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Exercices de Physique du Solide Prof. H. Brune

Série No. 5 18 Mars 2025

But de cette série : comprehension du modèle de Debye

1. Distribution de Planck ou de Bose-Einstein

La distribution de Planck ou de Bose-Einstein donne le nombre moyen de phonons dans le mode
défini par k, s :

〈nk,s〉 =
1

exp
(
~ωs(k)
kBT

)
− 1

(1)

(a) Déterminer le comportement de la fonction 〈nk,s〉+ 1
2 à haute température.

Indications :

- définir x =
~ωs
kBT

; à haute température x� 1 ;

- faire un développement limité et montrer que 〈n(x)〉 ≈ 1

x

1

(1 + 1
2x+ 1

6x
2 + · · · )

- faire un développement limité de la fonction f(x) =
1

(1 + 1
2x+ 1

6x
2)

pour trouver que 〈n(x)〉 ≈ 1

x
− 1

2
+

x

12

(b) En calculant quelques valeurs point par point ou à l’aide d’un logiciel, dessiner 〈nk,s〉+ 1
2

(expression exacte donnée par l’eq. 1) en fonction de y =
kBT

~ωs
.

2. Nombre d’occupation moyen, nombre de phonons

Nous avons vu au cours que 〈nk,s〉 représente le
nombre d’occupation moyen des phonons dans
le mode normal k, s :

〈nk,s〉 =
1

exp [~ωs(k)/kBT ]− 1

(a) A partir des courbes de dispersion pour
le diamant montrées à la figure ci-
contre, estimer le nombre d’occupation
〈n〉 pour tous les modes au point L, à
300 K, à 1000 K et à 3000 K. (kB ≈
0.08617 meV K−1).

(b) Comment ces résultats expliquent qualita-
tivement les valeurs de la chaleur spéci-
fique du diamant en fonction de la tempé-
rature ? (voir pdf sur Moodle)
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3. Vecteur d’onde de Debye

On considère successivement les réseaux suivants : un réseau unidimensionnel de maille a, un
réseau bidimensionnel carré de côté a et un réseau cubique d’arête a. Chaque système est composé
de N mailles primitives.

(a) Considérer le réseau 1D. Utiliser les conditions aux bords périodiques et trouver les valeurs
de k permises pour des modes normaux de vibration. Combien de valeurs k y a-t-il dans
une maille primitive du réseau réciproque ?

(b) Les réseaux ont une base mono-atomique. Donner les expressions du vecteur d’onde de
Debye kD pour les trois réseaux.

(c) Dans le cas des réseaux 1D et 2D, représenter la 1ère zone de Brillouin ainsi que l’ensemble
des vecteurs k pris en compte dans le modèle de Debye.

(d) Considérer le système 2D avec maintenant une base di-atomique. Combien de mailles
primitives et combien d’atomes y a-t-il ? Trouver l’expression de kD, en sachant qu’on
décrit toutes les branches dans ce modèle. Faire une représentation graphique analogue à
celle du point (c).

4. Expression de cv dans le modèle de Debye

Au cours nous avons trouvé l’expression pour la chaleur spécifique dans le modèle de Debye :

cv =
∂

∂T

3~c
2π2

kD∫
0

k3dk

exp (~ck/kBT )− 1

En faisant le changement de variable x =
~ck
kBT

et en définissant la température de Debye θD

telle que kBθD = ~ckD, montrer que

cv = 9nkB

(
T

θD

)3
θD/T∫
0

x4ex

(ex − 1)2
dx

où n est la densité atomique.
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Corrigé série No. 5 18 Mars 2025

1. Distribution de Planck ou de Bose-Einstein

(a) Comportement de la fonction 〈nk,s〉 à haute temperature :

en faisant la substitution x =
~ωs
kBT

, on a 〈n(x)〉 =
1

ex − 1
.

Pour x� 1, on développe l’exponentielle : ex = 1 + x+ 1
2x

2 + 1
6x

3 + · · · .

Note : En général, on arrête le développement de l’exponentielle au terme en x2. Il est
nécessaire de considérer aussi le terme en x3 pour expliquer les effets anharmoniques,
comme la déviation de la chaleur spécifique par rapport à la loi classique de Dulong et
Petit.

On trouve :

〈n(x)〉 ≈ 1

(1 + x+ 1
2x

2 + 1
6x

3 + · · · )− 1
=

1

x+ 1
2x

2 + 1
6x

3 + · · ·
=

1

x

1

(1 + 1
2x+ 1

6x
2 + · · · )

Il s’agit maintenant de faire un deuxième développement limité au voisinage de x = 0.

