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But de cette série : interpréter les structures de bandes

1. Conducteurs et isolants - Surface de Fermi

Considérer un réseau carré plan composé de N mailles de côté a. Le système possède un atome
par maille primitive. Chaque atome possède deux électrons de valence.

(a) Dessiner la première zone de Brillouin (PZB) relative à ce réseau, avec :
Γ : centre de la zone ; point A : (πa , 0) ; point B : (πa ,

π
a ). Quelle est l’aire de la PZB ?

(b) Combien de valeurs k y a-t-il dans la première zone de Brillouin ? Combien d’électrons
pourrait-elle contenir par bande ?

(c) Considérer des électrons libres : évaluer kF et dessiner la surface de Fermi. Quelle est le
volume (puisque on est à 2D, c’est une aire) de la “sphère” de Fermi ?
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(d) La figure montre l’allure de E(k) toujours pour des électrons libres, dans les directions
ΓA, AB et BΓ. Nous considérons seulement les deux premières bandes d’énergie. Calculer
l’énergie (niveau) de Fermi et la reporter sur le schéma des bandes.

(e) Considérer maintenant la présence d’un potentiel U tel que la dégénérescence des niveaux
est levée au points A et B, ainsi que le long de AB.

Esquisser qualitativement l’évolution des bandes E(k) et de la surface de Fermi pour un
potentiel avec une amplitude de plus en plus grande. Pour comprendre ce qui se passe, on
va considérer un potentiel très fort, qu’on ne devrait pas traiter comme perturbation. Cela
dit, ici nous voulons seulement comprendre ce qui se passe pour la surface et le niveau de
Fermi. Quel est le comportement du niveau de Fermi EF ? Dans quelles conditions a-t-on
un système isolant ? Que peut-on dire de la surface de Fermi dans le cas de l’isolant ?
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2. Structure de bande et densité d’états

Le cuivre (Cu) a la configuration électronique atomique suivante : [Ar]3d104s1. Lors de la for-
mation du solide, les états électroniques plus étendus dans l’espace s’hybrident pour former des
bandes. Pour le Cu, on a la formation des bandes à partir des orbitales 3d et des orbitales 4s.
La structure de bande du Cu est montrée ci-dessous.

La figure à droite montre la densité radiale de probabilité de présence d’un électron dans les
orbitales 3d et 4s pour un atome de cuivre isolé : P (r) ∝ r2 |ψrad(r)|2, où ψrad est la partie
radiale de la fonction d’onde correspondante.
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(a) Considérer les bandes indiquées en rouge et en bleu. A l’aide des informations sur l’exten-
sion radiale des orbitales 3d et 4s, déduire quelle bande dérive des orbitales 4s et quelle
bande des orbitales 3d (une des 5 orbitales d). Qualitativement, que peut-on dire des
intégrales de transfert correspondantes ?

(b) Esquisser qualitativement la densité d’états g(E) correspondante à la structure de bande.

3. Notion de masse effective

On considère un système à deux dimensions (réseau carré) ayant une bande électronique de la
forme suivante :

E(k) = E0 − 2|γ| [cos(kxa) + cos(kya)]

a est le paramètre de la maille primitive et E0 est l’énergie de l’état atomique considéré. C’est
la forme typique d’une bande calculée par la méthode des liaisons fortes pour une orbitale de
type s, avec intégrale de transfert γ non-nulle seulement pour les plus proches voisins.

(a) Représenter l’énergie E(k) le long du chemin ΓABΓ où Γ = (0, 0), A= (πa , 0) et B= (πa ,
π
a ).

Quelles sont les énergies du bas de le bande et du haut de la bande ? Quelle est la largeur
de la bande ?

(b) La forme des courbes d’énergie constante au voisinage de certains points dans la 1ère zone
de Brillouin peut être approximée par :

au voisinage de (0, 0) : E(kx, ky) = E0 − 4|γ|+ |γ|
[
(kxa)2 + (kya)2

]
;

au voisinage de (πa ,
π
a ) : E(kx, ky) = E0 + 4|γ| − |γ|

[
(π − kxa)2 + (π − kya)2

]
.

Montrer que l’énergie est constante sur la droite reliant les points (0, πa ) et (πa , 0) et
déterminer cette énergie.
Par interpolation et, à l’aide de la symétrie du système, faire une répresentation des
courbes d’énergie constante dans le plan kx, ky dans la première zone de Brillouin.
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(c) Représenter la surface de Fermi dans le plan kx, ky dans le cas où le système possède un
électron par atome.

