
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Exercices de Physique du Solide Prof. H. Brune

Série No. 6 25 Mars 2025

But de cette série : comprendre le concept de densité de modes

1. Densité de modes normaux g(ω) à 1D

Considérer la relation de dispersion d’une châıne unidimensionnelle, formée par N atomes de
masse m distants de a (réseau monoatomique), avec C la constante de rappel entre premiers
voisins :

ω(k) = 2

√
C

m

∣∣∣∣sin ka2
∣∣∣∣

Dans l’approximation de Debye la relation de dispersion devient :

ω = c|k|

avec c un paramètre qui permet de décrire au mieux l’ensemble de la relation de dispersion et
que ne correspond pas nécessairement à la pente à l’origine.

(a) Faire un raisonnement basé sur les representations graphiques de ω(k) pour trouver l’allure
qualitative de la densité de modes g(ω) dans les deux descriptions.

(b) Trouver l’expression pour g(ω) dans le cas du modèle de Debye et dans le cas de la relation
de dispersion exacte. (Les deux expressions sont données au début de l’exercice 2).

Indications : plusieurs façons de procéder sont possibles :

- utiliser une des relations données au cours ;

- faire un raisonnement basé sur la relation entre densité de modes dans l’espace des k et
densité de modes dans l’espace des ω.

2. Chaleur spécifique d’un réseau monoatomique unidimensionnel

Nous avons trouvé à l’exercice 1 que la densité de modes g(ω) pour un réseau monoatomique
unidimensionnel (N atomes de masse m distants de a, constante de rappel C, interaction limitée
aux premiers voisins) est donnée par

g(ω) =
2

πa
√
ω2
max − ω2

=
2n

π
√
ω2
max − ω2

où ωmax = 2
√

C
m est la fréquence maximale dans la relation de dispersion et n = N/(Na) = 1/a

est la densité atomique.

Dans l’approximation de Debye, ω = c|k| ; pour la densité de modes on a trouvé

g(ω) =
1

πc
=

1

aωD
=

n

ωD

où ωD = c kD et n = 1/a est la densité atomique.

(a) Considérer le cas du modèle de Debye. Ecrire l’expression de la densité d’énergie interne
u en fonction de la densité de modes. Ensuite, trouver la chaleur spécifique cv pour les
limites à haute température (kBT � ~ωD) et à basse température (kBT � ~ωD).
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Indication : lors du calcul de cv, procéder à la dérivation par rapport à T après avoir choisi
la limite de température haute ou basse.∫

1√
α2 − x2

dx = arcsin
(x
α

)
;

1√
1− x2

≈ 1 +
1

2
x2 (x� 1)

∞∫
0

x

ex − 1
dx =

π2

6
;

∞∫
0

x3

ex − 1
dx =

π4

15

(b) Considérer maintenant la description exacte. Ecrire l’expression de u et trouver la chaleur
spécifique cv pour les limites à haute température (kBT � ~ωmax) et à basse température
(kBT � ~ωD).

Indication : dans ce cas aussi, procéder à la dérivation par rapport à T après avoir choisi
la limite de température haute ou basse.

(c) Comparer les résultats trouvés aux points (a) et (b).

3. Densité de modes g(ω) d’un système bidimensionnel

Dans la série 4 nous avons considéré les modes de vibrations d’un système monoatomique bidi-
mensionnel, où nous avons considéré seulement une branche (modes hors plan).

Nous avons vu que dans la direction [1, 0], ky = 0, k = kx, et

ω(k) = 2

√
C

m

∣∣∣∣sin ka2
∣∣∣∣

et dans la direction [1, 1], avec kx = ky = k/
√

2 :

ω(k) = 2

√
2C

m

∣∣∣∣sin ka

2
√

2

∣∣∣∣
avec m la masse des atomes, a le paramètre de maille égal à la distance entre atomes, et C la
constante de rappel entre premiers voisins.

La figure à la page suivante montre les courbes de dispersion dans deux directions à haute
symétrie dans la première zone de Brillouin (à gauche) (équivalentes au résultat de l’exercice de
la série 4), et des courbes d’isofréquence (à droite).

(a) Comprendre la signification des courbes d’isofréquence, et interpreter leur forme dans la
1ère zone de Brillouin. Quels types de points sont les points Γ, A et B (minima, maxima,
ou autre) ? Que signifie la forme circulaire des courbes à proximité de Γ et B ?

