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But de cette série :

1. Surface de Fermi - Electrons et trous

Considérer le système de l’exercice 1 de la série 11 (réseau carré de côté a, N mailles, 1 atome
par maille et 2 électrons par atome), en présence d’un potentiel qui lève la dégénérescence des
états au bord de la ZB. On considère les deux bandes à plus basse énergie. La figure montre la
structure de bande à gauche et la surface de Fermi à droite, dans le schéma de zone étendue. En
vert les états occupés.
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(a) Esquisser la surface de Fermi dans le schéma de zone réduite. Si nécessaire, utiliser le
schéma de zone répétée de façon à representer explicitement des surfaces fermées.

(b) A l’aide de la structure de bande et/ou de la surface de Fermi, identifier la nature des
porteurs de charge à proximité de EF . Si on applique un champ magnétique B sortant de
la feuille, quel est le sens de parcours des orbites à la surface de Fermi ? Où aura-t-on un
comportement de type “électron”? Et un comportement de type “trou”? Justifier.

2. Coefficient de Hall à haut champ

Pour les systèmes avec des porteurs de charge de type électron (densité nélectron) coexistant avec
des porteurs de type trou (densité ntrou), on peut écrire le coefficient de Hall à haut champ
comme

RH = − 1

eneffectif
= − 1

e(nélectron − ntrou)

Nous allons calculer ce coefficient dans le cas de l’aluminium.

L’aluminium (Al, structure fcc) possède 3 électrons de valence par atome. La surface de Fermi
englobe entièrement la première zone de Brillouin, et coupe la deuxième et la troisième. Dans
la deuxième zone les porteurs de charge sont des trous, alors que dans la troisième zone ce sont
des électrons (voir la figure à la page suivante).

(a) A l’aide des informations données ci-dessus et de la figure à la page suivante, établir quels
sont les électrons et les trous qu’il faut considérer dans le calcul de neffectif . A quelle zone
de Brillouin appartiennent-ils respectivement ? Récrire l’expression de RH pour le cas de
l’aluminium.
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(b) Quel est le nombre total d’électrons si le cristal est composé de N mailles primitives ?
Exprimer n, la densité électronique totale de l’Al, en fonction du nombre de mailles N et
du volume du cristal V . Combien d’états y a-t-il dans une zone de Brillouin quelconque ?

(c) Considérer par exemple la deuxième zone de Brillouin. Exprimer la somme du nombre
d’électrons et du nombre de trous en fonction de N . Ensuite, exprimer la relation pour
la somme des densités correspondantes, nIIélectron + nIItrou, en termes de n (II identifie la
deuxième zone de Brillouin).

(d) En sachant que la première zone de Brillouin est entièrement remplie, donner le nombre
d’électrons qui sont dans la deuxième et troisième zone en termes de N . Ensuite, exprimer
les densités correspondantes, nIIélectron et nIIIélectron, en fonction de n (II identifie la deuxième
zone de Brillouin, III la troisième).

(e) En utilisant les résultats trouvés aux points précédents et à l’aide de l’expression trouvée
en (a), exprimer le coefficient de Hall de l’aluminium en fonction de n.

(A)

(B)

(C)

(D) (E) (F)

(A) : première zone de Brillouin et (B) deuxième zone de Brillouin d’un cristal fcc, schéma
de zone étendue. (C) Surface de Fermi de Al dans l’approximation du réseau vide (électrons
libres) dans le schéma de zone étendue. (D) Surface de Fermi dans la deuxième et (E) dans
la troisième zone de Brillouin (schéma de zone réduite). (F) Surface de Fermi en présence du
potentiel périodique (jaune : deuxième zone, violet : troisième zone).

3. Potentiel chimique dans un semiconducteur intrinsèque

A l’aide d’un schéma, expliquer pourquoi en général la position du potentiel chimique intrinsèque
µi à temperature T > 0 dépend du rapport entre les masses effectives de la bande de conduction
mc et de valence mv.
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4. Densité maximale de porteurs de charge

Dans cet exercice nous allons dériver explicitement l’expression pour la concentration maximum
de porteurs de charge dans un semiconducteur non dégénéré dans l’approximation de bandes
ayant une forme quadratique en k (voir 7.4.1, Eq. 7.17). Les parties (a), (b), et (c) correspondent
aux calculs du polycopié.