(d) La masse effective peut être exprimée par un tenseur m tel que

[
m−1(k)

]
ij

= ± 1

~2
∂2E(k)

∂ki∂kj
avec i, j = x, y, z

Trouver l’expression du tenseur de masse effective m dans le cas de la bande E(k).
Calculer la valeur de ses coefficients aux points (0, 0), (πa ,

π
a ), (πa , 0) et (0, πa ).

Discuter les limites de validité d’utilisation de la notion de masse effective.

4. Questions - Chapitres 4 à 6

(a) Montrer que l’énergie de Fermi pour un gaz d’électrons 3D à T = 0 est proportionnelle
à n2/3, avec n la densité électronique. Considérer le gaz confiné dans une bôıte 3D et les
conditions aux bords périodiques.

(b) Enoncer la loi de Wiedemann-Franz. En partant de la conductivité thermique κel et de la
chaleur spécifique celv , déduire l’expression explicite de cette loi.

(c) Donner une formulation du théorème de Bloch. Quelles conditions aux bords pour les
fonctions d’onde électroniques doivent être utilisées ?

(d) Expliquer brièvement le modèle des électrons faiblement couplés au réseau et le modèle
des liaisons fortes. Pour quels métaux le modèle des électrons faiblement couplés au réseau
est une bonne description ? Pour quels métaux l’approximation des liaisons fortes est une
bonne description ? Justifier.

(e) Expliquer la différence entre l’intégrale de champ cristallin β et l’intégrale de transfert
γ(R).

(f) Écrire les deux equations du mouvement des électrons dans le modèle semi-classique et
indiquer brièvement dans quelles conditions elles sont valables.

(g) Démontrer qu’une bande pleine ne participe pas à la conduction électrique. Vous pouvez
baser votre démonstration soit sur une description graphique soit sur un raisonnement
impliquant la densité de courant électrique.
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Corrigé série No. 11 6 Mai 2025

1. Conducteurs et isolants - Surface de Fermi

(a,b,c,d)
La figure i) à la page suivante montre le cas des électrons libres (approximation du réseau
vide), comme dans la donnée. La relation de dispersion E(k) le long de ΓA, AB et BΓ
est representée. Noter que la bande le long de AB est deux fois dégénérée. A droite,
première zone de Brillouin (PZB) et surface de Fermi. Coordonnées des points : Γ = (0, 0),
A= (π/a, 0), B= (π/a, π/a).

L’aire de la PZB :

(
2π

a

)2

Il y a N valeurs k admises dans chaque zone de Brillouin :

(
2π

a

)2 Na2

(2π)2
= N

Si l’on considère le spin, dans la PZB on peut mettre 2N électrons par bande.

kF pour les électrons libres (avec deux électrons de valence par atome) :

2N = 2 πk2F
Na2

(2π)2
⇒ kF =

π

a

2√
π

Le volume (aire) de la “sphère” de Fermi : πk2F = π
1

π

(2π)2

a2
=

(
2π

a

)2

Comme il y a deux électrons de valence par atome, l’aire de la “sphère” de Fermi a la même
valeur que l’aire de la PZB.

Pour EF on trouve :

EF =
~2k2F
2m

=
~2

2m

(π
a

)2 4

π
=

4

π
E0

k=(π
a
,0)

Note : la première et la deuxième bande peuvent être trouvées avec la relation ~2(k−G)2

2m
pour deux vecteurs G différents comme on a vu à la série 9 pour le cas 1D.

(e)
ii) Qualitativement, en présence d’un potentiel de faible amplitude, des bandes interdites
apparaissent au bord de la PZB. La surface de Fermi s’écarte quelque peu du cercle (dessiné
pour référence), et est perpendiculaire aux plans de Bragg. Les regions comme celle indiquée
par la flèche, où la surface de Fermi n’est plus définie, correspondent au gap le long de AB
(et des autres directions équivalentes). Le nombre d’états occupés, c’est-à-dire le nombre
d’électrons dans le système (2N) est conservé.

iii) Lorsque l’effet du potentiel augmente, la largeur du gap augmente, la surface de Fermi
s’écarte de plus en plus du cercle.

iv) Enfin, pour un hypothétique potentiel suffisamment fort, le gap devient tel que la
bande de valence et la bande de conduction n’ont plus de recouvrement. Le système
est isolant (ou semiconducteur). Le niveau de Fermi et la surface de Fermi ne sont plus
définis, mais on peut dire que le niveau de Fermi se trouve dans la bande interdite entre la
bande de valence et la bande de conduction, et que la première bande (et donc la première
zone de Brillouin) est entièrement remplie.

