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Exercices de Physique du Solide Prof. H. Brune

Série No. 3 4 Mars 2025

But de cette série : comprendre les relation de dispersion ω(k) de systèmes unidimensionnels

1. Relation de dispersion et k indépendants

La figure ci-dessous montre la position instantanée des atomes d’une châıne de paramètre de
réseau a. La position de chaque atome est décrite aussi bien par l’onde de longueur d’onde
λ = 10a en trait continu que par l’onde de longueur d’onde λ′ = 10

11a en pointillé.

Montrer que les vecteurs d’onde k et k′ correspondants aux deux ondes sont égaux à un vecteur
du réseau réciproque près.

Note : pour illustrer le concept nous avons pris une onde transverse, c’est-à-dire que le dé-
placement des atomes est perpendiculaire à la direction de propagation, mais autrement pour
les systèmes unidimensionnels nous avons considéré uniquement des ondes longitudinales, avec
déplacement des atomes dans la direction de la propagation de l’onde.

a

x

na (n+1)a(n-1)aR ......

2. Châıne avec deux atomes par maille

On considère une châıne dans laquelle les atomes successifs ont une masse M1 et M2 ; seuls les
plus proches voisins interagissent. Cette interaction est décrite par un ressort de constante K.
a est la distance à l’équilibre entre deux masses consécutives de même type, et a/2 la distance
entre deux masses différentes.

M2 M2 M2M1 M1

n-1 un n un+1

KK K K K

a/2 a/2

(a) On note un et vn les déplacements des masses M1 et M2 respectivement. Ecrire les
équations du mouvement pour un et vn.
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(b) En utilisant l’Ansatz suivant pour les déplacements (on a laissé tomber l’indice ν qui
identifie chaque k et chaque ω, et on utilise k comme indice pour les amplitudes ; on
considère un déplacement qui est composé d’un seul mode normal)

un(t) = ake
i(kna−ωt) vn(t) = bke

i(kna+ka/2−ωt)

montrer que la relation de dispersion est donnée par :

ω2(k) = K

(
1

M1
+

1

M2

)
±K

√(
1

M1
+

1

M2

)2

− 4

M1M2
sin2(

ka

2
)

(c) Considérer M1 > M2. Représenter graphiquement ω(k) dans la première zone de Brillouin.
Indiquer les valeurs de ω(k) pour k = 0 et pour k en bord de zone, pour les branches
acoustique et optique.

(d) Considérer M1 �M2. Montrer que la relation de dispersion peut être exprimée comme :

ω2(k) ≈ K

M2

(
1 +

M2

M1

)
± K

M2

(
1 +

M2

M1

(
1− 2 sin2(

ka

2
)

))
Indication :

√
1 + x ≈ 1 + x/2 pour x� 1.

Ensuite, déduire l’expression des branches acoustique et optique dans cette limite.

(e) On imagine maintenant que M1 et M2 tendent vers une même valeur M . Décrire qualita-
tivement comment on passe d’une courbe de dispersion ayant deux branches à une courbe
n’en comportant qu’une. Comparer le résultat avec celui obtenu pour une châıne avec un
atome par maille.

3. De un comme superposition de N modes normaux à un composé d’un seul mode
normal pour trouver ω

Nous avons vu en cours que la solution générale de l’équation du mouvement pour l’atome n (en
R = na) d’une châıne monoatomique est donnée par

un (t) =
1√
N

N−1∑
ν=0

aν exp [i (kνna− ωνt)] + c.c.

L’équation du mouvement dans l’approximation des premiers voisins est (avec m la masse de
l’atome et C la constante qui décrit l’interaction)

ün = −C
m

(−un−1 + 2un − un+1)

Montrer que si, l’on utilise l’expression générale de un dans l’équation du mouvement, on obtient
une équation pour chaque ω2

ν en fonction de kν , a, C et m.

