Chapitre 9

Propriétés magnétiques des solides

Dans les chapitres précédents nous avons discuté la structure électro-
nique des matériaux dans 'approximation des électrons indépendants. Dans
le cadre de ce modele il est possible de déterminer d’une fagon qualitativement
correcte la structure de bande des matériaux et d’expliquer de nombreuses
propriétés. Il est aussi possible de rendre compte des états excités d’un sys-
teme, résultant par exemple de l'interaction avec des photons ou d’autres
particules.

Dans le cas des propriétés magnétiques, en particulier pour les matériaux
ferromagnétiques ou antiferromagnétiques, le modele a un électron ne suffit
pas et il faut tenir compte des corrélations entre électrons. De plus la théorie
du magnétisme est compliquée par le fait qu’il faut introduire les aspects
locaux et collectifs, c’est le cas en particulier pour le ferromagnétisme des
métaux.

Dans le § 9.1 nous introduisons ’'Hamiltonien magnétique d’un ion isolé.
Dans les § 9.2 et 9.3 nous décrivons le comportement magnétique d'un en-
semble d’ions localisés (§ 9.2) ou d’électrons de conduction (§ 9.3) sans inter-
action mutuelle. L’interaction d’échange de Heisenberg sera qualitativement
introduite au § 9.4, elle permet de rendre compte de l'interaction mutuelle
entre les moments magnétiques pour les substances ferro, ferri ou antifer-
romagnétiques. La théorie du champ moyen sera introduite pour décrire le
comportement des ferromagnétiques (§ 9.5) et antiferromagnétiques (§ 9.7)
de systemes portant des moments magnétiques localisés. Une description qua-
litative du magnétisme itinérant est donnée au § 9.6. La notion d’excitation
collective (onde de spin) est introduite au § 9.8. Enfin le § 9.9 décrit quelques
propriétés des systemes ferromagnétiques reliés a la présence de domaines
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magnétiques.
En plus des références générales valables pour tous les chapitres de ce
cours, mentionnons plus spécifiquement pour ce chapitre :
— D. Jiles, Introduction to magnetism and magnetic materials, Chapman
and Hall (1991).
— A. Herpin, Théorie du magnétisme, Presses Universitaires de France
(1968).

9.1 Susceptibilité et Hamiltonien magnétique d’un
ion (atome) isolé
Il a été montré au cours de physique générale que les propriétés ma-

gnétiques d'un solide ou d’un fluide sont caractérisées par la susceptibilité
magnétique y définie par

M = yH (9.1)
ou M est "aimantation par unité de volume définie par
1
M=o Z m; (9.2)

et la somme est prise sur tous les moments magnétiques individuels m;
contenus dans le volume V.

Le but de ce § est d’introduire la susceptibillité dans le cas quantique et de
donner une formulation générale a partir de laquelle il est possible de calculer
la susceptibilité d'un solide formé d’un ensemble d’ions ou de molécules dont
les moments magnétiques individuels n’interagissent pas entre eux.

9.1.1 La susceptibilité magnétique

D’un point de vue classique I’énergie d’interaction d’un moment m; avec le
champ B s’écrit F; = —m; - B, I'énergie magnétique £ des moments contenus
dans le volume V' est ainsi donnée par

E=) E=-VM-B

d’ou l'on tire 1 9E
M=——— 9.3
V 0B (9-3)
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Cette relation peut se transposer dans le cas quantique, et ’on définit I’aiman-
tation M d’un systeme quantique dans un champ uniforme B a température

nulle par
10Ky

V 0B
ou Fj est 'énergie de I'état fondamental.
Si le systeme est en équilibre thermique a température 7', 'aimantation
se calcule en prenant la moyenne sur les états excités du systeme d’énergie
totale E,,

E
Z M,, exp <_ - >
ks

M (B,T) = (9-4)
doexp | — i
~ ksT
ot 1 OF
M, =M, (B.T)= ———" .

En remplagant (9.5) dans (9.4) et en tenant compte de l'expression déduite
en mécanique statistique pour 1’énergie libre

F=—kgTinz
ou Z est la fonction de partition quantique, on trouve

1 (OF
M= (3_B)T,v (9.6)

Le tenseur de susceptibilité y,,; est défini par

oM, _ 1 8*F

Xap = I, —Movm (9.7)

ou l'on a utilisé le fait que, si 'on exclut le cas des corps ferromagnétiques,
la susceptibilité est faible, soit

B = ji)H + poM = 1y (1 + x) H = poH
Dans le cas d’un corps isotrope, il vient

1 O°F
Hoy, B2

1%

X
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9.1.2 L’Hamiltonien magnétique d’un ion (atome) isolé