(b) La densité de modes pour un système tridimensionnel est donnée par :

g (ω) =
1

(2π)3

∑
s

∫
surface ωs(k)=cte

dSω
|∇ωs(k)|

Ecrire l’expression équivalente pour le cas d’un système bidimensionnel.

(c) Sans faire de calculs : en considérant la relation de dispersion, les courbes isofréquence, et
l’expression de g(ω), pour quelles valeurs de ω peut-on s’attendre à des points singuliers
dans g(ω) ? Que se passe-t-il pour ω(π/a, 0) ? Et pour ω(π/a, π/a) ?
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Corrigé série No. 6 25 Mars 2025

1. Densité de modes normaux g(ω) à 1D

(a) Nous avons vu que la densité de modes dans l’espace k est constante : à une dimension
elle vaut L/2π. Cela signifie que dans chaque interval de largeur donnée ∆k il y a le même
nombre de vecteurs k permis.

La partie à gauche de la figure (ω(k) vs. k dans la 1ère ZB) montre que la densité de modes
en ω est constante si l’on considère l’approximation de Debye (en rouge) : à ∆k correspond
un ∆ω qui a toujours la même largeur, donc la densité de modes est constante en ω.

Par contre, si l’on considère la relation de dispersion exacte (en bleu), on voit que, lorsque
la courbe devient plate, les modes dans l’interval ∆k sont concentrés dans un ∆ω qui est
plus petit : la densité de modes en ω est donc plus grande. (Note : Ceci est toujours valable
dans les cas 1D, mais la situation peut être différente dans les cas 2D et 3D.)

(b) Comme mentionné dans l’énoncé, on peut procéder de différentes façons pour trouver g(ω).

i) En utilisant l’équation 3.28 du cours

g(ω) =
∑
s

∫
1ère ZB

d3k

(2π)3 δ [ω − ωs(k)]

A une dimension : une seule branche (s = 1) ;
d3k

(2π)3
→ dk

2π
=

2dk

2π
:

g(ω) =

∫
dk

π
δ [ω − ω(k)]

On peut utiliser cette relation pour calculer g(ω) dans l’approximation de Debye :

gDebye(ω) =

kD∫
0

dk

π
δ [ω − ck] =

ωD∫
0

dω

πc
δ [ω − ck] =

1

πc
pour ω < ωD

On trouve bien que g(ω) est constante pour ω < ωD, et zéro pour ω > ωD

———
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ii) En utilisant l’équation 3.29 du cours

g(ω)
1

(2π)3
Σs

∫
1ère ZB

dS∣∣∣gradω(k)
∣∣∣

Cas unidimensionnel avec s = 1 (une branche) : la “surface” correspond à deux points :

g(ω) =
1

2π

2∣∣∣dω(k)
dk

∣∣∣
On peut refaire le calcul de g(ω) dans l’approximation de Debye :

gDebye(ω) =
1

2π

2

c
=

1

πc

Pour le calcul de g(ω) à partir de la relation de dispersion exacte (on définit ωmax =
2
√
C/m) :

g(ω) =
1

2π

2∣∣∣dω(k)
dk

∣∣∣ =
1

πωmax
a
2 cos ka2

=
2

πa ωmax

√
1− sin2 ka

2

=
2

πa
√
ω2
max − ω2

———

iii) On peut aussi trouver ces résultats de façon plus intuitive puisque le système est
isotrope (nécessairement puisque il est unidimensionnel). Le volume du système dans
l’espace direct est L = Na, donc le volume de l’espace réciproque occupé par chaque
vecteur k est 2π

Na . Le nombre de valeurs k permises dans le volume infinitésimal de l’espace
réciproque dk (1D) par unité de volume du cristal est

g̃(k)dk =
Na

2π

1

Na
dk

La relation entre g(ω) et g̃(k) est (à une dimension) :

g(ω)dω = g̃(k)dk = g̃(k) 2dk

g(ω)dω =
Na

2π

1

Na
2dk

Pour obtenir l’expression de g(ω), il faut récrire cette relation en fonction de ω en utilisant
la relation de dispersion.