On défini la fonction

f(x) =
1

(1 + 1
2x+ 1

6x
2)

→ f(0) = 1

Pour f ′(x) on obtient :

f ′(x) = −
1
2 + 1

3x

(1 + 1
2x+ 1

6x
2)2

→ f ′(0) = −1

2

Pour f ′′(x) on obtient :

f ′′(x) =
−1

3(1 + 1
2x+ 1

6x
2)2 + 2(1 + 1

2x+ 1
6x

2)(12 + 1
3x)2

(1 + 1
2x+ 1

6x
2)4

→ f ′′(0) = −1

3
+2

1

4
=

1

6

On a alors :

f(x) ≈ f(0) + f ′(0)x+
1

2
f ′′(0)x2 = 1− 1

2
x+

1

12
x2

Pour 〈n(x)〉 on trouve :

〈n(x)〉 ≈ 1

x
(1− 1

2
x+

1

12
x2) =

1

x
− 1

2
+

x

12

A très haute température (x � 1), 〈nk,s〉 →
kBT

~ωs
− 1

2
, c’est-à-dire 〈nk,s〉+

1

2
→ kBT

~ωs
, ce

qui correspond au comportement classique.

(b) Pour la représentation graphique, il est utile de choisir y =
kBT

~ωs
. On peut calculer quelques

valeurs de 〈n(y)〉 = 1
e1/y−1 :

3



y = 0 〈n(y)〉 ≈ 0

y = 0.5 〈n(y)〉 ≈ 0.16

y = 1 〈n(y)〉 ≈ 0.58

y = 2 〈n(y)〉 ≈ 1.54

y = 3 〈n(y)〉 ≈ 2.53

y = 4 〈n(y)〉 ≈ 3.52

On voit que la fonction 〈n(y)〉 tend rapidement vers y − 1
2 .

On peut aussi montrer que 〈n(y)〉 tend vers zéro avec une dérivée nulle.

10

1

2

3

4

2 3 4

La figure montre les fonctions

〈n(y)〉 et 〈n(y)〉+ 1
2

pour y =
kBT

~ωs
.

2. Nombre d’occupation moyen, nombre de phonons

On déduit les valeurs de ~ω au point L à partir du graphe. Il y a 6 modes (dont 2 sont dégénérés
à deux à deux). Les valeurs approximatives sont reportées à la première colonne du tableau.
Pour calculer le nombre d’occupation des ces modes on calcule d’abord la valeur de kBT pour
les trois températures :

T = 300 K, kBT ≈ 26 meV (Note : typiquement par simplicité on fait le calcul avec 25 meV)

T = 1000 K, kBT ≈ 86 meV

T = 3000 K, kBT ≈ 260 meV

Ensuite on utilise l’expression de 〈n〉 pour calculer les valeurs aux trois températures (voir
tableau) :

~ω (meV) T = 300 K T = 1000 K T = 3000 K
en L 〈n〉 〈n〉 〈n〉
70 0.073 0.79 3.2
130 0.007 0.28 1.5
150 0.003 0.21 1.3
155 0.002 0.20 1.2
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On voit que à température ambiante (T = 300 K) le nombre d’occupation est très faible même
pour le mode à plus basse énergie. Cela signifie que seulement une petite partie de tous les
modes du solide est excitée, ce qui explique le fait que à température ambiante la valeur de cv
du diamant est beaucoup plus basse que la valeur de Dulong et Petit.

A T = 1000 K, le nombre de phonons moyen est encore inférieur à 1.

A T = 3000 K, le nombre d’occupation moyen est > 1 pour les 4 modes : tous les modes du
solide peuvent être excités aisément. Les valeurs de 〈n〉+ 1/2 approchent la limite classique, et
en effet à cette température la chaleur spécifique atteint la valeur de Dulong et Petit.

Dans le diamant la constante de rappel est très grande (c’est lié au fait que la liaison covalente est
très rigide) et la masse des atomes est faible. Ces facteurs impliquent que les modes de vibration
ont des énergies élevées.

3. Vecteur d’onde de Debye

(a) On impose que

u(na) = u(na+Na) avec u = ake
i(kna−ωt)

ake
i(kna−ωt) = ake

i(k(n+N)a−ωt) → 1 = ei(kNa) → kj =
2π

Na
j avec j ∈ Z

Pour j = N , on trouve k = 2π/a, donc k ≡ G, un vecteur du réseau réciproque. Par
consequent, il y a N vecteurs k permis dans une maille primitive du réseau réciproque.

On peut choisir la première zone de Brillouin au lieu d’une maille primitive quelconque.
Dans ce cas, pour j = ±N/2 on trouve k = ±π/a, vecteurs correspondant aux bords de la
première zone de Brillouin. Comme attendu, il y a N valeurs k permises dans la première
zone de Brillouin.