Ceci signifie que, lorsque on cherche les solutions de l’équations du mouvement, par simplicité
on peut considérer un déplacement un qui est composé d’un seul mode normal.
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Corrigé série No. 3 4 Mars 2025

1. Relation de dispersion et k indépendants

λ = 10a → k =
2π

10a

λ′ =
10

11
a → k′ =

2π 11

10a
=

2π

10a
+

2π

a

2π

a
est par définition un vecteur du réseau réciproque (dans ce cas c’est le vecteur primitif b).

Comme visible dans la figure de l’énoncé, ce résultat découle du fait que les déplacements un sont
définis uniquement aux sites du réseau de Bravais, qui coincident avec le positions d’équilibre
des atomes dans ce cas monoatomique. L’amplitude des ondes pour des x qui ne correspondent
pas à des sites du réseau n’est pas relevante.

Voir l’animation, qui correspond à de longueurs d’onde différentes de celle de l’exercice, à la
page https://i.sstatic.net/LWFQe.gif

2. Châıne avec deux atomes par maille

(a) Equations du mouvement :

M1ün = K(vn − 2un + vn−1) (1)

M2v̈n = K(un+1 − 2vn + un) (2)

(b) On considère des déplacements du type :

un(t) = ake
i(kna−ωt)

vn(t) = bke
i(kna+ka/2−ωt)

En substituant dans (1) et (2) on trouve

(−ω2 + 2
K

M1
) ak−2

K

M1
cos
(ka

2

)
bk = 0 (3)

−2
K

M2
cos
(ka

2

)
ak+(−ω2 + 2

K

M2
) bk = 0 (4)

Pour les solutions non triviales :

(−ω2 + 2
K

M1
) (−ω2 + 2

K

M2
)− 4

K2

M1M2
cos2

(ka
2

)
= 0

soit

ω2(k) = K

(
1

M1
+

1

M2

)
±K

√(
1

M1
+

1

M2

)2

− 4

M1M2
sin2(

ka

2
) (5)

(c) M1 > M2

Dans ce système 1D, le vecteurs du réseau réciproque sont définis par G = 2π
a n, avec n ∈ Z.

La 1ère zone de Brillouin est donc la région de l’espace réciproque comprise entre −π
a et

π
a .
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k
-π/a π/a

ω

2K/M2

2K/M1

22K(1/M1 + 1/M  )

(d) M1 �M2

ω2(k) = K

(
1

M1
+

1

M2

)
±K

√(
1

M1
+

1

M2

)2

− 4

M1M2
sin2(

ka

2
)

= K

(
1

M1
+

1

M2

)
± K

M2

√(
M2

M1
+ 1

)2

− 4
M2

M1
sin2(

ka

2
)

∼=
K

M2

(
1 +

M2

M1

)
± K

M2

√
1 + 2

M2

M1
− 4

M2

M1
sin2(

ka

2
)

∼=
K

M2

(
1 +

M2

M1

)
± K

M2

(
1 +

M2

M1

(
1− 2 sin2(

ka

2
)

))
(6)

Branche acoustique (signe − dans l’équation (6))

ω2 ∼= 2
K

M1
sin2(

ka

2
) =⇒ ωA ∼= 2

√
K

2M1

∣∣∣sin(ka
2

)∣∣∣
C’est la relation de dispersion que l’on trouve pour une châıne linéaire de période a et
de constante de couplage K ′ = K/2. En fait, ce mode est entièrement déterminé par le
mouvement des atomes lourds, qui sont reliés entre eux par deux ressorts de constante K
(ou un ressort de constante K/2). Les atomes légers restent toujours au milieu entre leurs
voisins : un+1 − vn ≡ vn − un.

Branche optique (signe + dans l’équation (6))

ω2 ∼= 2
K

M2
+ 2

K

M1

(
1− sin2(

ka

2
)

)
=⇒ ωO ∼=

√
2K

M2

Cette branche devient alors plate. De plus (résultant de (3) et (4))

ak
bk

=
−ω2M2 + 2K

2K cos
(
ka
2

) → 0 les atomes lourds ne bougent plus.

