ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

Exercices de Physique du Solide Prof. H. Brune

Série No. 11 6 Mai 2025

But de cette série : interpréter les structures de bandes

1. Conducteurs et isolants - Surface de Fermi

Considérer un réseau carré plan composé de N mailles de coté a. Le systéme possede un atome
par maille primitive. Chaque atome possede deux électrons de valence.

(a)
(b)
()

Dessiner la premiere zone de Brillouin (PZB) relative a ce réseau, avec :
I' : centre de la zone; point A : (Z,0); point B : (2, 7). Quelle est I'aire de la PZB?

Combien de valeurs k y a-t-il dans la premieére zone de Brillouin? Combien d’électrons
pourrait-elle contenir par bande ?

Considérer des électrons libres : évaluer kr et dessiner la surface de Fermi. Quelle est le
volume (puisque on est a 2D, c’est une aire) de la “spheére” de Fermi ?
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La figure montre l'allure de E(k) toujours pour des électrons libres, dans les directions
I'A, AB et BI'. Nous considérons seulement les deux premieres bandes d’énergie. Calculer
I’énergie (niveau) de Fermi et la reporter sur le schéma des bandes.

Considérer maintenant la présence d’un potentiel U tel que la dégénérescence des niveaux
est levée au points A et B, ainsi que le long de AB.

Esquisser qualitativement 1’évolution des bandes E(k) et de la surface de Fermi pour un
potentiel avec une amplitude de plus en plus grande. Pour comprendre ce qui se passe, on
va considérer un potentiel tres fort, qu’on ne devrait pas traiter comme perturbation. Cela
dit, ici nous voulons seulement comprendre ce qui se passe pour la surface et le niveau de
Fermi. Quel est le comportement du niveau de Fermi Er ? Dans quelles conditions a-t-on
un systeme isolant 7 Que peut-on dire de la surface de Fermi dans le cas de I’isolant ?



2. Structure de bande et densité d’états

Le cuivre (Cu) a la configuration électronique atomique suivante : [Ar]3d'%4s!. Lors de la for-
mation du solide, les états électroniques plus étendus dans I'espace s’hybrident pour former des
bandes. Pour le Cu, on a la formation des bandes a partir des orbitales 3d et des orbitales 4s.
La structure de bande du Cu est montrée ci-dessous.

La figure a droite montre la densité radiale de probabilité de présence d’un électron dans les
orbitales 3d et 4s pour un atome de cuivre isolé : P(r) o< 72 [{hqq(r)|?, 01l rqq est la partie
radiale de la fonction d’onde correspondante.
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(a) Considérer les bandes indiquées en rouge et en bleu. A 'aide des informations sur I'exten-
sion radiale des orbitales 3d et 4s, déduire quelle bande dérive des orbitales 4s et quelle
bande des orbitales 3d (une des 5 orbitales d). Qualitativement, que peut-on dire des
intégrales de transfert correspondantes ?

(b) Esquisser qualitativement la densité d’états g(E) correspondante a la structure de bande.

3. Notion de masse effective

On considére un systeme a deux dimensions (réseau carré) ayant une bande électronique de la
forme suivante :

E(k) = Ey — 27| [cos(kza) + cos(kya)]

a est le parameétre de la maille primitive et Ey est I’énergie de I’état atomique considéré. C’est
la forme typique d’'une bande calculée par la méthode des liaisons fortes pour une orbitale de
type s, avec intégrale de transfert 4 non-nulle seulement pour les plus proches voisins.
(a) Représenter Iénergie E(k) le long du chemin 'ABI" ou I' = (0,0), A= (%,0) et B= (%, 7).
Quelles sont les énergies du bas de le bande et du haut de la bande ? Quelle est la largeur
de la bande?

(b) La forme des courbes d’énergie constante au voisinage de certains points dans la lére zone
de Brillouin peut étre approximée par :
au voisinage de (0,0) : E(kg, ky) = Eo — 4|y| + || [(kza)? + (kya)?] ;
au voisinage de (I, Z) : E(ky, ky) = Eo + 4|y — 7] [(7 — kga)? + (7 — kya)?].
Montrer que I’énergie est constante sur la droite reliant les points (0,7) et (7,0) et
déterminer cette énergie.
Par interpolation et, a 'aide de la symétrie du systeme, faire une répresentation des
courbes d’énergie constante dans le plan k;, k, dans la premiere zone de Brillouin.



