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Exercices de Physique du Solide Prof. H. Brune

Série No. 5 18 Mars 2025

But de cette série : comprehension du modéle de Debye

1. Distribution de Planck ou de Bose-Einstein

La distribution de Planck ou de Bose-Einstein donne le nombre moyen de phonons dans le mode
défini par k, s :

1
o () 1 .

<nk,s> =

(a) Déterminer le comportement de la fonction (ny ) + 3 & haute température.

Indications :
S

kT’

- faire un développement limité et montrer que (n(x)) ~

- définir z = a haute température r < 1;
1 1

;(14-%%4-%%24-'“)

- faire un développement limité de la fonction f(z) = m
2 6

t (n(@)) ~ ~ — =+
our trouver que (n(x)) ~ — — = + —
P 4 x 2 12
(b) En calculant quelques valeurs point par point ou a 'aide d’un logiciel, dessiner (nk,s> + %
kT
(expression exacte donnée par 1’eq. 1) en fonction de y = h]i) .
S

2. Nombre d’occupation moyen, nombre de phonons

Nous avons vu au cours que (nk s) représente le
nombre d’occupation moyen des phonons dans
le mode normal k, s : T |

1
exp [hws (k) /kpT] — 1

(nK,s) =

(a) A partir des courbes de dispersion pour
le diamant montrées a la figure ci-
contre, estimer le nombre d’occupation
(n) pour tous les modes au point L, a
300 K, & 1000 K et a 3000 K. (kp =~
0.08617 meV K1),

(b) Comment ces résultats expliquent qualita-
tivement les valeurs de la chaleur spéci-
fique du diamant en fonction de la tempé-
rature ? (voir pdf sur Moodle)

Energy (meV)




3. Vecteur d’onde de Debye

On considere successivement les réseaux suivants : un réseau unidimensionnel de maille a, un
réseau bidimensionnel carré de coté a et un réseau cubique d’aréte a. Chaque systeéme est composé
de N mailles primitives.

(a) Considérer le réseau 1D. Utiliser les conditions aux bords périodiques et trouver les valeurs
de k permises pour des modes normaux de vibration. Combien de valeurs k y a-t-il dans
une maille primitive du réseau réciproque ?

(b) Les réseaux ont une base mono-atomique. Donner les expressions du vecteur d’onde de
Debye kp pour les trois réseaux.

(c) Dans le cas des réseaux 1D et 2D, représenter la leére zone de Brillouin ainsi que I’ensemble
des vecteurs k pris en compte dans le modele de Debye.

(d) Considérer le systeme 2D avec maintenant une base di-atomique. Combien de mailles
primitives et combien d’atomes y a-t-il? Trouver ’expression de kp, en sachant qu’on
décrit toutes les branches dans ce modele. Faire une représentation graphique analogue a
celle du point (c).

4. Expression de ¢, dans le modele de Debye

Au cours nous avons trouvé l'expression pour la chaleur spécifique dans le modele de Debye :

kp

=23 | Kk
Y 9T 272 | exp (hek/kpT) — 1
0

En faisant le changement de variable z = et en définissant la température de Debye 6p

B
telle que kgfp = hckp, montrer que

4 Op/T
onk (T) / xle® d
cy = 9In — — _dx
"\ op ) (er —1)?

ou n est la densité atomique.
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1. Distribution de Planck ou de Bose-Einstein

(a)

Comportement de la fonction (nk ) & haute temperature :

Tuw 1
en faisant la substitution z = 1{37;—” on a (n(x)) = =1

Pour x < 1, on développe ’exponentielle : e* =1+ x + %xQ + %1‘3 4+

Note : En général, on arréte le développement de 'exponentielle au terme en z2. Il est
nécessaire de considérer aussi le terme en x3 pour expliquer les effets anharmoniques,
comme la déviation de la chaleur spécifique par rapport a la loi classique de Dulong et
Petit.

On trouve :

(n(z)) ~ 1 _ 1 _ 1 1

T(te+l2 )1 vl l8 e 2+l a2y

Il s’agit maintenant de faire un deuxieme développement limité au voisinage de x = 0.