Considérer un semiconducteur. En analogie avec le modèle des électrons libres, on considère des
relations quadratiques entre E et k pour les bandes de valence et de conduction. Par conséquent,
la densité d’états dans la bande de valence est donnée par l’expression

gv(E) =
1

2π2

(
2mv

~2

)3/2

(Ev − E)1/2

où mv est la masse effective des trous et Ev le maximum de la bande de valence. Une expression
analogue est valable pour la densité d’états dans la bande de conduction. Dans la suite de
l’exercice, nous nous limitons à l’analyse de la bande de valence.

(a) Ecrire l’expression de la probabilité d’occupation pour les trous dans la bande de valence
en fonction de E et de T .

(b) Donner l’expression approximée de cette distribution dans le cas où µ− Ev � kBT .

(c) Montrer que, dans cette approximation, on peut exprimer la densité de trous p(T ) dans la
bande de valence comme suit, avec P (T ) la densité maximale à la température T :

p(T ) = P (T )e(Ev−µ)/kBT

(d) Etablir l’expression de la densité maximale P (T ).

Indication :
∫∞

0 x1/2e−x dx =
√
π

2
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Corrigé série No. 12 13 Mai 2025

1. Surface de Fermi - Electrons et trous

(a) La figure à la page suivante montre la surface de Fermi dans la 1ère et dans la 2ème zone
de Brillouin, d’abord dans un schéma de zone réduite, et ensuite dans un schéma de zone
répétée, où on voit explicitement comment la surface de Fermi se ferme en considérant la
périodicité. Pour la 2ème zone, on obtient la representation en zone réduite en partant de
la représentation en zone étendue et en décalant les parties qui apparaissent dans la 2ème
zone d’au vecteur du réseau réciproque G.

(b) En regardant la structure de bande, on voit que la première bande est presque entièrement
remplie. Seulement les états proches des points de type B ne sont pas occupés. Le sommet
de cette bande correspond à une fonction concave d2E

dkxdky
< 0, ce qui correspondrait à une

masse m∗ électronique négative. On décrit cette situation en introduisant les trous (charge

positive, masse m∗ positive). Les bas de la deuxième bande est convexe d2E
dkxdky

> 0, donc
m∗ > 0, on décrit la conductivité en terme d’électrons.

Concernant le sens de parcours des orbites en présence d’un champ magnétique : ~ k̇ =
−e v ×B = −e 1

~∇kE ×B.

Le gradient de l’énergie est donnée par la direction dans laquelle l’énergie augmente : si
on rajoute des électrons au système, la sphère de Fermi va devenir plus grande, donc ∇kE
pointe vers l’extérieur de la surface de Fermi. Donc, le gradient de l’énergie pointe des
états occupés vers les états vides.

Le gradient de l’énergie (∇kE) est indiqué pour chaque surface. Pour le champ B comme
indiqué sur la figure et avec ~ k̇ = −e 1

~∇kE ×B, on trouve que ~ k̇ (indiqué par dk) est

orienté dans le sens horaire sur l’orbite relative à la 1ère zone, alors que ~ k̇ est orienté
dans le sens anti-horaire dans la 2ème. Pour ce derniers cas, le sens dans lequel l’orbite est
parcourue est celui d’un électron. Par contre, dans la 1ère zone le sens est inversé : on est
en présence d’une orbite de trou.

La figure ci-dessous montre ce qui se passe pour le système avec un seul électron par atome,
qui peut aider à identifier le sens de parcours dans le cas des électrons.

∆

kEB
dk

1ère ZB
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2. Coefficient de Hall à haut champ

(a) La surface de Fermi de l’aluminium enferme totalement la première zone de Brillouin et
croise la deuxième et la troisième. Ainsi, deux électrons de valence sur trois vont se placer
dans la première zone et ne donnent pas de contribution au coefficient de Hall, qui sera
determiné par les contributions à la conduction de l’électron qui est reparti dans les autres
deux zones.

De plus, on sait que la deuxième zone présente une conduction de type “trous” et la
troisième de type “électrons”. On rappelle que pour chaque zone on doit choisir le type de
description qu’on veut utiliser : soit on considère les électrons, soit on considère les trous.

Donc, on trouve que neffectif = (nIIIélectron − nIItrou), et RH = − 1
e(nIII

électron−n
II
trou)

.

(b) Nombre total d’électrons = 3N ; n =
3N

V
Nombre d’états dans une zone de Brillouin en tenant compte du spin = 2N .

Nombre d’états dans une zone de Brillouin par unité de volume en tenant compte du spin

=
2N

V
.

(c) Dans chaque zone de Brillouin, la somme du nombre d’électrons et du nombre de trous (=
états vides) est égale au nombre d’états disponibles (2N).