En présence d'un champ magnétique uniforme I’'Hamiltonien d’un ion (ou
d’un atome) est modifié
— en remplagant dans ’énergie cinétique la quantité de mouvement de
chaque électron par
pi — Pi T €A (9.9)
ou A est le potentiel vecteur. Dans ce chapitre nous choisirons A tel
que
1

de telle sorte que les conditions
B =rot A et div B=0

soient satisfaites.
— en ajoutant ’énergie d’interaction AH de B avec le moment magné-
tique m; de I’électron i (voir Chap. 2, § 4) ou

et pup est le magnéton de Bohr tel que
eh
= =5.79 107°eV/T 9.12
o = o v/ (912

Pour I’ensemble des électrons i de 'atome (ou du ion), on a donc
A =-> m;-B=2u,BS. (9.13)

ou B est orienté selon 'axe z et

S.=> (), (9.14)

i

En tenant compte de (9.9) la partie H.;, de I'Hamiltonien s’écrit
Hcin:_z pz+€A rz :_Z<pz__erB>

soit en développant,
2

1 e? B2

)

ou AL est le moment cinétique orbital total défini par

hL:ZriXpi
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En combinant (9.13) avec (9.15) on obtient I'Hamiltonien a N élec-
trons d’un ion plongé dans un champ B uniforme
H=Ho+ Hn

ou Ho est ’'Hamiltonien du ion sans tenir compte des termes magné-
tiques et H,, est donné par

Hpn = B - (L +28S) +

22

685 Z (22 +42) (9.16)

]

Les variations d’énergie associées a (9.16) sont faibles, on peut donc

traiter H,, comme une perturbation. Au second ordre dans la théorie

des perturbations, dans le cas ou les états de Hy sont non dégénérés,
HU \n> = En’ 77,>,

on obtient en ne gardant que les termes linéaires et quadratiques en
B

DeltaFE, = ugB(n | L+ 2S | n) + 7) | n)
| (n [ ppB - L+25)|n>|
9.17
+ 5= (9.17)

n'#n

9.1.3 Ordres de grandeur

Dans certaines situations (voir ci-dessous) le terme linéaire en B s’annule.
Si ce n’est pas le cas, ce sera le terme dominant, en effet

ppB - (n |L+2S | n) ~ ugB = hw, ~ 10" %V

pour un champ B de 1 Tesla.
Le terme du 1°° ordre en B? est tel que

6232 9 9 6232 ) hwe
Z : , ~ ~ (hwe) =F——
™ <n ’ : (xz + Y; ) | n> 8m o ( ) 62/47TE(]@0

olt €%/4mEyag = 27.2 V. Ce terme est 6.17 x 107! eV /électron et donc de
I'ordre de 10~%V.

Le terme du second ordre est de l'ordre de grandeur de hw, (hw./A) ou
A est la minimum de | E,, — E,» | qui est une énergie d’excitation atomique
typique, soit dans la plupart des cas ~ 1eV. C’est donc aussi un terme faible.
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Pour poursuivre I'étude des propriétés magnétiques des ions dans un so-
lide, il faut savoir décrire les états électroniques de basse énergie d'un ion
ou d’un atome, soit d’un systéme a plusieurs électrons. Les regles, dites de
Hund, qui permettent de déterminer les valeurs de L, S et J de I’état fonda-
mental d’'un atome ou d’un ion.

9.2 Susceptibilité d’un ensemble d’ions sans inter-
action mutuelle

Nous étudions dans ce § la susceptibilité d’un solide formé d’un ensemble
d’ions qui interagissent avec un champ magnétique extérieur, mais dont on
néglige I'interaction mutuelle. Il faut pour étudier d'un point de vue quan-
tique ce probleme, partir de la relation (9.17), de laquelle on pourra déduire
la susceptibilité x donnée par (9.8). Chacun des termes de (9.17) correspond
a une contribution distincte a x.

9.2.1 Le diamagnétisme de Larmor

Considérons, pour introduire le diamagnétisme, le cas d’'un solide formé
d’ions dont toutes les couches électroniques sont remplies. Un tel ion, dans
son état fondamental, est tel que

JI0)=L[0)=S]|0)=0

Ainsi seul le second terme de (9.17) contribue & AFE,, lorsque | n) correspond
a I'état fondamental. Il vient donc

0|Z 22 +y7) | 0) =

2BQ

AE, = 210) (9.18)

ou I'on a tenu compte du fait que l'ion est de symétrie sphérique. Si la pro-
babilité que 1’ ion soit dans un état excité est faible, ce qui est vérifié sauf a
tres haute température, la susceptibilité volumique d’un solide composé de
N ions est donnée par

N 82AE, N ¢? 3
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Cette contribution est la susceptibilité diamagnétique de Larmor. On peut
la retrouver d’un point de vue classique (voir cours de physique générale)
en calculant la variation du moment magnétique d'une spire sans résistance
(correspondant & l'orbite électronique) lorsqu’on enclenche le champ magné-
tique de zéro a sa valeur maximum. Cette contribution négative est toujours
présente, quelles que soient les valeurs de L et S. Cependant dans le cas
ol le moment magnétique permanent est non nul, elle est dominée par la
contribution paramagnétique (voir § 1.3)).