Ces résultats qualitatifs peuvent se généraliser pour les systèmes tridimensionnels et expliquent
le fait que, par exemple, Mg, Be, Pb ont un caractère métallique alors que Si, Ge, Se, Te sont des
semiconducteurs. Dans ces derniers cas, les fortes attractions des électrons par le réseau (liaisons
covalentes) font que les bandes interdites sont larges ou très larges et le recouvrement des bandes
de valence et conduction ne se produit pas.
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2. Structure de bande et densité d’états

(a) L’expression type pour une bande dans le modèle de liaisons fortes est (voir Chapitre 5.5) :
E(k) = E0 + un terme proportionnel à γ multiplié par une fonction de k (typiquement une
combinaison de cos), avec E0 l’énergie de l’orbitale atomique et γ l’intégrale de transfert.

Donc la largeur de la bande, c’est-à-dire la gamme d’énergie sur laquelle s’étend la bande,
est proportionnelle à |γ|.
La bande bleue s’étend sur une gamme d’énergie beaucoup plus faible que la rouge, donc
l’intégrale de transfert pour les orbitales qui donnent lieu à la bande bleue est beaucoup
plus petite que celle des orbitales qui donnent lieu à la bande rouge.

Une bande qui conserve le caractère de l’orbitale atomique sera assez plate, parce que
son énergie reste proche de E0 : c’est une bande qui présente peu ou pas de dispersion,
c’est-à-dire peu ou pas de dependence de l’énergie en fonction du vecteur d’onde. Donc ici
c’est la bande bleue (et les autres bandes plates) qui conserve plus le caractère de l’orbitale
atomique d’origine. La bande rouge a plutôt un caractère d’électron libre, avec une relation
plus proche d’une dépendance parabolique.

En première approximation, l’intégrale de transfert est proportionnelle au recouvrement
des orbitales. Donc plus le recouvrement entre orbitales est grand, plus l’intégrale de trans-
fert sera grande.

L’extension radiale de l’orbitale 4s est supérieure à celle des orbitales 3d, comme visible
dans la figure de la densité radiale de probabilité.

On en déduit que les bandes entre 5 eV et 8 eV ont un caractère d. En effet, les bandes
“plates” correspondent aux 5 orbitales d (orbitale d : l = 2, ml = 2, 1, 0 − 1,−2, avec des
combinaisons linéaires on obtient les 5 orbitales dxy, dyz, dyz, dx2−y2 , dz2). Les autres
bandes ont un caractère s.

Notes
La situation réelle est encore plus complexe... Il faut se rappeler qu’on est en train de
considérer plusieurs orbitales par atome, et qu’en réalité on peut avoir aussi du transfert
(hybridation) entre orbitales de nature différente, c’est-à-dire entre orbitales s et orbitales
d. Sans cela, la bande s serait comme indiqué à la Figure 1 à la page suivante, avec les
lignes en vert pointillé qui relient la partie à basse énergie avec la partie à haute énergie.
En effet, à cause de l’hybridation, un gap d’énergie s’ouvre et la partie “plate” de la bande
à basse énergie (indiquée en bleu dans la Figure 1) a une nature plutôt d et le bas de la
bande juste en dessus (indiquée en rouge) a une nature plutôt s. Voir aussi Figure 5.23
dans les notes de cours.

Un autre aspect : dans le solide, les orbitales 4p, qui sont vides dans le Cu atomique,
sont aussi impliquées dans la formation des états électroniques. La bande s du cuivre est
en réalité une bande sp, de nature plutôt s pour la partie à basse énergie (1-4 eV) et de
nature plutôt p dans la partie à haute énergie (8 eV et plus).

(b) La densité d’états g(E) représente l’ensemble des états d’énergie E par interval d’énergie
et unité de volume, indépendamment de leur vecteur d’onde. Qualitativement, g(E) est
plus haute aux énergies où il y a beaucoup de bandes, et là où les bandes sont plates.
Quantitativement, il faudrait tenir compte du détail de la structure dans toute la ZB. Voir
Figure 1 à la page suivante.