()

(d)

Représenter la surface de Fermi dans le plan k;, k, dans le cas ou le systéme possede un
électron par atome.

La masse effective peut étre exprimée par un tenseur m tel que

2
_ 1 PEK)

[mfl(k)]ij = ﬁm avec 1,] =,V 2

Trouver l'expression du tenseur de masse effective m dans le cas de la bande E(k).
Calculer la valeur de ses coefficients aux points (0,0), (%,%), (%,0) et (0, 7).

Discuter les limites de validité d’utilisation de la notion de masse effective.

4. Questions - Chapitres 4 a 6

(a)

Montrer que ’énergie de Fermi pour un gaz d’électrons 3D a T = 0 est proportionnelle
a n?/3, avec n la densité électronique. Considérer le gaz confiné dans une boite 3D et les
conditions aux bords périodiques.

Enoncer la loi de Wiedemann-Franz. En partant de la conductivité thermique £ et de la
chaleur spécifique czl, déduire I'expression explicite de cette loi.

Donner une formulation du théoreme de Bloch. Quelles conditions aux bords pour les
fonctions d’onde électroniques doivent étre utilisées ?

Expliquer brievement le modele des électrons faiblement couplés au réseau et le modele
des liaisons fortes. Pour quels métaux le modele des électrons faiblement couplés au réseau
est une bonne description 7 Pour quels métaux ’approximation des liaisons fortes est une
bonne description ? Justifier.

Expliquer la différence entre 'intégrale de champ cristallin 8 et I'intégrale de transfert
7(R).

Ecrire les deux equations du mouvement des électrons dans le modele semi-classique et
indiquer brievement dans quelles conditions elles sont valables.

Démontrer qu’une bande pleine ne participe pas a la conduction électrique. Vous pouvez
baser votre démonstration soit sur une description graphique soit sur un raisonnement
impliquant la densité de courant électrique.



Corrigé série No. 11 6 Mai 2025

1. Conducteurs et isolants - Surface de Fermi

(a,b,c,d)

La figure i) a la page suivante montre le cas des électrons libres (approximation du réseau
vide), comme dans la donnée. La relation de dispersion E(k) le long de T'A, AB et BI'
est representée. Noter que la bande le long de AB est deux fois dégénérée. A droite,
premiére zone de Brillouin (PZB) et surface de Fermi. Coordonnées des points : I' = (0, 0),
A= (7/a,0), B= (7/a,7/a).

. 2 2
L’aire de la PZB : | —
a

. ) . 27\ ? Na?
Il y a N valeurs k admises dans chaque zone de Brillouin :| — e =
a T

Si 'on considere le spin, dans la PZB on peut mettre 2N électrons par bande.

kr pour les électrons libres (avec deux électrons de valence par atome) :

Na? T 2

— 2 _

1(27)2 (27>
Le volume (aire) de la “sphére” de Fermi : wk% = 77—( ) = (W)

T a? a
Comme il y a deux électrons de valence par atome, l’aire de la “sphere” de Fermi a la méme
valeur que 'aire de la PZB.

Pour Er on trouve :

EthQk%—hz(W)M 4

2m  2m \a

K2 (k—G)2

Note : la premicre et la deuxieme bande peuvent étre trouvées avec la relation —=—

pour deux vecteurs G différents comme on a vu a la série 9 pour le cas 1D.

ii) Qualitativement, en présence d’un potentiel de faible amplitude, des bandes interdites
apparaissent au bord de la PZB. La surface de Fermi s’écarte quelque peu du cercle (dessiné
pour référence), et est perpendiculaire aux plans de Bragg. Les regions comme celle indiquée
par la fleche, ou la surface de Fermi n’est plus définie, correspondent au gap le long de AB
(et des autres directions équivalentes). Le nombre d’états occupés, c’est-a-dire le nombre
d’électrons dans le systeme (2V) est conservé.

iii) Lorsque 'effet du potentiel augmente, la largeur du gap augmente, la surface de Fermi
s’écarte de plus en plus du cercle.

iv) Enfin, pour un hypothétique potentiel suffisamment fort, le gap devient tel que la
bande de valence et la bande de conduction n’ont plus de recouvrement. Le systeme
est isolant (ou semiconducteur). Le niveau de Fermi et la surface de Fermi ne sont plus
définis, mais on peut dire que le niveau de Fermi se trouve dans la bande interdite entre la
bande de valence et la bande de conduction, et que la premiere bande (et donc la premieére
zone de Brillouin) est entierement remplie.