L’équation (9.19) décrit bien la réponse magnétique d’un solide de gaz
rare ou de cristaux ioniques simples tels que les "alkali halides”, car dans ces
solides les ions sont peu perturbés par leur environnement cristallin.

On exprime souvent la susceptibilité par mole, dans ce cas

e?a? r?

(Xmote = —toNaZ %%—3) (9.19 bis)

ou N4 est le nombre d’Avogadro, Z le nombre total d’électrons dans le ion
et (r?) est un rayon ionique moyen défini par

() =2 30172 0)

En systeme M K SA la susceptibilité est égale a
X = —0.99 107°Z((r /ag)*)em? /mole (9.19 ter)

La grandeur ((r/ag)?) est de l'ordre de grandeur de I'unité, de méme que
le nombre de em?/mole (par laquelle la susceptibilité (9.19 ter) doit étre
multipliée pour obtenir la susceptibilité sans dimension (9.19)). Ainsi les sus-
ceptibilités diamagnétiques sont de l'ordre de 1074, c’est-a-dire que M est
faible par rapport a H. Nous donnons dans la Fig. 9.1 la susceptibilité dia-
magnétique d’ions et d’atomes avec des couches fermées en fonction de Z(r?).

9.2.2 Le paramagnétisme de Van Vleck

Dans le cas ou I'on a une couche non pleine, mais telle que J = 0 (c’est
par exemple le cas du Fu™t"), le terme linéaire en B de (9.17) s’annule
et I’état fondamental est non dégénéré. Dans ce cas subsiste la contribution
diamagnétique, mais il s’y ajoute aussi une contribution due au 3°™° terme
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FIGURE 9.1 — Susceptibilité diamagnétique molaire (en unité cgs) d’atomes et
ions & couches pleines, en fonction de Z(r?). Pour transformer x en unité M KSA
il faut multiplier par 4.

de (9.17). Dans le cas ou seul ’état fondamental (] n) =| 0)) est occupé, la
différence d’énergie F,, — F,, est négative, ce qui implique que la susceptibilité
associée au 3°™° terme est positive. Elle est dite susceptibilité paramagné-
tique de Van Vleck. Cette susceptibilité, qui apparait aussi dans les métaux,
s’oppose a la susceptibilité diamagnétique et ne peut pas étre négligée dans
le cas ou les multiplets J # 0 ne sont pas tres éloignés en énergie.

9.2.3 Valeurs propres de basse énergie dans le cas ou J # 0

Dans le cas ou J # 0, on ne peut plus négliger le 1°" terme de (9.17)
qui représente la contribution dominante a la susceptibilité. Dans ce cas en
I’absence de champ B, mais en présence de couplage spin-orbite, H commute
avec J?, L?, 5%, J, et I'état fondamental est (2J+1) fois dégénéré, nous notons
les états correspondants | JLSM;) ou M; est compris entre —J et +.J. Si
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I'on néglige le terme diamagnétique, il s’agit alors pour trouver les valeurs
propres et états propres de la perturbation H,,, de diagonaliser le terme

Mo = 1B - (L + 28) (9.20)

dans le sous-espace sous-tendu par | JLSM;) ou J, L, S sont fixes.
A Pintérieur du sous-espace | JLSM;), on peut remplacer L + 28 par

L +2S = g(JLS)J (9.21)
ou g(JLS) est le facteur de Landé égal a

J(J+1)+S(S+1)— L(L+1)

gUILS) =1+ 27 (J+1)

(9.22)

Dans ce cas ’'Hamiltonien Zeeman H,, peut étre remplacé pour le calcul des
¢léments de matrice par

H,w = ppg(JLS)T - B (9.23)
ce qui est équivalent a introduire un moment magnétique
m = —upg(JLS)J (9.24)

Dans le cas ot S = 0 (soit J = L) le facteur de Landé est égal a 1; dans le
cas ou L =0 (soit J = 9) il est égal a 2. On retrouve donc le comportement
connu pour le moment magnétique orbital et de spin.