La Figure 2 à la page suivante montre le résultat d’autres calculs pour la structure de
bande, et la densité d’états correspondante, y-compris les densité d’états partielles.
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Figure 1 – Gauche : structure de bande, voir texte pour les couleurs. Centre : representation
très qualitative de g(E). Droite : g(E) plus réaliste.

Figure 2 – A gauche : structure de bande du Cu ; à droite : de haut en bas, densité d’états g(E),
appelée ici DOS = density of states, totale et partielles (bandes dxy + dyz + dyz, dx2−y2 + dz2 , p,
s ). Les échelles d’énergie sont différentes de celles utilisées dans la Figure 1. Remarquer aussi la
différence d’échelle pour les DOS partielles. Adaptée de D.A. Papaconstantopoulos, Handbook
of the Band Structure of Elemental Solids, 2nd Ed., Springer 2015.
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3. Notion de masse effective

(a) Il faut évaluer l’énergie le long du chemin ΓABΓ dans la première zone de Brillouin. En
Γ : E(0, 0) = E0 − 4|γ|
En A : E(π/a, 0) = E0

En B : E(π/a, π/a) = E0 + 4|γ|

Le long de chaque tronçon du chemin :

ΓA : kx va de 0 à
π

a
, ky = 0 =⇒ E(k) = E0 − 2|γ|(cos(kxa) + 1)

AB : kx =
π

a
, ky va de 0 à

π

a
=⇒ E(k) = E0 − 2|γ|(−1 + cos(kya))

BΓ : kx va de
π

a
à 0, ky va de

π

a
à 0 =⇒ E(k) = E0 − 2|γ|(cos(kxa) + cos(kya))

La largeur de bande est donc de 8|γ|.

Γ ΓA B

Figure 3 – Représentation de l’énergie d’un électron le long du chemin ΓABΓ.

(b) Développement limité (demonstration des expressions données dans l’énoncé).

Au voisinage de kx = 0 et ky = 0, on développe la relation de dispersion comme :

E(kx, ky) = E0 − 2|γ|
[(

1− (kxa)2

2

)
+

(
1− (kya)2

2

)]
= E0 − 4|γ|+ |γ|

[
(kxa)2 + (kya)2

]
Au voisinage de kx = π

a et ky = π
a , on définit k′x = π/a − kx et k′y = π/a − ky et on

développe la relation de dispersion comme :

E(k′x, k
′
y) = E0 − 2|γ|

[(
−1 +

(k′xa)2

2

)
+

(
−1 +

(k′ya)2

2

)]
= E0 + 4|γ| − |γ|

[
(k′xa)2 + (k′ya)2

]

E(kx, ky) = E0 + 4|γ| − |γ|
[
(π − kxa)2 + (π − kya)2

]
Donc au voisinage des points (0, 0) et (πa ,

π
a ), les courbes d’énergie constante sont des

cercles.
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La droite reliant les points (0, πa ) et (πa , 0) est donnée par l’équation ky = π
a −kx. On trouve

E
(
kx,

π

a
− kx

)
= E0 − 2|γ| (cos (kxa) + cos (π − kxa)) = E0

kx

ky

AΓ

BA’

Figure 4 – A gauche : schéma de la première zone de Brillouin. Des courbes d’énergie constante
sont représentées, avec les valeurs données en unités de E0. Avec un électron par atome, la
surface de Fermi est la courbe E = E0. A droite : représentation avec une échelle de couleurs et
représentation 3D

(c) Pour représenter la surface de Fermi, il faut savoir combien d’états sont occupés dans
la première zone de Brillouin (on note PZB). On se rappelle que si N est le nombre de
mailles dans le cristal, alors il y a N valeurs de k possibles dans la PZB et donc, en
considérant le spin de l’électron, 2N états électroniques disponibles dans la PZB dans la
bande considérée. Avec un atome par maille et un électron par atome, il y a N électrons
dans le système : la PZB est à moitié remplie. Ainsi, la courbe d’énergie constante E0

trouvée au point (a), qui défini un carré d’aire égale à la moitié de PZB, est la surface de
Fermi du système.