Dans l’approximation de Debye :

gDebye(ω)dω = 2
1

2π
dk → gDebye(ω) =

1

π

1
dω
dk

=
1

πc

Pour la relation de dispersion exacte :

g(ω)dω = 2
1

2π
dk → g(ω) =

1

π

1
dω
dk

=
2

πa
√
ω2
max − ω2
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2. Chaleur spécifique d’un réseau monoatomique unidimensionnel

En général, pour un système 3D, l’expression pour la densité d’énergie est donnée par :

u =
∑
s

∫
1ZB

d3k

(2π)3~ωs(k)

(
〈nk,s〉+

1

2

)

On peut récrire cette expression à l’aide de la densité de modes g(ω), comme indiqué par l’équa-
tion (3.27) du polycopié :

u =

ωmax∫
0

~ω g(ω)

(
〈n(ω)〉+

1

2

)
dω

Dans cette l’expression, la dimension du système (1D, 2D, 3D) est prise en compte par g(ω).
L’avantage est de pouvoir traiter une intégrale sur une grandeur scalaire indépendamment de la
dimension du système.

On va utiliser cette expression pour le système unidimensionnel, avec relation de dispersion
décrite dans le modèle de Debye et relation de dispersion exacte.

(a) Dans le modèle de Debye

u =

ωD∫
0

~ω g(ω)

(
〈n(ω)〉+

1

2

)
dω =

1

aωD

ωD∫
0

~ω

 1

exp
{

~ω
kBT

}
− 1

+
1

2

 dω

Dans l’expression de la chaleur spécifique on peut négliger directement le demi quantum,
puisque il ne dépend pas de la température :

cv =
∂u

∂T
=

∂

∂T

1

aωD

ωD∫
0

~ω
1

exp
{

~ω
kBT

}
− 1

dω

A haute température : kBT � ~ωD
On peut approximer ex ≈ 1 + x avec x = ~ω/kBT et on obtient (avec n = 1

a) :

cv =
∂

∂T

1

aωD

ωD∫
0

~ω
kBT

~ω
dω =

∂

∂T

1

aωD
kBTωD =

∂

∂T

kBT

a
= nkB

A basse température : kBT � ~ωD
On peut étendre l’intégrale jusqu’à ∞ (l’argument de l’intégrale → 0 pour ω →∞). Avec
la substitution x = ~ω/kBT , on obtient :

cv =
∂

∂T

1

aωD

∞∫
0

~ω
1

exp
{

~ω
kBT

}
− 1

dω =
∂

∂T

1

aωD

(kBT )2

~

∞∫
0

x

ex − 1
dx =

=
∂

∂T

1

aωD

(kBT )2

~
π2

6
=
π2

3
nkB

kB
~ωD

T =
π2

3
nkB

T

θD

A une dimension, la chaleur spécifique à basse température est proportionnelle à T .
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(b) En partant de la relation de dispersion exacte

u =

ωmax∫
0

~ω g(ω)

(
〈n(ω)〉+

1

2

)
dω =

ωmax∫
0

~ω
2

πa
√
ω2
max − ω2

 1

exp
{

~ω
kBT

}
− 1

+
1

2

 dω

La chaleur spécifique, comme au point (a) :

cv =
∂u

∂T
=

∂

∂T

2

πa

ωmax∫
0

~ω
1√

ω2
max − ω2

1

exp
{

~ω
kBT

}
− 1

dω

A haute température : kBT � ~ωmax
On peut approximer ex ≈ 1 + x avec x = ~ω/kBT et on obtient :

cv =
∂u

∂T
=

∂

∂T

2

πa

ωmax∫
0

~ω
1√

ω2
max − ω2

kBT

~ω
dω

en utilisant
∫

1√
α2−x2 dx = arcsin

(
x
α

)
, on trouve

cv =
∂

∂T

2

πa
kBT arcsin

(
ω

ωmax

)∣∣∣ωmax
0

=
∂

∂T

1

a
kBT =

1

a
kB = nkB

Alternative : en substituant ω
ωmax

= sinx; dω = ωmax cosx dx; 0→ 0; ωmax → π
2 :

cv =
∂

∂T

2

πa
kBT

π
2∫

0

cosx√
1− sin2 x

dx =
∂

∂T

2

πa
kBT

π

2
=

∂

∂T

1

a
kBT =

1

a
kB = nkB

A basse température : kBT � ~ωmax
On peut étendre l’intégrale jusqu’à ∞.