Avec le remplacement (9.21) la diagonalisation dans le sous-espace |
JLSMjy) est immédiate, et l'on a,

Hpn | JLSM;) = pgg(JLS)M ;B | JLSMy) (9.25)
Les valeurs propres en présence de B sont donc données par

E, = pgg(JLS)M;B ~ M;=—J — +J (9.26)

9.2.4 La susceptibilité paramagnétique de Curie

Si les (2J 4 1) niveaux de basse énergie sont thermiquement excités, ce
qui est le cas méme pour des températures basses car la répartition entre les
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niveaux d’énergie est de l'ordre de 107* eV (= kp 1 K) pour des champs de
10 kG, on peut calculer 'aimantation M par la relation (voir 9.6)

N OF
- o ‘ 2
M V9B ou (9.27)

+J
JLS)BM
F = —kgTtnZ = —kgTln Z exp _ng( ) BM, (9.28)
kgT
My=—J
La série géométrique se somme sans peine et donne
P sinh [.(2J +1)z/2] ol . g(JLS)upB
sinh (x/2) kT
et en utilisant (9.27) et (9.28)
N JLS)uypJB
M = 2 g(JLS) ugJ By (y) ot _ UL B o)
Vv kgT
et la fonction de Brillouin Bj(y) est définie par
2J+1 2J+1 1 1
Bj (y) = 57 coth ( 57 y) ~ 57 coth (ﬁy) (9.30)

La fonction de Brillouin est reportée dans la Fig.9.2 pour plusieurs valeurs
de J.

Lorsque T tend vers zéro dans un champ B fini, soit lorsque y tend vers
I'infini, la fonction de Brillouin tend vers un et M tend vers % g(JLS)gJ

9(JLS)ugJ B

N
1 M= —g(JL J
ke T > 1 — VQ(J S)is

C’est la situation, dite de saturation, ou tous les moments magnétiques sont
paralleles au champ appliqué. Cette situation ne peut arriver que pour de tres
hauts champs a treés basses température (xr =2 1 pour B=1T et T =1 K).
Lorsque y est petit, Bj(y) peut étre remplacé par son développement en
série
J+1

By(y) = =y +0(/)
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FIGURE 9.2 — Fonction de Brillouin pour plusieurs valeurs de J. La valeur J = oo
correspond au résultat que donnerait la théorie classique de Langevin.

ce qui permet de calculer y, soit

N (gpg)® J (J +1)

= Up— 31
X NOV 3 ke T (93)

valable lorsque kgT > ggB.
Cette variation de y en 1/7T est la loi de Curie. Elle caractérise les sys-
temes paramagnétiques, avec des moments permanents, dont ’alignement est
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favorisé par le champ et contrarié par le désordre thermique. La susceptibilité
paramagnétique est supérieure au diamagnétisme de Larmor par un facteur
proche de 1000 a température ambiante.

On écrit fréquemment la loi de Curie sous la forme

1N -p?
= —ly=— 9.32
X 3Mo V ksl ( )
ou p est le nombre effectif de magnéton de Bohr donné par
p=g(JLS)[J(J + 1)]"? (9.33)

Dans le cas des solides avec des ions de terre rare ’accord entre les valeurs
mesurées et calculées de p est excellent, sauf pour le samarium et I’europium.
Eu™* aun état fondamental avec J = 0 et le paramagnétisme de Van Vleck
est important. Dans le cas du Sm™* on ne peut pas négliger les multiplets
de J' # J fondamental, qui sont proches en énergie et que I'on a négligé dans
la dérivation de la loi de Curie.

Pour les ions des métaux de transition on trouve que la loi de Curie est
bien vérifiée, mais la valeur p n’est pas donnée par la relation (9.33). Pour
trouver un accord avec l'expérience il faut admettre que L = 0, soit que
J = S. Le fait que (L) = 0 est décrit comme le "blocage” du moment orbital,
c’est une conséquence de l'effet du potentiel des ions voisins agissant sur le
ion considéré. On parle d’effet de champ cristallin.

9.3 La susceptibilité des métaux

Le calcul de la susceptibilité des métaux est tres différent du calcul décrit
au § 2 pour des ions localisés. Cette différence est liée a la nature délocalisée
des électrons décrits en 1°™ approximation par une onde plane et au remplis-
sage des niveaux électroniques imposé par le principe d’exclusion (statistique
de Fermi-Dirac).

