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But de cette série :

1. Surface de Fermi - Electrons et trous

Considérer le systéme de P'exercice 1 de la série 11 (réseau carré de coté a, N mailles, 1 atome
par maille et 2 électrons par atome), en présence d’un potentiel qui leve la dégénérescence des
états au bord de la ZB. On considere les deux bandes & plus basse énergie. La figure montre la
structure de bande a gauche et la surface de Fermi a droite, dans le schéma de zone étendue. En
vert les états occupés.
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(a) Esquisser la surface de Fermi dans le schéma de zone réduite. Si nécessaire, utiliser le
schéma de zone répétée de fagon a representer explicitement des surfaces fermées.

(b) A T'aide de la structure de bande et/ou de la surface de Fermi, identifier la nature des
porteurs de charge a proximité de Er. Si on applique un champ magnétique B sortant de
la feuille, quel est le sens de parcours des orbites & la surface de Fermi? Ou aura-t-on un
comportement de type “électron”? Et un comportement de type “trou”? Justifier.

2. Coefficient de Hall a haut champ

Pour les systemes avec des porteurs de charge de type électron (densité ngectron) cOexistant avec
des porteurs de type trou (densité nyyoy,), on peut écrire le coefficient de Hall & haut champ
comme
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Nous allons calculer ce coefficient dans le cas de 'aluminium.

L’aluminium (Al, structure fcc) possede 3 électrons de valence par atome. La surface de Fermi
englobe entierement la premiere zone de Brillouin, et coupe la deuxiéme et la troisieme. Dans
la deuxieme zone les porteurs de charge sont des trous, alors que dans la troisieme zone ce sont
des électrons (voir la figure a la page suivante).

(a) A l'aide des informations données ci-dessus et de la figure a la page suivante, établir quels
sont les électrons et les trous qu’il faut considérer dans le calcul de negrectir- A quelle zone
de Brillouin appartiennent-ils respectivement ? Récrire ’expression de Ry pour le cas de
I’aluminium.



(b) Quel est le nombre total d’électrons si le cristal est composé de N mailles primitives?
Exprimer n, la densité électronique totale de I’Al; en fonction du nombre de mailles N et
du volume du cristal V. Combien d’états y a-t-il dans une zone de Brillouin quelconque ?

(c) Considérer par exemple la deuxieme zone de Brillouin. Exprimer la somme du nombre
d’électrons et du nombre de trous en fonction de N. Ensuite, exprimer la relation pour
L 2 II II . .
la somme des densités correspondantes, 17y, ...0n + Nirous €0 termes de n (I1 identifie la
deuxieme zone de Brillouin).

(d) En sachant que la premiére zone de Brillouin est entiérement remplie, donner le nombre
d’électrons qui sont dans la deuxieme et troisieme zone en termes de N. Ensuite, exprimer
sz II IIT . . . N
les densités correspondantes, 12, .1 on €6 M2 cetrons €1 fonction de n (11 identifie la deuxieme
zone de Brillouin, I17 la troisieme).
(e) En utilisant les résultats trouvés aux points précédents et a 1’aide de I’expression trouvée

en (a), exprimer le coefficient de Hall de I’aluminium en fonction de n.

(D) (E) (F)

(A) : premiere zone de Brillouin et (B) deuxiéme zone de Brillouin d’un cristal fce, schéma
de zone étendue. (C) Surface de Fermi de Al dans lapproximation du réseau vide (électrons
libres) dans le schéma de zone étendue. (D) Surface de Fermi dans la deuxieme et (E) dans
la troisieme zone de Brillouin (schéma de zone réduite). (F) Surface de Fermi en présence du
potentiel périodique (jaune : deuxieme zone, violet : troisieéme zone).

3. Potentiel chimique dans un semiconducteur intrinséque

A I’aide d’un schéma, expliquer pourquoi en général la position du potentiel chimique intrinseque
w; a temperature T' > 0 dépend du rapport entre les masses effectives de la bande de conduction
me et de valence m,.



4. Densité maximale de porteurs de charge

Dans cet exercice nous allons dériver explicitement I’expression pour la concentration maximum
de porteurs de charge dans un semiconducteur non dégénéré dans l'approximation de bandes
ayant une forme quadratique en k (voir 7.4.1, Eq. 7.17). Les parties (a), (b), et (c) correspondent
aux calculs du polycopié.

