ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Exercices de Physique du Solide Prof. H. Brune

Série No. 6 25 Mars 2025

But de cette série : comprendre le concept de densité de modes

1. Densité de modes normaux g(w) & 1D

Considérer la relation de dispersion d’une chaine unidimensionnelle, formée par N atomes de
masse m distants de a (réseau monoatomique), avec C' la constante de rappel entre premiers
voisins :

Dans l'approximation de Debye la relation de dispersion devient :
w = clk|

avec ¢ un parametre qui permet de décrire au mieux I’ensemble de la relation de dispersion et
que ne correspond pas nécessairement a la pente a ’origine.

(a) Faire un raisonnement basé sur les representations graphiques de w(k) pour trouver l'allure
qualitative de la densité de modes g(w) dans les deux descriptions.

(b) Trouver I'expression pour g(w) dans le cas du modele de Debye et dans le cas de la relation
de dispersion exacte. (Les deux expressions sont données au début de l'exercice 2).
Indications : plusieurs fagons de procéder sont possibles :

- utiliser une des relations données au cours;
- faire un raisonnement basé sur la relation entre densité de modes dans ’espace des k et
densité de modes dans 'espace des w.

2. Chaleur spécifique d’un réseau monoatomique unidimensionnel

Nous avons trouvé a l’exercice 1 que la densité de modes g(w) pour un réseau monoatomique
unidimensionnel (N atomes de masse m distants de a, constante de rappel C, interaction limitée
aux premiers voisins) est donnée par

g(w) = 2 _ 2n
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Ol Winaz = 24/ % est la fréquence maximale dans la relation de dispersion et n = N/(Na) = 1/a

est la densité atomique.

Dans 'approximation de Debye, w = c|k|; pour la densité de modes on a trouvé

TC  awp  Wp
ol wp = ckp et n = 1/a est la densité atomique.
(a) Considérer le cas du modele de Debye. Ecrire I'expression de la densité d’énergie interne

u en fonction de la densité de modes. Ensuite, trouver la chaleur spécifique ¢, pour les
limites & haute température (kg7 > hwp) et a basse température (kpT < hwp).



Indication : lors du calcul de ¢, procéder a la dérivation par rapport a T apres avoir choisi
la limite de température haute ou basse.
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(b) Considérer maintenant la description exacte. Ecrire ’expression de u et trouver la chaleur
spécifique ¢, pour les limites a haute température (kT > hwmaz) €t & basse température
(kBT < th).

Indication : dans ce cas aussi, procéder a la dérivation par rapport a T apres avoir choisi
la limite de température haute ou basse.

(c) Comparer les résultats trouvés aux points (a) et (b).

3. Densité de modes g(w) d’un systéme bidimensionnel

Dans la série 4 nous avons considéré les modes de vibrations d’un systeme monoatomique bidi-
mensionnel, ot nous avons considéré seulement une branche (modes hors plan).

Nous avons vu que dans la direction [1,0], ky = 0, k = k,, et

avec m la masse des atomes, a le parametre de maille égal a la distance entre atomes, et C' la
constante de rappel entre premiers voisins.

La figure a la page suivante montre les courbes de dispersion dans deux directions a haute
symétrie dans la premieére zone de Brillouin (& gauche) (équivalentes au résultat de 1’exercice de
la série 4), et des courbes d’isofréquence (& droite).

(a) Comprendre la signification des courbes d’isofréquence, et interpreter leur forme dans la
lere zone de Brillouin. Quels types de points sont les points I', A et B (minima, maxima,
ou autre) 7 Que signifie la forme circulaire des courbes & proximité de I" et B?7

(b) La densité de modes pour un systéme tridimensionnel est donnée par :
1 dS,
- Ly [ s
) 2 Ve ()
sur face ws(k)=cte
Ecrire I’expression équivalente pour le cas d’un systeme bidimensionnel.
(¢) Sans faire de calculs : en considérant la relation de dispersion, les courbes isofréquence, et

Iexpression de g(w), pour quelles valeurs de w peut-on s’attendre & des points singuliers
dans g(w) ? Que se passe-t-il pour w(w/a,0)? Et pour w(w/a,7/a)?
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Corrigé série No. 6 25 Mars 2025

1. Densité de modes normaux g(w) & 1D

(a) Nous avons vu que la densité de modes dans 'espace k est constante : & une dimension
elle vaut L/27. Cela signifie que dans chaque interval de largeur donnée Ak il y a le méme
nombre de vecteurs k permis.