Le probleme du magnétisme des électrons de conduction peut étre résolu
en 1° approximation dans le modele des électrons indépendants. La solution
est cependant compliquée car il faut tenir compte de la réponse du mouve-
ment orbital des électrons au champ magnétique appliqué. Le probleme est
beaucoup plus simple si 'on néglige le mouvement orbital et ne tient compte
que du moment magnétique associé a I’électron, c’est le modele que nous
avons traité au Chap. 4.
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Nous avons montré (Chap. 4) que la réponse des moments magnétiques
des électrons a un champ B est caractérisée par une susceptibilité, dite sus-
ceptibilité paramagnétique de Pauli, indépendante de la température et don-
née par

XPauli — NONQBQ(EF) (9-34>

ou g(EF) est la densité d’états par unité de volume au niveau de Fermi. xp,.;
est de l'ordre de grandeur de la contribution diamagnétique de Larmor, on
montre en particulier (voir Chap. 4) que

@) 5w
XPauli X Curie TF N XCurie

T~300 K

La réponse du mouvement orbital des électrons donne une susceptibilité dia-
magnétique (x < 0) dite diamagnétisme de Landau. Pour des électrons libres,
on montre que

1
XLandau — _§XPauli (935)

Ainsi la susceptibilité des métaux est la somme de 3 contributions

X = XPauli + XLandau + Xdia

ol Xg, €st la susceptibilité diamagnétique de Larmor des ions du métal.
Les termes sont du méme ordre de grandeur et sont en 1%*¢ approximation
tous indépendants de la température, il n’est donc pas aisé de séparer les
différentes contributions dans un métal. Une technique, telle que la résonance
paramagnétique des électrons de conduction, permet cependant de mesurer
séparément X p,uii-

Dans le cas des semiconducteurs il faut tenir compte de la masse effective
des porteurs de charge et I’'on montre que

XLandau ~ ( m >2

XPauli m*

Dans la plupart des semiconducteurs m/m* > 1, la contribution diamagné-
tique peut donc étre nettement supérieure a la contribution paramagnétique.
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9.4 L’interaction d’échange de Heisenberg

9.4.1 Introduction

La théorie des propriétés magnétiques des solides décrite aux § 1, 2, 3 fait
I’hypothese que les ions ou les électrons n’interagissent pas entre eux. Cette
hypothese, qui est une bonne premiere approximation pour les systeémes pa-
ramagnétiques, n’est certainement pas vérifiée dans les systemes ferromagné-
tiques qui possedent une aimantation spontanée. S’il n’y avait pas d’interac-
tion magnétique, les moments magnétiques individuels seraient désordonnés
en champ nul a cause de I'agitation thermique, et 'aimantation moyenne se-
rait nulle. L’orientation parallele des moments dans un ferromagnétique est
due a leur interaction mutuelle. Dans d’autres solides, notés antiferromagné-
tiques, 'aimantation résultante est nulle, cependant les moments sont aussi
en interaction, mais elle favorise les orientations antiparalleles des moments
magnétiques (voir Fig. 9.3).

= R >y
—_ > > > >
— —> —> — —>
- —_ > >
- > 5> -
- > > > —
— — > — >
— > — > -
— - > —
— —r — p
> 4 > —

t ~ /
Yo\
- < \ X
LN T
/\\/

(a) (b) ()

FIGURE 9.3 — Orientation des moments magnétiques locaux quand B = 0. a)
dans un solide sans interaction magnétique, b) dans un ferromagnétique sous la
température critique, ¢) dans un antiferromagnétique sous la température critique.

Il est important de réaliser que ’interaction magnétique entre les atomes
est d’origine électrostatique, c’est en fait une conséquence du principe d’ex-
clusion de Pauli. Les termes magnétiques proprement dits, tels que l'interac-
tion dipolaire entre les moments magnétiques portés par les atomes (ions) ou
les électrons, sont beaucoup plus faibles, de I'ordre de 10~#eV. De méme l'in-
teraction spin-orbite n’est pas une source majeure d’interaction magnétique.

Dans ce § nous décrivons qualitativement 1’origine de l'interaction entre
les moments magnétiques, en prenant pour modele la molécule Hy,. Nous
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montrerons que le modele des électrons indépendants que nous avons utilisé
jusque la ne rend pas compte des phénomenes magnétiques.