On défini la fonction

1

)= 5 f0)=1
/) (1+ iz + 122 1)
Pour f’(x) on obtient :
1,1
5+ 3% 1
") = — 2 3 - £0) = —=
@) (14 2+ t22)? J10) 2
Pour f”(z) on obtient :
1 1 1,22 1 1,21 1.2
F(z) = —s(1+ 52+ 577) +12(1 JE 37+ 527)(5 + 5%) L (0) = P
(1+ 52+ 522)4 6
On a alors :
/ 1 " 2 1 1 2
fl@)= fO)+ f0)z+=-f"0)z"=1—- -2+ —=z
2 2 12
Pour (n(z)) on trouve :
1 1 1 1 1 T
~-(1—r4 —a?)== -4+ =
@)~ 0= get ) =3 737 13
kT 1 1 kpT
A tres haute température (z < 1), (nxs) — B- _ —, c’est-a~dire (ny ) + = — B , ce
' hws 2 ’ 2 Fiws

qui correspond au comportement classique.

Pour la représentation graphique, il est utile de choisir y = ﬁi . On peut calculer quelques
S
1 .
el/y—1 °

valeurs de (n(y)) =



y= 0 (ny)~0
y= 0.5 (n(y)) =0.16
y= 1 (n(y) =058
y= 2 (ny)~ 154
y= 3 (n(y) =253
y= 4 (n(y)) ~ 3.52
On voit que la fonction (n(y)) tend rapidement vers y — 1.
On peut aussi montrer que (n(y)) tend vers zéro avec une derivée nulle.

La figure montre les fonctions

(n(y)) et (n(y)) + 3

kpT
hws

pour y =

2. Nombre d’occupation moyen, nombre de phonons

On déduit les valeurs de fw au point L a partir du graphe. Il y a 6 modes (dont 2 sont dégénérés
a deux a deux). Les valeurs approximatives sont reportées a la premiere colonne du tableau.
Pour calculer le nombre d’occupation des ces modes on calcule d’abord la valeur de kT pour
les trois températures :

T =300 K, kT =~ 26 meV
T =1000 K, kgT ~ 86 meV
T = 3000 K, kT = 260 meV

(Note : typiquement par simplicité on fait le calcul avec 25 meV)

Ensuite on utilise 'expression de (n) pour calculer les valeurs aux trois températures (voir
tableau) :

fuw (meV) | T=300K | T"=1000 K | T"= 3000 K
en L (n) (n) (n)
70 0.073 0.79 3.2
130 0.007 0.28 1.5
150 0.003 0.21 1.3
155 0.002 0.20 1.2



On voit que a température ambiante (7" = 300 K) le nombre d’occupation est tres faible méme
pour le mode a plus basse énergie. Cela signifie que seulement une petite partie de tous les
modes du solide est excitée, ce qui explique le fait que & température ambiante la valeur de ¢,
du diamant est beaucoup plus basse que la valeur de Dulong et Petit.

A T =1000 K, le nombre de phonons moyen est encore inférieur a 1.

A T = 3000 K, le nombre d’occupation moyen est > 1 pour les 4 modes : tous les modes du
solide peuvent étre excités aisément. Les valeurs de (n) + 1/2 approchent la limite classique, et
en effet a cette température la chaleur spécifique atteint la valeur de Dulong et Petit.

Dans le diamant la constante de rappel est tres grande (c¢’est 1ié au fait que la liaison covalente est
tres rigide) et la masse des atomes est faible. Ces facteurs impliquent que les modes de vibration
ont des énergies élevées.

3. Vecteur d’onde de Debye

(a) On impose que

U(’I’La) = u(na + NCL) avec u = akei(kna—wt)

aeima=) g Gkt N)a—wt) _y 1 _ gitkNa) _y p ]2\7—7;]' avec j €7
Pour j = N, on trouve k = 27 /a, donc k = G, un vecteur du réseau réciproque. Par
consequent, il y a N vecteurs k permis dans une maille primitive du réseau réciproque.
On peut choisir la premiere zone de Brillouin au lieu d’une maille primitive quelconque.
Dans ce cas, pour j = £N/2 on trouve k = £7/a, vecteurs correspondant aux bords de la
premiere zone de Brillouin. Comme attendu, il y a N valeurs k permises dans la premiere
zone de Brillouin.