Considérer un semiconducteur. En analogie avec le modele des électrons libres, on considere des
relations quadratiques entre E et k pour les bandes de valence et de conduction. Par conséquent,
la densité d’états dans la bande de valence est donnée par I'expression
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ol m,, est la masse effective des trous et F, le maximum de la bande de valence. Une expression
analogue est valable pour la densité d’états dans la bande de conduction. Dans la suite de
I’exercice, nous nous limitons a ’analyse de la bande de valence.

(a) Ecrire expression de la probabilité d’occupation pour les trous dans la bande de valence
en fonction de F et de T'.

(b) Donner I'expression approximée de cette distribution dans le cas ot u — E, > kpT.
(c) Montrer que, dans cette approximation, on peut exprimer la densité de trous p(7') dans la
bande de valence comme suit, avec P(T') la densité maximale & la température T :

p(T) = PT)el /ot

(d) Etablir 'expression de la densité maximale P(T").
Indication : fooo 2/ 2e C dp = 4
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1. Surface de Fermi - Electrons et trous

(a)

La figure a la page suivante montre la surface de Fermi dans la leére et dans la 2éme zone
de Brillouin, d’abord dans un schéma de zone réduite, et ensuite dans un schéma de zone
répétée, ou on voit explicitement comment la surface de Fermi se ferme en considérant la
périodicité. Pour la 2eme zone, on obtient la representation en zone réduite en partant de
la représentation en zone étendue et en décalant les parties qui apparaissent dans la 2eme
zone d’au vecteur du réseau réciproque G.

En regardant la structure de bande, on voit que la premiere bande est presque entierement
remplie. Seulement les états proches des points de type B ne sont pas occupés. Le sommet
de cette bande correspond & une fonction concave dkd ﬁ: < 0, ce qui correspondrait a une
masse m* électronique négative. On décrit cette situation en introduisant les trous (charge
positive, masse m* positive). Les bas de la deuxiéme bande est convexe % > 0, donc
mx > 0, on décrit la conductivité en terme d’électrons.

Concernant le sens de parcours des orbites en présence d’'un champ magnétique : hk =
—evxB=-e¢ %VkEXB.

Le gradient de I’énergie est donnée par la direction dans laquelle I’énergie augmente : si
on rajoute des électrons au systeéme, la sphere de Fermi va devenir plus grande, donc Vi FE
pointe vers l'extérieur de la surface de Fermi. Donc, le gradient de 1’énergie pointe des
états occupés vers les états vides.

Le gradient de I’énergie (VkE) est mdlque pour chaque surface. Pour le champ B comme
indiqué sur la figure et avec hk = —e VkE x B, on trouve que hk (1nd1que par dk) est
orienté dans le sens horaire sur l'orbite relative a la lere zone, alors que hik est orienté
dans le sens anti-horaire dans la 2eme. Pour ce derniers cas, le sens dans lequel I'orbite est
parcourue est celui d’un électron. Par contre, dans la lére zone le sens est inversé : on est
en présence d’une orbite de trou.

La figure ci-dessous montre ce qui se passe pour le systeme avec un seul électron par atome,
qui peut aider a identifier le sens de parcours dans le cas des électrons.
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2. Coefficient de Hall & haut champ

(a)

La surface de Fermi de ’aluminium enferme totalement la premiere zone de Brillouin et
croise la deuxiéme et la troisieme. Ainsi, deux électrons de valence sur trois vont se placer
dans la premiere zone et ne donnent pas de contribution au coefficient de Hall, qui sera
determiné par les contributions & la conduction de I’électron qui est reparti dans les autres
deux zones.

De plus, on sait que la deuxieme zone présente une conduction de type “trous” et la
troisieme de type “électrons”. On rappelle que pour chaque zone on doit choisir le type de
description qu’on veut utiliser : soit on considéere les électrons, soit on considere les trous.

_ (LI II _ 1
Donc, on trouve que Neffectit = (Mgjeetron — Nirou)s €6 RH = T Ty
électron trou
. 3N
Nombre total d’électrons = 3N ; n = A

Nombre d’états dans une zone de Brillouin en tenant compte du spin = 2NV.