En termes des densités, et appliqué à la deuxième zone comme suggéré dans l’énoncé, on
a :

nIIélectron + nIItrou =
2N

V
=

2N

3N

3N

V
=

2n

3

(d) Nombre d’électrons dans la première zone de Brillouin = 2N .

Nombre d’électrons dans la deuxième zone + troisième zone = nombre total d’électrons −
nombre d’électrons dans la première zone = 3N − 2N = N

En termes de densités :

nIIélectron + nIIIélectron =
N

V
=

3N

V

N

3N
=
n

3

(e) En utilisant les résultats du point (c) et du point (d), on obtient :

nIIIélectron − nIItrou =
n

3
− 2n

3
= −n

3

d’où :

RH = − 1

e(nIIIélectron − nIItrou)
=

1

en3

Ce calcul prédit un coéfficient de Hall à haut champ positif et correspondant à une densité
effective de porteurs de charge d’un tiers de n (où n est la densité des électrons de valence). Ceci
correspond bien à la valeur expérimentale.

Du point de vue de l’effet Hall à haut champ, l’aluminium possède un trou par atome (qui
résulte de un petit peu plus qu’un trou par atome dans la deuxième zone, et d’une petite
fraction d’électron dans la troisième zone), plutôt que trois électrons.
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3. Potentiel chimique dans un semiconducteur intrinsèque

Le potentiel chimique est donné par µi = Ev + 1
2Eg + 3

4kBT ln(mv
mc

).

Pourquoi les masses effectives mv et mc apparaissent dans cette équation ? La valeur de la masse
effective determine la densité d’états g(E), puisque dans le cas de l’approximation quadratique

g(E) = 1
2π2

(
2m
~2

)3/2
E1/2.

Figure à gauche : si mv = mc, gv(E) et gc(E) sont pareilles (décalées et avec courbure opposée)
et le potentiel chimique (point d’inflexion de la distribution de Fermi-Dirac) reste au milieu de
la bande interdite. Les surfaces délimités par les fonctions f(E)gc(E) (états occupés dans la
bande de conduction) et [1−f(E)]gv(E) (états vidés dans la bande de valence) sont égales, pour
conserver le nombre d’électrons dans le système.

Figure à droite : si mv > mc, gv(E) > gc(E), donc le potentiel chimique doit se décaler vers
le haut pour compenser cette différence en densité d’états. Autrement on “enlèverait” des élec-
trons de la bande de valence, mais sans pouvoir occuper suffisamment d’états dans la bande de
conduction, donc le nombre d’électrons ne serait pas conservé.

4. Densité de porteurs de charge dans les semiconducteurs

(a) La probabilité d’occupation fn pour les électrons est la fonction de Fermi, celle
des trous est :

fp(E) = 1− fn(E) =
1

1 + e−(E−µ)/kBT

(b) Si µ − Ev � kBT , µ − E � kBT ∀E dans la bande de valence, et on peut alors
négliger le terme ‘1” devant l’exponentielle dans l’équation en (a). On trouve alors alors :
fp(E) = e(E−µ)/kBT .

(c) Compte tenu de la probabilité d’occupation pour les trous, on peut supposer la bande de
valence de largeur infinie. La densité de trous s’écrit alors :

p(T ) =

Ev∫
−∞

gv(E)e(E−µ)/kBTdE =

 Ev∫
−∞

gv(E)e(E−Ev)/kBTdE

 e(Ev−µ)/kBT

c’est-à-dire p(T ) = P (T )e(Ev−µ)/kBT où P (T ) est la densité maximale de trous dans la
bande de valence.
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(d) En explicitant gv(E) = 1
2π2

(
2mv
~2

)3/2
(Ev − E)1/2 :

P (T ) =
1

2π2

(
2mv

~2

)3/2
Ev∫
−∞

(Ev − E)1/2e(E−Ev)/kBTdE
[
x =

Ev − E
kBT

→ dE = −kBT dx
]

=
1

2π2

(
2mv

~2

)3/2
+∞∫
0

x1/2(kBT )1/2e−xkBT dx =
1

2π2

(
2mv

~2

)3/2

(kBT )3/2

√
π

2

Au final on trouve : P (T ) =
1

4

(
2mvkBT

π~2

)3/2

.

Donc P (T ) varie lentement avec la température par rapport au facteur exponentiel dans
p(T ). Cette relation donne la concentration maximale de trous dans un semiconducteur
non-dégénéré (c’est-à-dire pour lequel µ− Ev � kBT et Ec − µ� kBT ).
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