La partie a gauche de la figure (w(k) vs. k dans la lere ZB) montre que la densité de modes
en w est constante si ’'on considére 'approximation de Debye (en rouge) : & Ak correspond
un Aw qui a toujours la méme largeur, donc la densité de modes est constante en w.

Par contre, si ’on considere la relation de dispersion exacte (en bleu), on voit que, lorsque
la courbe devient plate, les modes dans l'interval Ak sont concentrés dans un Aw qui est
plus petit : la densité de modes en w est donc plus grande. (Note : Ceci est toujours valable
dans les cas 1D, mais la situation peut étre différente dans les cas 2D et 3D.)
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(b) Comme mentionné dans I’énoncé, on peut procéder de différentes fagons pour trouver g(w).

i) En utilisant I’équation 3.28 du cours

3
s =% [ e w)

2 3
5 1ere ZB (27)

P de ik
(2r)3 " 2m 2m

A une dimension : une seule branche (s =1);

dk
o) = [ Tl - wik)
T
On peut utiliser cette relation pour calculer g(w) dans I'approximation de Debye :
yan Fd 1
IDebye(w) = /5 [w — ck] = / —wé[w —ck] = — pour w<wp
T e e
0 0

On trouve bien que g(w) est constante pour w < wp, et zéro pour w > wp



ii) En utilisant I’équation 3.29 du cours

1
9(“’)(27)325 / a5
lere ZB grad w(k) ’

Cas unidimensionnel avec s = 1 (une branche) : la “surface” correspond a deux points :

g(w) = % ‘dbzzk) ‘

On peut refaire le calcul de g(w) dans 'approximation de Debye :

.gDebye(w) = 5__ =

Pour le calcul de g(w) & partir de la relation de dispersion exacte (on définit wpae =

2,/C/m) :

9 1 9 9
9(w)
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iii) On peut aussi trouver ces résultats de fagon plus intuitive puisque le systéme est
isotrope (nécessairement puisque il est unidimensionnel). Le volume du systéme dans
I’espace direct est L = Na, donc le volume de ’espace réciproque occupé par chaque
vecteur k est ]%,—7; Le nombre de valeurs k permises dans le volume infinitésimal de ’espace
réciproque dk (1D) par unité de volume du cristal est

La relation entre g(w) et g(k) est (& une dimension) :

g(w)dw = g(k)dk = g(k) 2dk

Na 1
dw = — —2dk
9(w)dew 2w Na

Pour obtenir I’expression de g(w), il faut récrire cette relation en fonction de w en utilisant
la relation de dispersion.

Dans 'approximation de Debye :

1 11 1
pebye(W)dw = 2o—dk = gpepye(w) = o
Pour la relation de dispersion exacte :
11 2

1
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2. Chaleur spécifique d’un réseau monoatomique unidimensionnel

En général, pour un systeme 3D, I’expression pour la densité d’énergie est donnée par :
d*k 1
u= Z / ——=hw,(k) ((nks) + )
5 17ZB (2m) :
1

On peut récrire cette expression a I’aide de la densité de modes g(w), comme indiqué par I’équa-
tion (3.27) du polycopié :

Wmax

u= [ nog) () +3)
0

Dans cette l'expression, la dimension du systéme (1D, 2D, 3D) est prise en compte par g(w).
L’avantage est de pouvoir traiter une intégrale sur une grandeur scalaire indépendamment de la
dimension du systeme.

On va utiliser cette expression pour le systéme unidimensionnel, avec relation de dispersion

décrite dans le modele de Debye et relation de dispersion exacte.

(a) Dans le modele de Debye

WD

U:Zthg(w) <<n(w)> 1>dw aiDO s exp{l}—1+; dus

Dans l’expression de la chaleur spécifique on peut négliger directement le demi quantum,
puisque il ne dépend pas de la température :

ou 0 F 1
ar T/ TR
9 exp —T —1
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A haute température : kg1 > hwp

On peut approximer e” &~ 1 + z avec = hw/kpT et on obtient (avec n = 1) :

/ T g D L 0T
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A basse température : kgT < hwp

On peut étendre 'intégrale jusqu’a oo ('argument de 'intégrale — 0 pour w — 00). Avec
la substitution = = fiw/kpT, on obtient :

o 1 ?m 1 D1 (kBT)27O z
Cy = —— — W = — T =
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A une dimension, la chaleur spécifique a basse température est proportionnelle a 7.