Nombre d’états dans une zone de Brillouin par unité de volume en tenant compte du spin
2N

=5

Dans chaque zone de Brillouin, la somme du nombre d’électrons et du nombre de trous (=

états vides) est égale au nombre d’états disponibles (2V).

En termes des densités, et appliqué a la deuxieme zone comme suggéré dans 1’énoncé, on

a:

- iy 2N 2N3N  2n

Neélectron T Ntrou = 7 = 37N7 = 3

Nombre d’électrons dans la premiere zone de Brillouin = 2N.

Nombre d’électrons dans la deuxiéme zone + troisieme zone = nombre total d’électrons —
nombre d’électrons dans la premiere zone = 3N — 2N = N

En termes de densités :

Nélectron + N¢lectron = V - V 3N - 3

En utilisant les résultats du point (c) et du point (d), on obtient :
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Ce calcul prédit un coéfficient de Hall & haut champ positif et correspondant a une densité
effective de porteurs de charge d’un tiers de n (o n est la densité des électrons de valence). Ceci
correspond bien a la valeur expérimentale.

Du point de vue de leffet Hall & haut champ, 'aluminium posseéde un trou par atome (qui
résulte de un petit peu plus qu'un trou par atome dans la deuxieme zone, et d’une petite
fraction d’électron dans la troisiéme zone), plutét que trois électrons.



3. Potentiel chimique dans un semiconducteur intrinséque
Le potentiel chimique est donné par u; = E, + %Eg + %kBT ln(%).

Pourquoi les masses effectives m,, et m. apparaissent dans cette équation ? La valeur de la masse
effective determine la densité d’états g(F), puisque dans le cas de Iapproximation quadratique

9(B) = 51 (38)" BV,
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Figure a gauche : si m, = me, g,(E) et g.(E) sont pareilles (décalées et avec courbure opposée)
et le potentiel chimique (point d’inflexion de la distribution de Fermi-Dirac) reste au milieu de
la bande interdite. Les surfaces délimités par les fonctions f(E)g.(E) (états occupés dans la
bande de conduction) et [1 — f(E)]g,(E) (états vidés dans la bande de valence) sont égales, pour
conserver le nombre d’électrons dans le systeme.

Figure a droite : si my, > me, go(E) > g.(E), donc le potentiel chimique doit se décaler vers
le haut pour compenser cette différence en densité d’états. Autrement on “enléverait” des élec-
trons de la bande de valence, mais sans pouvoir occuper suffisamment d’états dans la bande de
conduction, donc le nombre d’électrons ne serait pas conservé.

E ge(E) E Ey  g.(E) E

éf (E)g
[

(E)
Z — J(E))g.(E)

4. Densité de porteurs de charge dans les semiconducteurs

(a) La probabilité d’occupation f, pour les électrons est la fonction de Fermi, celle
des trous est :

1
fo(E) =1— fu(E) = 1+ e (BE—p)/kpT

(b) Si uw — Ey, > kT, u — E > kpT VE dans la bande de valence, et on peut alors

négliger le terme ‘1” devant I’exponentielle dans I’équation en (a). On trouve alors alors :
fp(E) = e(Ef/»‘)/kBT_

(¢) Compte tenu de la probabilité d’occupation pour les trous, on peut supposer la bande de
valence de largeur infinie. La densité de trous s’écrit alors :

E, Ey,
p(T): /gv(E)e(E_H)/kBTdE: /gU(E)e(E_Eu)/kBTdE e(Ev_N)/kBT

—0o0 — 00

Cest-d-dire p(T) = P(T)eFv=m/k8T on P(T) est la densité maximale de trous dans la
bande de valence.



(d) En explicitant g,(E) = 5= (2"“’)3/2 (E, — E)'/% .
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Au final on trouve : P(T) = L (2moksT .
4 mh?

Donc P(T') varie lentement avec la température par rapport au facteur exponentiel dans
p(T). Cette relation donne la concentration maximale de trous dans un semiconducteur
non-dégénéré (c’est-a-dire pour lequel p — E, > kpT et E. — u > kgT).