9.4.2 La molécule H, — Etats triplet et singulet

L’objectif de ce § est de montrer comment le principe de Pauli peut en-
gendrer des effets magnétiques, méme si ’'Hamiltonien ne contient pas de
termes dépendant du spin des électrons. Pour cela considérons I'équation de
Schrodinger stationnaire d’'une molécule Ho

h2

Hw (1‘1, I'Q) = —% (V% + Vg) + % (I'l, I'Q) Q/J (I‘l, I'Q) = E’l?b (I‘l, I‘g) (936)

dont I’état stationnaire ¥ est le produit d’une fonction 1 (ry,ry) orbitale qui
satisfait (9.36) et d’une combinaison linéaire des 4 états de spin

NV (RO S R ARY

Nous pouvons choisir la combinaison linéaire de telle sorte qu’elle ait une
valeur définie du spin total S et de S,. On montre (voir par ex. Cohen-
Tannoudji, chap. XI, B) que 'on peut construire 4 états | S, M) tels que

1
0.0 = —=[i1)=[4)]
L1 = |T1T> 0
L0 = =T+ )]
1) = )

L’état de spin S = 0 (noté état singulet) change de signe lorsqu’on permute
le spin des 2 électrons. Par contre les 3 états de spin S = 1 (noté état triplet)
restent inchangés. Le principe de Pauli implique que la fonction d’onde ¥

U =1 (ry,r2) | S, M)

change de signe lorsqu’on permute les électrons (changement des variables de
spin et d’espace). Cela signifie que la fonction d’onde spatiale 1, (r1, r2) asso-
ciée a I’état singulet doit étre symétrique et que la fonction d’onde v, (ry, rs)
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associée a l’état triplet est antisymétrique. Les valeurs propres F, et F; de
Y, et 1, seront donc différentes, et 1’état fondamental sera de spin .S = 0 ou
S = 1 suivant les valeurs relatives de E, et FE;. Il faut souligner que I’état de
spin correspondant au niveau fondamental ne dépend que des valeurs propres
associées a ’équation de Schrédinger (9.36), qui ne dépend pas du spin.

9.4.3 Calcul de I’écart d’énergie entre 1’état triplet et singulet

L’écart d’énergie E, — F; permet de connaitre dans quelle mesure 1'ali-
gnement antiparallele des spins électroniques (S = 0) est plus favorable que
I'alignement parallele (S = 1). Cette différence d’énergie, qui ne dépend que
des termes électrostatiques, est de 'ordre de grandeur des énergies électro-
statiques (~ leV'), c’est la source de I'interaction magnétique entre les ions.

Dans I'approximation de Heitler-London, dans la limite ou la séparation
entre les atomes est assez grande, la séparation d’énergie singulet-triplet est
donnée par,

e? e?

+
vy =1y |  [Ri—Ry|

E,—-FE, = 2/dr1dr2 {gbl (r1) ¢y (12) (

e? e?

_|r1—R1|_|r2—R2|

)6 w2105 r0) (9.39)

Comme (Es — E;) est un élément de matrice entre 2 états qui ne different
que par ’échange des coordonnées des 2 électrons, on dit que la différence
d’énergie singulet-triplet est due a un terme d’échange. Du point de vue des
interactions magnétiques, on parle d’interaction d’échange.

Il faut remarquer que le terme (9.38) ne peut pas étre obtenu dans I’ap-
proximation des électrons indépendants. Les concepts simples que nous avons
utilisés en théorie des bandes ne permettent pas de rendre compte des inter-
actions magnétiques.

9.4.4 L’interaction d’échange de Heisenberg

Dans le cas des interactions magnétiques il est utile d’exprimer la dépen-
dance du spin des états singulet et triplet en introduisant un Hamiltonien,
dit Hamiltonien de spin, qui dépend explicitement des spins S; et Sy des
électrons 1 et 2 de la molécule Hs.
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Pour construire cet Hamiltonien, notons que S? = % (1 + %) =3 de telle

4
sorte que le spin total S = S; + Sy, est tel que,
2 2 3

Dans le cas d’un état singulet (S? = 0), cela implique que S; - S a la valeur
propre —3/4. Pour un état triplet (S? = 2),S; - S, a la valeur propre 1/4.
Ainsi I'Hamiltonien de spin Hgpir,

o
HOM = 2 (B +3E) — (B, — E)S1 - Sy (9.40)

possede la valeur propre E, pour I’état singulet et E; pour I’état triplet. C’est
I’Hamiltonien de spin que nous cherchons

HPT = HP™) (r1,1) | 0,0) = B,

. . (9.41)
HPy = HP M), (rq,19) | 1, M) = By,
En redéfinissant le zéro de 'énergie, on peut écrire H”™ comme
HP" = —-JS;-S;, ou J=FE,—F (9.42)

Comme H®*™ est le produit scalaire de S; et S,, il favorise I’alignement
parallele des spins si J > 0 et antiparallele si J < 0. On peut aussi noter
que HP™ est isotrope, il faut introduire des termes qui brisent la symétrie
rotationnelle dans 'espace des spins (par exemple I'interaction dipolaire ou
le couplage spin orbite) pour rendre compte d'un couplage anisotrope.