(d) Pour calculer le tenseur de masse effective, il faut calculer les dérivées partielles de l’énergie.
On a :

∂E

∂kx
= E0a sin(kxa) et

∂E

∂ky
= E0a sin(kya)

Les dérivées croisées sont nulles :

∂2E

∂ky∂kx
= 0 et

∂2E

∂kx∂ky
= 0

Et on a

∂2E

∂k2x
= E0a

2 cos(kxa) et
∂2E

∂k2y
= E0a

2 cos(kya)

On a donc :

m−1 =
1

~2

(
2|γ|a2 cos(kxa) 0

0 2|γ|a2 cos(kya)

)

On calcule l’inverse de cette matrice et on obtient :

m =
~2

2|γ|a2

(
1

cos(kxa)
0

0 1
cos(kya)

)
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Les coefficients du tenseur masse effective dépendent des composantes kx et ky considérées.
En (0, 0), on a :

m =
~2

2|γ|a2

(
1 0
0 1

)
=

~2

2|γ|a2
I

On est dans une région où la relation E(k) est isotrope, donc on peut récrire le tenseur en

termes d’une masse effective scalaire = ~2
2|γ|a2 .

En (πa ,
π
a ), on a :

m =
~2

2|γ|a2

(
−1 0
0 −1

)
= − ~2

2|γ|a2

(
1 0
0 1

)
On est aussi dans une région isotrope, mais la masse effective électronique est négative. On
peut décrire convenablement la bande en utilisant le concept de trou, avec masse effective
égale à − la masse effective trouvée :

mtrou =
~2

2|γ|a2

(
1 0
0 1

)
=

~2

2|γ|a2
I

En (πa , 0), on a :

m =
~2

2|γ|a2

(
−1 0
0 1

)
En (0, πa ), on a :

m =
~2

2|γ|a2

(
1 0
0 −1

)
En (πa , 0) (et (0, πa )) on est dans un point de selle, ce n’est ni un minimum ni un maximum.
Par exemple au point (πa , 0), on est sur un maximum si on varie kx, et dans un minimum
si on varie ky. Donc la notion de masse effective n’est pas applicable.

La notion de masse effective est utilisée par exemple pour décrire le mouvement des élec-
trons et des trous dans un cristal sous l’effet d’un champ électrique et/ou magnetique.
Imaginons que l’on applique un champ magnétique au système. La trajectoire dans l’espace
des k suit une courbe d’énergie constante. Si le k initial est proche de (0, 0) ou (πa ,

π
a ), alors

il restera proche de ces points, car les courbes d’énergie constante décrivent des cercles au-
tour de ces points. Ici la relation de dispersion a une forme quadratique comme pour une
particule libre. Ainsi, tant que les électrons et les trous restent proches respectivement du
bas et du haut de la bande d’énergie, la masse effective reste constante dans toutes les
directions.
Pour E = E0, la courbe d’énergie constante s’étend dans toute la PZB. En passant par
exemple de (πa , 0) à (0, πa ) le long de cette courbe, la masse effective change de signe. Dans
ce cas, il n’est pas possible de décrire le mouvement des porteurs de charge à l’aide de
la masse effective. En effet, ce modèle est valable seulement pour des états électroniques
proches du bas ou du haut de la bande (dispersion quadratique).
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4. Questions de comprehension - Chapitres 4 à 6

(a) Dans l’hypothèse de conditions aux bords périodiques, à chaque vecteur d’onde est associé
un volume (2π3)/L3, si L3 = V est le volume du solide. On peut d’abord trouver kF , en
tenant compte du fait que pour chaque k on peut avoir deux électrons (spin) :

4πk3F
3

L3

(2π)3
=
N

2
→ kF = (3π2n)1/3

avec n = N/V la densité d’électrons libres. En sachant que EF =
~2k2F
2m , on trouve que

EF ∝ n2/3.

Alternativement :

La densité électronique n est donnée par l’intégrale sur l’énergie jusqu’au niveau de Fermi
de la densité d’états (à T = 0) :

n =

EF∫
0

g(E)dE ∝
EF∫
0

E1/2dE ∝ E3/2
F

où nous avons utilisé le fait que la densité d’états pour un gaz d’électrons 3D est
proportionnelle à E1/2. Donc EF ∝ n2/3.

(b) La loi de Wiedemann-Franz dit que le rapport entre conductivité thermique électronique
κel et conductivité électrique σ est proportionnel à la température T . Autrement dit :
κel/(σT )= constante. La constante vaut 2.22×10−8WΩ/K2.