Ces résultats qualitatifs peuvent se généraliser pour les systemes tridimensionnels et expliquent
le fait que, par exemple, Mg, Be, Pb ont un caractere métallique alors que Si, Ge, Se, Te sont des
semiconducteurs. Dans ces derniers cas, les fortes attractions des électrons par le réseau (liaisons
covalentes) font que les bandes interdites sont larges ou tres larges et le recouvrement des bandes
de valence et conduction ne se produit pas.
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2. Structure de bande et densité d’états

(a)

L’expression type pour une bande dans le modele de liaisons fortes est (voir Chapitre 5.5) :
E(k) = Ey + un terme proportionnel & v multiplié par une fonction de k (typiquement une
combinaison de cos), avec Ey I'énergie de 'orbitale atomique et v U'intégrale de transfert.

Donc la largeur de la bande, c’est-a-dire la gamme d’énergie sur laquelle s’étend la bande,
est proportionnelle a |7|.

La bande bleue s’étend sur une gamme d’énergie beaucoup plus faible que la rouge, donc
I'intégrale de transfert pour les orbitales qui donnent lieu a la bande bleue est beaucoup
plus petite que celle des orbitales qui donnent lieu a la bande rouge.

Une bande qui conserve le caractere de l'orbitale atomique sera assez plate, parce que
son énergie reste proche de Ej : c’est une bande qui présente peu ou pas de dispersion,
c’est-a-dire peu ou pas de dependence de ’énergie en fonction du vecteur d’onde. Donc ici
c’est la bande bleue (et les autres bandes plates) qui conserve plus le caractere de 'orbitale
atomique d’origine. La bande rouge a plutét un caractere d’électron libre, avec une relation
plus proche d’'une dépendance parabolique.

En premiere approximation, I'intégrale de transfert est proportionnelle au recouvrement
des orbitales. Donc plus le recouvrement entre orbitales est grand, plus 'intégrale de trans-
fert sera grande.

L’extension radiale de 'orbitale 4s est supérieure a celle des orbitales 3d, comme visible
dans la figure de la densité radiale de probabilité.

On en déduit que les bandes entre 5eV et 8eV ont un caractere d. En effet, les bandes
“plates” correspondent aux 5 orbitales d (orbitale d : | =2, m; = 2,1,0 — 1, —2, avec des
combinaisons linéaires on obtient les 5 orbitales dyy, dy., dy., dy2_,2, d,2). Les autres
bandes ont un caractere s.

Notes

La situation réelle est encore plus complexe... Il faut se rappeler qu’on est en train de
considérer plusieurs orbitales par atome, et qu’en réalité on peut avoir aussi du transfert
(hybridation) entre orbitales de nature différente, c’est-a-dire entre orbitales s et orbitales
d. Sans cela, la bande s serait comme indiqué a la Figure 1 a la page suivante, avec les
lignes en vert pointillé qui relient la partie a basse énergie avec la partie a haute énergie.
En effet, a cause de I'hybridation, un gap d’énergie s’ouvre et la partie “plate” de la bande
a basse énergie (indiquée en bleu dans la Figure 1) a une nature plutot d et le bas de la
bande juste en dessus (indiquée en rouge) a une nature plutdt s. Voir aussi Figure 5.23
dans les notes de cours.

Un autre aspect : dans le solide, les orbitales 4p, qui sont vides dans le Cu atomique,
sont aussi impliquées dans la formation des états électroniques. La bande s du cuivre est
en réalité une bande sp, de nature plutét s pour la partie a basse énergie (1-4eV) et de
nature plutdt p dans la partie a haute énergie (8eV et plus).