(b) Pour conserver le nombre de modes, kD doit être tel que la “sphère” (à 1D c’est un segment
et à 2D un disque) de Debye contient le même nombre de vecteurs k qu’il y a dans la
première zone de Brillouin, c’est-à-dire N .

Quelle est la densité de k permis ? On peut trouver le volume associé à chaque valeur k et
donc la densité de valeurs k permises :

à 1D, volume associé =
2π

Na
densité =

Na

2π

à 2D, volume associé =
(2π)2

Na2
densité =

Na2

(2π)2

à 3D, volume associé =
(2π)3

Na3
densité =

Na3

(2π)3

Pour les “sphères” de Debye :

2kD
Na

2π
= N ⇒ kD =

π

a
à 1D

πk2D
Na2

(2π)2
= N ⇒ kD =

2
√
π

a
≈ 1.13

π

a
à 2D

4

3
πk3D

Na3

(2π)3
= N ⇒ kD =

3
√

(6π2)

a
≈ 1.24

π

a
à 3D

Autrement dit, si on se réfère par exemple au cas 2D, la superficie délimitée par la
circonférence de Debye est identique à celle de la 1ère zone de Brillouin, mais la forme est
différente car la circonférence de Debye n’est pas affectée par le réseau cristallin (et est
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uniquement fonction de la densité atomique). De façon équivalente, à 3D le volume de la
sphère de Debye est égal au volume de la première zone de Brillouin.

L’existence des branches longitudinales et transversales est prise en compte par un facteur
multiplicatif lors du calcul de u et de cv.

(c) Cas 1D à gauche, cas 2D à droite. Les valeurs k permises par les conditions aux bords
périodiques sont représentées par les petits cercles. En réalité, comme N est très grand
(taille macroscopique du solide), les valeurs de k sont très denses, quasi-continues.

0−π/a π/a
2π/Na

kD

kx

-kD

ky

kxπ/a

π/a

kD

−π/a

−π/a

(d) Comme le nombre de mailles est N , le nombre d’atomes est 2N . Avec deux atomes par
maille dans un système 2D, la “sphère” de Debye doit contenir 2N valeurs k (si l’on
considère un schéma de zones étendu comme montré dans la figure à la page suivante)
puisque il faut aussi tenir compte des branches optiques. Dans cette figure, par simplicité,
les kx, ky admis par les conditions aux bords (c’est-à-dire les petits cercles de la figure
précédente), ne sont pas représentés explicitement. Donc on a :

πk2D
Na2

(2π)2
= 2N ⇒ kD =

2
√

2π

a
≈ 1.59

π

a

On obtiendrait le même résultat en considérant un schéma de zones réduit : dans ce cas
pour chaque vecteur k dans la première zone de Brillouin il y a 2 valeurs ω (une pour la
branche acoustique et une pour la branche optique), d’où le facteur 2 par rapport au cas
discuté en (b).

On peut aussi l’exprimer en disant que la“sphère”de Debye doit contenir autant de vecteurs
k qu’il y en a dans deux zones de Brillouin. Le “volume” de la “sphère” de Debye est égal
à 2 fois le “volume” d’une zone de Brillouin.
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ky

kx
π/a

π/a

kD

−π/a

−π/a

4. Expression de cv dans le modèle de Debye

Au cours nous avons trouvé l’expression pour la chaleur spécifique dans le modèle de Debye :

cv =
∂

∂T

3~c
2π2

kD∫
0

k3dk

e~ck/kBT − 1

=
3~c
2π2

kD∫
0

−k3 dk e~ck/kBT
(
−~ck

kB
1
T 2

)
(
e~ck/kBT − 1

)2
=

3(~c)2

2π2kB

1

T 2

kD∫
0

k4 dk e~ck/kBT(
e~ck/kBT − 1

)2

changement de variable : x =
~ck
kBT

→ k =
kBT

~c
x, dk =

kBT

~c
dx

definitions : kBθD = ~ckD = ~ωD ; xD =
~ωD
kBT

=
θD
T
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cv =
3(~c)2

2π2kB

1

T 2

(
kBT

~c

)5
θD/T∫
0

x4exdx

(ex − 1)2

=
3kB
2π2

(
kBT

~c

)3
θD/T∫
0

x4exdx

(ex − 1)2

=
3kB
2π2

k3D

(
T

θD

)3
θD/T∫
0

x4exdx

(ex − 1)2

= 9nkB

(
T

θD

)3
θD/T∫
0

x4exdx

(ex − 1)2

où dans le dernier passage nous avons utilisé k3D = 6π2n, avec n la densité atomique.

8