κel

σT
=

1
3〈v

2
F 〉τcelv

e2τn
m T

=

1
3
2EF
m

π2

2
kBT
EF

kBn

e2n
m T

=
π2kB

2

3e2

(c) Une formulation du théorème de Bloch est : ψ (r + R) = exp (ik ·R)ψ(r).

Une autre formulation du théorème nous donne la forme que doivent avoir les fonctions
d’ondes, soit : ψnk(r) = exp(ik · r)unk(r) où unk(r) possède la périodicité du réseau :
unk(r) = unk(r + R).

Les conditions aux limites utilisées sont des conditions périodiques (ou de Born-von-
Karman) : ψ(r + Njaj) = ψ(r),∀j = x, y, z, avec aj un vecteur primitif du réseau et
Nj le nombre de mailles primitives dans la direction j.

(d) Le modèle des électrons faiblement couplés au réseau (électrons quasi-libres) part de l’ap-
proximation du gaz d’électrons libres et suppose une corrugation faible du potentiel. Cette
faible corrugation est due au fait que : 1. les interactions sont fortes surtout à courtes dis-
tances et le principe d’exclusion de Pauli empêche les électrons de conduction de pénétrer
dans le coeur et 2. les électrons de coeur écrantent le noyau positif. Ce modèle s’applique
en général bien aux électrons de valence de type s − p, donc pour les alcalins (groupe I),
alcalins terreux (groupe II), métaux nobles.

Le modèle des liaisons fortes part d’atomes neutres que l’on approche de plus en plus.
Les orbitales les plus étendues spatialement vont alors se recouvrir. Dans l’approximation
des liaisons fortes, on suppose que la fonction d’onde est bien décrite par les orbitales
atomiques, et on pose H = Hat + ∆U . Cette approximation s’applique particulièrement
bien aux métaux de transition et aux isolants, qui ont un recouvrement d’orbitales pas
trop important.

(e) Le potentiel ∆U apparâıt dans les deux intégrales.

β =

∫
φ∗(r) ∆U(r)φ(r)d3r
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L’intégrale de champ cristallin β décrit l’effet du potentiel généré par les autres atomes.
En effet, uniquement la fonction d’onde atomique φ(r) (localisée sur le même site R = 0)
apparâıt dans l’intégrale.

γ(R) =

∫
φ∗(r) ∆U(r)φ(r−R) d3r

L’intégrale de transfert γ(R) décrit le passage d’un électron du site initial R = 0 au site
R, induit par la présence du potentiel ∆U .

(f) Le modèle semi-classique décrit la dynamique de la valeur moyenne de la position et de
l’impulsion d’un paquet d’ondes de Bloch, lorsqu’il n’est pas nécessaire de préciser la
position de l’électron sur des dimensions de l’ordre de grandeur du paramètre du réseau.
On considère comme trajectoire (en sens classique) l’évolution temporelle de la valeur
moyenne de position et de la valeur moyenne d’impulsion. Des forces extérieures appliquées
à l’électron s’ajoutent à la force du réseau. Entre les collisions, on utilise les équations qui
décrivent l’évolution classique de k :

ṙ = vn (k) =
1

~
∇kEn (k) ~k̇ = −e [E (r, t) + vn (k)×B (r, t)]

Ces équations sont valables à condition que les champs varient lentement par rapport
aux dimensions du paquet d’ondes associé à l’électron et par conséquent par rapport au
paramètre de réseau a. On suppose aussi qu’il n’y a pas de transition interbandes.

(g) La densité de courant est donnée par :

j = −e
∫
ZB

d3k

4π3
v = −e1

~

∫
ZB

d3k

4π3
∂E

∂k

En général, les cristaux possèdent la symétrie d’inversion, et donc E(k) = E(−k).
Par conséquent la fonction ∂E

∂k est une fonction impaire. Lorsqu’on l’intègre sur la ZB,
l’intégrale est nulle, ce qui donne j = 0.

Voir la figure ci-dessous pour une démonstration graphique. Sous l’effet d’un champ élec-
trique extérieur, même si il y a une évolution de chaque état repéré par son vecteur k, les
électrons évoluent dans des états qui étaient déjà occupés en l’absence du champ électrique,
donc dans l’ensemble les états occupés restent les mêmes.

–– –

E

k –– – k

EE
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