La densité d’états g(F) représente ’ensemble des états d’énergie E par interval d’énergie
et unité de volume, indépendamment de leur vecteur d’onde. Qualitativement, g(E) est
plus haute aux énergies ou il y a beaucoup de bandes, et 1a ou les bandes sont plates.
Quantitativement, il faudrait tenir compte du détail de la structure dans toute la ZB. Voir
Figure 1 a la page suivante.

La Figure 2 & la page suivante montre le résultat d’autres calculs pour la structure de
bande, et la densité d’états correspondante, y-compris les densité d’états partielles.
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FIGURE 1 — Gauche : structure de bande, voir texte pour les couleurs. Centre : representation

treés qualitative de g(E). Droite : g(E) plus réaliste.
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FIGURE 2 — A gauche : structure de bande du Cu; a droite : de haut en bas, densité d’états g(E),
appelée ici DOS = density of states, totale et partielles (bandes dyy, + dy. + dyz, dy2_,2 +d.2, p,
s ). Les échelles d’énergie sont différentes de celles utilisées dans la Figure 1. Remarquer aussi la
différence d’échelle pour les DOS partielles. Adaptée de D.A. Papaconstantopoulos, Handbook
of the Band Structure of Elemental Solids, 2nd Ed., Springer 2015.
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3. Notion de masse effective

(a) Il faut évaluer 'énergie le long du chemin 'ABT dans la premiere zone de Brillouin. En
I': E£(0,0) = Ey — 4|y
En A : E(7/a,0) = Ey
En B: E(n/a,7/a) = Eo + 47|

Le long de chaque trongon du chemin :
TA:kyvade0a— k=0 = E(k)=Ey—2y|(cos(kea) + 1)
a
AB : k, = g, ky va de 0 a g = E(k) = Ey — 2|y|(—1 + cos(kya))

BT : k; va de Ta 0, ky va de Tao = E(k) = Eo — 2|y|(cos(kza) + cos(kya))
a a

La largeur de bande est donc de 8|~/

Eo + 4]7| A B
Ey - i
Ey — 4]y

r A B r

FIGURE 3 — Représentation de 1’énergie d’un électron le long du chemin I'ABT'.

(b) Développement limité (demonstration des expressions données dans ’énoncé).
Au voisinage de k; = 0 et k, = 0, on développe la relation de dispersion comme :

o[- 527) )

= Eo—4h| + 7] [(ke0)? + (kya)?]

E(ky, ky)

Au voisinage de k; = 7 et k, = 7, on définit k), = 7/a — k; et k) = 7/a — k, et on
développe la relation de dispersion comme :

SRR

= Eo+4h| - [(Ka)? + (k,a)?]

E(kza ky) = EO + 4"7’ - |’7’ [(77 - kma)Q + (7T - kya>2]

Donc au voisinage des points (0,0) et (%, 7), les courbes d’énergie constante sont des
cercles.
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La droite reliant les points (0, ) et (7,0) est donnée par I’équation ky = = —k;. On trouve

s

E <k:$, i kz) = Ey — 2|v| (cos (kya) + cos (m — kza)) = Ep

Eo + 4[]

Eq

// Eo — 4|

_ T
1A s g s oo 1”_,[._,
D -1y

FIGURE 4 — A gauche : schéma de la premiere zone de Brillouin. Des courbes d’énergie constante
sont représentées, avec les valeurs données en unités de Ejy. Avec un électron par atome, la
surface de Fermi est la courbe E = Ey. A droite : représentation avec une échelle de couleurs et
représentation 3D

(c) Pour représenter la surface de Fermi, il faut savoir combien d’états sont occupés dans
la premiere zone de Brillouin (on note PZB). On se rappelle que si N est le nombre de
mailles dans le cristal, alors il y a N valeurs de k possibles dans la PZB et donc, en
considérant le spin de I’électron, 2N états électroniques disponibles dans la PZB dans la
bande considérée. Avec un atome par maille et un électron par atome, il y a N électrons
dans le systéme : la PZB est & moitié remplie. Ainsi, la courbe d’énergie constante Ej
trouvée au point (a), qui défini un carré d’aire égale a la moitié de PZB, est la surface de

Fermi du systeme.