(b) En partant de la relation de dispersion exacte

Wmax Wmax

1 2 1 1
u= hw g(w) <(n(w)) + ) dw = / huw + - | dw
0/ 2 0 Tay w72nax w? eXp{%} —1 2

La chaleur spécifique, comme au point (a) :
Wmazx

ou 0 2 1

aT aT Ta 0 w%zax - WQ exp{ﬁ} —1

A haute température : kg1 > hwmaz
On peut approximer e* =

Cy =

1+ x avec x = hw/kpT et on obtient :
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0
en utilisant [ \/ﬁ dr = arcsin(g), on trouve
0 2 w Wmaz 01
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Alternative : en substituant w:ﬁ =sinz; dw = wpazcoszdr; 0—0; Wnax — 5

jus
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A basse température : kg1 < hwmaz
On peut étendre 'intégrale jusqu’a oo.

w
Comme — < 1, on peut développer
wpm

1 1 1 w?
~ 1+ 5. 9
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au premier ordre :
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Avec la substitution x = fww/kpT, on obtient :
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A haute température, les deux modeles donnent le méme résultat : ¢, = nkp.

47‘(’2 kB 471'4 < kB >3

A basse température, on a un terme linéaire dans les deux cas, et un terme correctif en 7
si on considere la relation de dispersion exacte :

2
Debye : ¢, = %5 nkp %T

3
3
Exact : ¢, = —Q;nkB th T+ —41”5 nkp (h kp ) T3
max max

Si on prend ¢ correspondant a la pente pour kK — 0 , on trouve la méme valeur pour la
constante du terme linéaire.

3. Densité de modes g(w) d’un systéme bidimensionnel

(a)

Les courbes d’isofréquence correspondent aux valeurs (kg,k,) pour lesquels w est
constante, égale a une valeur donnée. On voit bien que pour des petits k£ les courbes
isofréquence sont des cercles. C’est la gamme dans laquelle la relation de dispersion est
linéaire et ne dépend pas de la direction, le systéme est isotrope (dépendance du module
de k uniquement). Lorsque on s’éloigne du point I' = (0,0), les courbes d’isofréquence
changent un peu de forme jusqu’a devenir un carré : en effet pour des questions de
symétrie la courbe d’isofréquence qui correspond & k = m/a est le carré montré dans
la figure. Ensuite, lorsque on augmente encore k, et k, en restant dans la lére ZB, on
s’approche des points de type B= (mw/a,7n/a). Les courbes isofréquence deviennent des
cercles centrés sur chaque point de type B. Le point I" est un minimum, les points de type
B sont des maxima, les points de type A sont des points de selle (le gradient de w change
de signe selon la direction).

Pour le cas 2D et pour une une seule branche (s = 1), les surfaces correspondent a des
lignes et on peut écrire :

1 dl.,
1) = / Ve (k)|

courbe w(k)=cte

On s’attend a des points singuliers pour les valuers de w ou le gradient s’annule :
w = w(r/a,0) et w = w(m/a,m/a). Par contre, un point singulier ne correspond pas
nécessairement & un pic dans la densité de modes g(w). En effet, dans le calcul de g(w)
il faut aussi tenir compte de la surface (& 2D c’est une ligne, une courbe) de fréquence
constante sur laquelle il faut faire I'intégrale.

On peut avoir une divergence lorsque Vws — 0, mais si la surface correspondante sur
laquelle on integre tend vers zéro, on aura pas de divergence : les deux comportements se
compensent et on aura un point singulier qui n’est pas une divergence.

Pour faire l'intégrale, il faut considérer des lignes fermées (schéma de zone répétées).

Dans le cas de notre systéme bidimensionnel, g(w) présentera un pic pour w qui correspond
a des k du type (7/a,0) (la longueur de la courbe de fréquence constante ne tend pas a zéro,
au contraire, c’est la plus longue de toutes les courbes). Par contre, pour w a proximité
des points de type B, la longueur des lignes d’isofréquence tend vers zéro. g(w) présentera
un point singulier, mais ce n’est pas un pic. En effet, g(w) tend rapidement a une valeur
constante.



