le déplacement de l’atome n est tel que
un (k) ~ exp (iklna) = exp (i(k, + 27 /a)na) = exp (ik,na) - exp (i27wn) = exp (ikyna) ~
un(ky)

Les vecteurs d’onde k sont discrets parce que le solide est de taille finie. Les conditions de
bord (fixes ou périodiques) déterminent les valeurs k admises.

Nombre de k dans PZB : i) N ; ii) N/2.
Pour i), il y a N valeurs k, 3 polarisations (L, T1, T2) donc on a 3N modes.

Pour ii) il y a N/2 valeurs k, 3 polarisations (branches) acoustiques, 3 polarisation
(branches) optiques, donc on a 3N modes.

A basse température uniquement les phonons avec w petit contribuent a ¢,. Ces phonons
se trouvent dans les branches acoustiques, a proximité du centre de la BZ. Les branches
acoustiques sont linéaires a proximité du centre de la BZ, ce qui correspond au modele de
Debye. Par conséquent c, est trés bien décrite par ce modele. Le modele de Einstein consi-
dere une fréquence unique pour tous les modes, et donc il n’y a pas de modes qui peuvent
étre excités a basse température. Par conséquent, dans le modele de Einstein ¢, décroit trop
vite (exponentiellement) en descendant en température au lieu d’étre proportionnelle a T°3.

Dans le modele de Debye w o 4/ % |k|. Il s’ensuit que wp dépend directement de la constante

de rappel C et inversement de la masse m. Qualitativement, pour une énergie de cohesion
Eon grande, C sera grande. La température de Debye est définie comme 0p = hwp /kp.

On déduit que : Op(Al) = 428 K; Op(Ag) = 225 K; Op(Pb) = 105 K.

Les modes normaux sont les états stationnaires du hamiltonien harmonique. En ’absence
de défauts et de surfaces (bords), ces états stationnaires sont imperturbés. Si une distribu-
tion de phonons ayant une vitesse de groupe moyenne non nulle se crée, cette distribution
n’est pas modifiée lors de sa propagation dans le cristal et le courant thermique se propage
indéfiniment.

Le transport de chaleur se fait par paquets d’ondes, donc par une superposition de plusieurs
modes propres. Dans les processus normaux la quantité de mouvement n’est pas altéré,
puisque le sens de propagation des phonons impliqués est le méme avant et apres collision.
Donc la composition de ce paquet d’onde change légerement, mais la propagation de la
chaleur est peu affectée. Les processus Umklapp impliquent des modes avec de vecteurs k
plus grands et la conservation de la quantité de mouvement fait intervenir des vecteurs du
réseau réciproque non nuls : k1 + ko = kg + G. Le sens du vecteur kg est opposé a celui
de k; et ko. Ces processus changent la direction de propagation pour les modes propres
apres la collision. Cela modifie considérablement la propagation du paquet d’onde et donc
la propagation de la chaleur, ce qui affecte la conductibilité thermique.