(b) Pour conserver le nombre de modes, kp doit étre tel que la “sphere” (a 1D c’est un segment
et & 2D un disque) de Debye contient le méme nombre de vecteurs k& qu’il y a dans la
premiere zone de Brillouin, c’est-a-dire N.

Quelle est la densité de k permis? On peut trouver le volume associé a chaque valeur k et
donc la densité de valeurs k permises :

2 N
a 1D, volume associé _T densité _a
Na 27
2mr)? Na?
a 2D, volume associé¢ = (NZ)Q densité = (2:)2
2m)3 Na3
a 3D, volume associé = (NZ)3 densité :ﬁ
Pour les “spheres” de Debye :
N
%kpae =N = kp=< A 1D
27 a
Na? 2
wk%ﬁ =N = kp = \f ~ 1.13% 4 2D
4 Na? S/ (672) v
7k} =N kp=—Y——>~124— a 3D
3" D (2r)3 ~ b a a a3

Autrement dit, si on se réfere par exemple au cas 2D, la superficie délimitée par la
circonférence de Debye est identique a celle de la lére zone de Brillouin, mais la forme est
différente car la circonférence de Debye n’est pas affectée par le réseau cristallin (et est



uniquement fonction de la densité atomique). De facon équivalente, a 3D le volume de la
sphere de Debye est égal au volume de la premiere zone de Brillouin.

L’existence des branches longitudinales et transversales est prise en compte par un facteur
multiplicatif lors du calcul de u et de c¢,.

(c) Cas 1D a gauche, cas 2D a droite. Les valeurs k permises par les conditions aux bords
périodiques sont représentées par les petits cercles. En réalité, comme N est tres grand
(taille macroscopique du solide), les valeurs de k sont trés denses, quasi-continues.
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(d) Comme le nombre de mailles est N, le nombre d’atomes est 2N. Avec deux atomes par
maille dans un systéme 2D, la “spheére” de Debye doit contenir 2N valeurs k (si l'on
considere un schéma de zones étendu comme montré dans la figure a la page suivante)
puisque il faut aussi tenir compte des branches optiques. Dans cette figure, par simplicité,
les k;, k, admis par les conditions aux bords (c’est-a-dire les petits cercles de la figure
précédente), ne sont pas représentés explicitement. Donc on a :

Na? 22w T
2

—— =2N kp = —— ~ 1.59—
P (2r)2 ~ b a a

wk
On obtiendrait le méme résultat en considérant un schéma de zones réduit : dans ce cas
pour chaque vecteur k dans la premiere zone de Brillouin il y a 2 valeurs w (une pour la
branche acoustique et une pour la branche optique), d’ou le facteur 2 par rapport au cas
discuté en (b).
On peut aussi 'exprimer en disant que la “sphere” de Debye doit contenir autant de vecteurs
k qu’il y en a dans deux zones de Brillouin. Le “volume” de la “spheére” de Debye est égal
a 2 fois le “volume” d’une zone de Brillouin.
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4. Expression de ¢, dans le modele de Debye
Au cours nous avons trouvé I'expression pour la chaleur spécifique dans le modele de Debye :

kp

sk [ Kdk
© T 9T 2m2 | ehek/ksT _ 1
0
5D 3 dl hek/knT (_hck 1
_ 3he © kp 172
= 272 (ehck/kBT - 1)2
0
kp
~ 3(he)? 1/ 1A ke ehck/ksT
= 27T2kB T2 (eth/kBT o 1)2
0
changement de variable : x = k;T k= %m, dk — fl.;fc d

definitions : kgfp = hckp = hwp ; Tp = T =7



3P 4 x
B 31{73 kT / z=e®dx
T 2n2 \ ke ) (em~ 1)°
0p/T
212 P\ 0p o (em— 1)?
0p/T
oy (£) ]
A\ / (er—1)

ou dans le dernier passage nous avons utilisé k‘3D = 67%n, avec n la densité atomique.