Pour calculer le tenseur de masse effective, il faut calculer les dérivées partielles de I’énergie.

On a:
E E

g_k:x = Fpasin(kya) et g_ky = Epasin(kya)

Les dérivées croisées sont nulles :
2 2

Oky Ok, Ok, 0k,
Et on a

O2E 0’E

8—]%26 = Fya® cos(kya) et (9_165 = Fya® cos(kya)
On a donc :

m-! — 1 [ 2|y]a® cos(kza) 0

h? 0 2|v|a? cos(kya)

On calcule l'inverse de clette matrice et on obtient :
2 _ 1
h cos(kga) 0

m = 1
2[y|a? 0 o




Les coefficients du tenseur masse effective dépendent des composantes k; et k, considérées.
En (0,0), on a :

o h? 1oy 1
S 2[a2\ 0 1) 2ya?

On est dans une région ou la relation F(k) est isotrope, donc on peut récrire le tenseur en

. . 2
termes d’une masse effective scalaire = QP}:T

En (Z,7),ona:

. h? -1 0 \_ 10
S 2yl@2\ 0 -1 ) 2ya2\ 0 1

On est aussi dans une région isotrope, mais la masse effective électronique est négative. On
peut décrire convenablement la bande en utilisant le concept de trou, avec masse effective
égale a — la masse effective trouvée :

N h? 1 o) n
T T 2ha? \ 0 1) T 2Jy]a?

En (7,0), on a:

o -10
m=_——
2/yla® \ 0 1

En (0,%), on a:

o100
m=_——
2|yla2 \ 0 -1

En (7,0) (et (0,7)) on est dans un point de selle, ce n’est ni un minimum ni un maximum.
Par exemple au point (7,0), on est sur un maximum si on varie k;, et dans un minimum
si on varie k,. Donc la notion de masse effective n’est pas applicable.

La notion de masse effective est utilisée par exemple pour décrire le mouvement des élec-
trons et des trous dans un cristal sous 'effet d'un champ électrique et/ou magnetique.
Imaginons que I'on applique un champ magnétique au systeme. La trajectoire dans ’espace
des k suit une courbe d’énergie constante. Si le k initial est proche de (0,0) ou (T, 7), alors
il restera proche de ces points, car les courbes d’énergie constante décrivent des cercles au-
tour de ces points. Ici la relation de dispersion a une forme quadratique comme pour une
particule libre. Ainsi, tant que les électrons et les trous restent proches respectivement du
bas et du haut de la bande d’énergie, la masse effective reste constante dans toutes les
directions.

Pour F = FEjy, la courbe d’énergie constante s’étend dans toute la PZB. En passant par
exemple de (7,0) a (0, 7) le long de cette courbe, la masse effective change de signe. Dans
ce cas, il n’est pas possible de décrire le mouvement des porteurs de charge a 'aide de
la masse effective. En effet, ce modele est valable seulement pour des états électroniques
proches du bas ou du haut de la bande (dispersion quadratique).

10



4. Questions de comprehension - Chapitres 4 4 6

(a)

(e)

Dans I’hypothese de conditions aux bords périodiques, a chaque vecteur d’onde est associé
un volume (273)/L3, si L? = V est le volume du solide. On peut d’abord trouver kg, en
tenant compte du fait que pour chaque k on peut avoir deux électrons (spin) :

dmkd L3 _ N S kg = (3720)8

3 (2n)3 2
21.2
avec n = N/V la densité d’électrons libres. En sachant que Ep = %, on trouve que
EF X n2/3.
Alternativement :

La densité électronique n est donnée par 'intégrale sur 1’énergie jusqu’au niveau de Fermi
de la densité d’états (a T'=10) :

Ep Er
n= /g(E)dE x /E1/2dE x B3
0 0

ou nous avons utilisé le fait que la densité d’états pour un gaz d’électrons 3D est
proportionnelle & E'/2. Donc Ep o n?/3.