Les vibrations optiques correspondent maintenant à des vibrations indépendantes de
chaque atome de masse M2 attaché à deux parois par l’intermédiaire de deux ressorts.

(e) Pour M1 > M2, on obtient les courbes représentées sur la figure ci-dessous. Les pointillés
symbolisent le fait que le vecteur d’onde des vibrations k n’est défini qu’à un vecteur du
réseau réciproque n2π

a près.
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Quand M1,M2 → M , l’intervalle des fréquences interdites se resserre ; la branche acous-
tique tend à se prolonger par la branche optique représentée dans la deuxième zone de
Brillouin.

Quand M1 = M2 = M , la partie de cette branche initialement optique est désormais
acoustique et également située dans la nouvelle première zone de Brillouin, car la maille
du réseau est devenue a

2 (bord de zone : 2π
a et non π

a ).

k
0 2π/a-2 π/a

ω

-π/a

-2 π/a -π/a

π/a

ωA

ωO

2K/M2

2K/M1

M1>M2

M  = M

k
0 2π/a

ω

ωA

4K/M

2K/M

1 2 = M

π/a

Formellement, pour M1 = M2 = M

ω2(k) =
2K

M
±K

√(
2

M

)2

− 4

M2
sin2(

ka

2
) =

2K

M

(
1± cos(

ka

2
)

)
Le signe (−) donne la branche acoustique :

ωA = 2

√
K

M

∣∣∣sin(ka
4

)∣∣∣
ce qui correspond au résultat pour une châıne monoatomique de périodicité a/2.

Avec le signe (+) on obtient

ω2 =
2K

M

(
1 + cos

(ka
2

))
=

4K

M
cos2

(ka
4

)
→ ω = 2

√
K

M

∣∣∣cos
(ka

4

)∣∣∣
La présence de cette branche est un artefact dû au fait qu’on a choisi une maille trop
grande.
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3. De un comme superposition de N modes normaux à un composé d’un seul mode
normal pour trouver ω

un =
1√
N

∑
ν

aν exp [i (kνna− ωνt)] +
1√
N

∑
ν

aν exp [−i (kνna− ωνt)]

u̇n =
1√
N

∑
ν

aν(−iων) exp [i (kνna− ωνt)] +
1√
N

∑
ν

aν(+iων) exp [−i (kνna− ωνt)]

ün =
1√
N

∑
ν

aν(−ω2
ν) exp [i (kνna− ωνt)] +

1√
N

∑
ν

aν(−ω2
ν) exp [−i (kνna− ωνt)]

——

un =
1√
N

∑
ν

aν exp[+] +
1√
N

∑
ν

aν exp [−]

un−1 =
1√
N

∑
ν

aν exp (−ikνa) exp[+] +
1√
N

∑
ν

aν exp (+ikνa) exp [−]

un+1 =
1√
N

∑
ν

aν exp (+ikνa) exp[+] +
1√
N

∑
ν

aν exp (−ikνa) exp [−]

——

1√
N

∑
ν

aν{exp[+] + exp[−]}(−ω2
ν) = −C

m

(
2

1√
N

∑
ν

aν{exp[+] + exp[−]}+

− 1√
N

∑
ν

aν exp (−ikνa){exp[+] + exp[−]} − 1√
N

∑
ν

aν exp (+ikνa){exp[+] + exp[−]}

)

On a
1√
N

∑
ν aν

( )
= 0, relation qui doit être vraie pour chaque mode ν indépendamment. Donc

ω2
ν =

C

m
(2− exp (−ikνa)− exp (+ikνa)) = ... =

4C

m
sin2 kνa

2

C’est la relation qu’on obtient si l’on prend un composé d’un seul mode ν.

6