Comme
ω

ωM
� 1, on peut développer

1√
ω2
max − ω2

au premier ordre :

1√
ω2
max − ω2

≈ 1

ωmax

(
1 +

1

2

ω2

ω2
max

)

cv =
∂u

∂T
=

∂

∂T

2

πa

∞∫
0

~ω
1

ωmax

(
1 +

1

2

ω2

ω2
max

)
1

exp
{

~ω
kBT

}
− 1

dω

Avec la substitution x = ~ω/kBT , on obtient :

cv =
∂

∂T

2

πa

 1

~ωmax
(kBT )2

∞∫
0

x

ex − 1
dx+

1

2

1

~3ω3
max

(kBT )4

∞∫
0

x3

ex − 1
dx


=

∂

∂T

(
2

π

π2

6
nkB

kB
~ωmax

T 2 +
1

π

π4

15
nkB

(
kB

~ωmax

)3

T 4

)
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cv =
4

π

π2

6
nkB

kB
~ωmax

T +
4

π

π4

15
nkB

(
kB

~ωmax

)3

T 3

=
2π

3
nkB

kB
~ωmax

T +
4π3

15
nkB

(
kB

~ωmax

)3

T 3

(c) A haute température, les deux modèles donnent le même résultat : cv = nkB.

A basse température, on a un terme linéaire dans les deux cas, et un terme correctif en T 3

si on considère la relation de dispersion exacte :

Debye : cv = π2

3 nkB
kB
~ωDT

Exact : cv = 2π
3 nkB

kB
~ωmaxT + 4π3

15 nkB

(
kB

~ωmax

)3
T 3

Si on prend c correspondant à la pente pour k → 0 , on trouve la même valeur pour la
constante du terme linéaire.

3. Densité de modes g(ω) d’un système bidimensionnel

(a) Les courbes d’isofréquence correspondent aux valeurs (kx, ky) pour lesquels ω est
constante, égale à une valeur donnée. On voit bien que pour des petits k les courbes
isofréquence sont des cercles. C’est la gamme dans laquelle la relation de dispersion est
linéaire et ne dépend pas de la direction, le système est isotrope (dépendance du module
de k uniquement). Lorsque on s’éloigne du point Γ = (0, 0), les courbes d’isofréquence
changent un peu de forme jusqu’à devenir un carré : en effet pour des questions de
symétrie la courbe d’isofréquence qui correspond à k = π/a est le carré montré dans
la figure. Ensuite, lorsque on augmente encore kx et ky en restant dans la 1ère ZB, on
s’approche des points de type B= (π/a, π/a). Les courbes isofréquence deviennent des
cercles centrés sur chaque point de type B. Le point Γ est un minimum, les points de type
B sont des maxima, les points de type A sont des points de selle (le gradient de ω change
de signe selon la direction).

(b) Pour le cas 2D et pour une une seule branche (s = 1), les surfaces correspondent à des
lignes et on peut écrire :

g (ω) =
1

(2π)2

∫
courbe ω(k)=cte

dlω
|∇ω(k)|

(c) On s’attend à des points singuliers pour les valuers de ω où le gradient s’annule :
ω = ω(π/a, 0) et ω = ω(π/a, π/a). Par contre, un point singulier ne correspond pas
nécessairement à un pic dans la densité de modes g(ω). En effet, dans le calcul de g(ω)
il faut aussi tenir compte de la surface (à 2D c’est une ligne, une courbe) de fréquence
constante sur laquelle il faut faire l’intégrale.

On peut avoir une divergence lorsque ∇ωs → 0, mais si la surface correspondante sur
laquelle on intègre tend vers zéro, on aura pas de divergence : les deux comportements se
compensent et on aura un point singulier qui n’est pas une divergence.

Pour faire l’intégrale, il faut considérer des lignes fermées (schéma de zone répétées).

Dans le cas de notre système bidimensionnel, g(ω) présentera un pic pour ω qui correspond
à des k du type (π/a, 0) (la longueur de la courbe de fréquence constante ne tend pas à zéro,
au contraire, c’est la plus longue de toutes les courbes). Par contre, pour ω à proximité
des points de type B, la longueur des lignes d’isofréquence tend vers zéro. g(ω) présentera
un point singulier, mais ce n’est pas un pic. En effet, g(ω) tend rapidement à une valeur
constante.
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