Dans le cas d'un systeme formé d’un ensemble d’ions magnétiques, on
généralise (9.42) en sommant sur toutes les paires d’ions

L’Hamiltonien (9.43) est dit Hamiltonien de Heisenberg et les J;; sont les

constantes d’échange.

9.4.5 Autres formes d’échange

L’interaction que nous venons de décrire est dite interaction d’échange
directe, elle provient de l'interaction Coulombienne entre les électrons de 2
ions.
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Dans le cas des couches f partiellement remplies de terres rares, en plus de
I'interaction directe, on peut avoir une interaction d’échange indirecte, dans
laquelle les électrons des couches f sont couplés a travers leur interaction
avec les électrons de conduction du métal.

Il y a aussi des interactions d’échange importantes entre les électrons de
conduction du métal (c’est par exemple le cas de métaux, tels que Fe, Ni,
Co). On parle dans ce cas d’échange itinérant.

Finalement, une interaction magnétique entre deux atomes métalliques
peut étre médiée par un atome non-magnétique, souvent de 'oxygene dans
les oxydes. Cette interaction s’appelle super-échange.

9.5 Les ferromagnétiques localisés dans 1’approxi-
mation du champ moyen

Les premieres approches pour comprendre le ferromagnétisme ont été pro-
posées par P. Weiss et portent le nom de théorie du champ moyen. C’est la
théorie que nous avons choisi de décrire ici. Elle permet de rendre compte de
la variation de I'aimantation spontanée en fonction de la température et en
particulier de sa disparition au-dessus d’une température critique, dite tem-
pérature de Curie. Elle permet aussi de décrire le comportement qualitatif
de la susceptibilité dans la phase paramagnétique, soit pour T > T... Cepen-
dant le comportement détaillé donné par une théorie de champ moyen n’est
pas en accord avec I'expérience, en particulier I’évolution de 'aimantation M
et x proche de T, est mal reproduite.

9.5.1 L’approximation du champ moyen

Considérons pour cela un solide formé de ions portant un moment ma-
gnétique. Dans le cas d’une interaction magnétique de type échange de Hei-
senberg, on note S le moment cinétique associé au ion, bien que dans le cas
général il contienne aussi une partie orbitale. Nous admettons aussi que les
électrons des couches internes responsables du moment magnétique restent

ien isés sur les ions. Un scription différen vrait étre utilisé n
bien localisés sur les ions. Une description différente devrait étre utilisée dans
e cas ou les électrons responsables du magnétisme participent a la conduc-
1 les élect bles d t t tal d
tion, bien que le comportement général ne soit pas tres différent de celui
associé a des électrons localisés.
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L’Hamiltonien du systeme tenant compte de l'interaction d’échange de
Heisenberg et d'un champ extérieur B s’écrit

J i

7

ol %, j notent les sites sur lesquels sont localisés les spins. Nous admettrons
que seuls les plus proches voisins d'un ion ¢ donné participent a 1’échange,
ainsi pour un ¢ donné, les indices j tels que J;; = J soit non nul corres-
pondent aux v proches voisins du site 7. On remarquera d’autre part que le
terme Zeeman dépendant du champ extérieur B apparait avec le signe —,
contrairement & la relation (9.23) qui a le signe 4+. On admet par convention
que I'énergie est minimum lorsque S est aligné selon B (en réalité elle est mi-
nimum lorsque S est antiparallele & B) et pour en tenir compte on introduit
un moment magnétique (voir 9.24)

m = +/pgS (9.45)

L’Hamiltonien (9.44) est un Hamiltonien ferromagnétique si 1’'on choisit une
constante d’échange J positive.

Dans ’approximation du champ moyen on remplace le produit d’opéra-
teurs S; - S; de (9.44) par le produit de I'opérateur de spin S; et la valeur
moyenne (S;) des opérateurs de spin S; des ions voisins. L’'Hamiltonien de-

vient ainsi
i J

L’effet de I'interaction d’échange est ainsi d’introduire un champ moyen in-
terne donné par

1
ghB =

Pour des systemes homogenes, (S;) est le méme pour tous les atomes et la
valeur moyenne (S) est reliée a I'aimantation M par

M = gy 5 (S) (9.48)

Nous obtenons ainsi pour le champ moyen interne

v
By = ———vJ/M (9.49)
N (gpp)
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ou I'on a sommé sur les v proches voisins. .’Hamiltonien dans I’approxima-
tion du champ moyen est ainsi identique a I’Hamiltonien de N spins indé-
pendants placés dans un champ B effectif