La loi de Wiedemann-Franz dit que le rapport entre conductivité thermique électronique
ket conductivité électrique o est proportionnel & la température 7. Autrement dit :
K /(oT)= constante. La constante vaut 2.22x10"3WQ /K2,

! 1,2 I 12Erp 72 kgT 21,2
K€ §<'UF>TC161 3"m 2 Ep an . kB
AT Emr T mr

Une formulation du théoreme de Bloch est : 1 (r + R) = exp (ik - R) 9 (r).

Une autre formulation du théoréeme nous donne la forme que doivent avoir les fonctions
d’ondes, soit : Y (r) = exp(ik - r) uyk(r) ot uyk(r) posséde la périodicité du réseau :
Upk(r) = unk(r + R).

Les conditions aux limites utilisées sont des conditions périodiques (ou de Born-von-
Karman) : ¢(r + Nja;) = ¢(r),Vj = z,y,2, avec a; un vecteur primitif du réseau et
Nj; le nombre de mailles primitives dans la direction j.

Le modele des électrons faiblement couplés au réseau (électrons quasi-libres) part de I’ap-
proximation du gaz d’électrons libres et suppose une corrugation faible du potentiel. Cette
faible corrugation est due au fait que : 1. les interactions sont fortes surtout a courtes dis-
tances et le principe d’exclusion de Pauli empéche les électrons de conduction de pénétrer
dans le coeur et 2. les électrons de coeur écrantent le noyau positif. Ce modele s’applique
en général bien aux électrons de valence de type s — p, donc pour les alcalins (groupe I),
alcalins terreux (groupe II), métaux nobles.

Le modele des liaisons fortes part d’atomes neutres que ’on approche de plus en plus.
Les orbitales les plus étendues spatialement vont alors se recouvrir. Dans I"approximation
des liaisons fortes, on suppose que la fonction d’onde est bien décrite par les orbitales
atomiques, et on pose H = Hy + AU. Cette approximation s’applique particulierement
bien aux métaux de transition et aux isolants, qui ont un recouvrement d’orbitales pas
trop important.

Le potentiel AU apparait dans les deux intégrales.
5= [ @) AU 6(r)as

11



L’intégrale de champ cristallin 8 décrit I'effet du potentiel généré par les autres atomes.
En effet, uniquement la fonction d’onde atomique ¢(r) (localisée sur le méme site R = 0)
apparait dans l'intégrale.

(R) = / &*(r) AU (x) d(r — R) d*r

L’intégrale de transfert v(R) décrit le passage d’un électron du site initial R = 0 au site
R, induit par la présence du potentiel AU.

Le modele semi-classique décrit la dynamique de la valeur moyenne de la position et de
I'impulsion d’un paquet d’ondes de Bloch, lorsqu’il n’est pas nécessaire de préciser la
position de I’électron sur des dimensions de l'ordre de grandeur du parametre du réseau.
On consideére comme trajectoire (en sens classique) 1’évolution temporelle de la valeur
moyenne de position et de la valeur moyenne d’impulsion. Des forces extérieures appliquées
a ’électron s’ajoutent a la force du réseau. Entre les collisions, on utilise les équations qui
décrivent 1’évolution classique de k :
. 1 :
r=v, k)= ﬁVkEn (k) hk = —e[E(r,t) + v, (k) x B (r,1)]
Ces équations sont valables a condition que les champs varient lentement par rapport
aux dimensions du paquet d’ondes associé a ’électron et par conséquent par rapport au
parametre de réseau a. On suppose aussi qu’il n’y a pas de transition interbandes.

La densité de courant est donnée par :
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ZB

#rop
473 ok

d3k 1

Gy = el

473 h
ZB

j=—e

En général, les cristaux possedent la symétrie d’inversion, et donc E(k) = FE(—k).
Par conséquent la fonction g—f est une fonction impaire. Lorsqu’on l'integre sur la ZB,
I'intégrale est nulle, ce qui donne j = 0.

Voir la figure ci-dessous pour une démonstration graphique. Sous I'effet d’un champ élec-
trique extérieur, méme si il y a une évolution de chaque état repéré par son vecteur k, les
électrons évoluent dans des états qui étaient déja occupés en 'absence du champ électrique,
donc dans ’ensemble les états occupés restent les mémes.
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