B/ =B+B;,, =B+ M (9.50)
ou
%4
A= ——srv] (9.51)
N (gug)
On a donc
H = —g,uB Z Sz . (Beff) (952)

9.5.2 Calcul de T, et de M (T)

C’est un probleme que nous avons déja rencontré dans le calcul de la
susceptibilité paramagnétique de Curie (voir 9.2.4). Nous avons montré dans
ce cas que

N 9tS Beyy
M = — gunSB .
7 9HsSBL { T (9.53)

ou By (z) est la fonction de Brillouin, dont nous rappelons le développement
limité pour x faible

S+1
By, (x) = 3—2 T —ard 4. (9.54)
La relation (9.53) possede des solutions non nulles pour 'aimantation, méme
en I’absence de champ B extérieur, dans le cas ou J)0 (soit A\)0). Pour ana-

lyser cette relation introduisons I’aimantation a saturation M, donnée par

N
M, = 91 (9.55)
et la température Ty définie par
JS?
Ty =" (9.56)

kg
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Avec ces définitions, on vérifie sans peine que dans le cas ou B = 0, soit
By = AM, (9.53) s’écrit

M M T,
L’équation (9.57) peut étre résolue graphiquement, il suffit pour cela de cher-
cher I'intersection de Bs(x) ou o = %% avec les droites M /M, = x - T /Ty
(voir Fig. 9.4).

MM K 17, xTUT,  xTyT, xT,IT,

d ]/

B (x)

>
Ty

M
M, T

xX=

FIGURE 9.4 — Résolution graphique de I’équation (9.57). Les températures 71 <
Ty < T, < Ty. La température critique T, au-dessus de laquelle I'aimantation
spontanée disparait est telle que xT./Ty est tangente a la fonction de Brillouin a
Iorigine.

L’équation (9.57) ne possede de solution M (T") non nulle que si 7" < T,
ou la température critique 7T, est dite température de Curie. T, est tel que
(voir 9.54)

T. 0B (x) S+
v 90z |,._, 38
soit S(5+1)w]
+ 1w
T.= ——— 9.58
T (9.58)

Les solutions de I’équation (9.57) sont représentées dans la Fig. 9.5 ot nous
avons représenté pour différentes valeurs de J, M (T") /M, en fonction de 17'/7T..



22 CHAPITRE 9. PROPRIETES MAGNETIQUES DES SOLIDES

1.0

0.8

0.6 -
M (T) Classical
M, =
04 —
o Fe
O Co,Ni
0.2 | -
I I I I
0 0.2 0.4 0.6 0.8 1.0
T/T,

FIGURE 9.5 — Dépendance en fonction de la température de ’aimantation spon-
tanée : calculée dans 'approximation du champ moyen et mesurée pour Fe, Ni,
Co.

Le comportement de M (T') proche de la température critique peut étre
calculée en partant du développement limité (9.54), soit

M T S+1 5
= r— =
M 1o 35

d’ou l'on déduit

soit

M (1 _ Z>1/2 (9.59)

En réalité on observe des exposants critiques proches de 1/3. Nous donnons
dans la Table 9.1 les valeurs de l’exposant critique () obtenu pour divers
ferromagnétiques.
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v B
Fe 1.33 + 0.015 034 + 0.04
Co 121 + 0.04 .
Ni 1.35 £+ 0.02 042 + 0.07
Gd 1.3 £+ 0.1 .
CrO, 1.63 + 0.02 .
CrBr; | 121 + 0.02 0.37 + 0.005
Eu S 0.33 + 0.015

TABLE 9.1 — Exposants critiques de substances ferromagnétiques. L’exposant ~y est
tel que lorsque T' — T, (avec T' > T,) la susceptibilité x ~ (T' — T,)~7.L’exposant
B est tel que lorsque T — T.(T < T.)?, 'aimantation M (T) ~ (T, — T)%. Dans
lapproximation du champ moyen v =1 et 5= 1/2.

De méme le comportement de M(T') pour T' ~ 0 peut étre calculé, on
trouve

(9.60)

M, — M (T) ~ exp {—”JS}

kgT

ce qui est en désaccord avec ’expérience et un calcul tenant compte de 'exis-
tence d’ondes de spin (voir 9.8) qui indique que

M, — M(T) (T)3/2 (9.61)

M, T.
Nous donnons dans la Table 9.2 les valeurs expérimentales mesurées pour
quelques ferromagnétiques

Les valeurs de ng observées sont souvent non entieres. Il peut y avoir
plusieurs raisons a cela, I'une est 'interaction spin-orbite qui permet d’ajou-
ter ou de soustraire des composantes orbitales au moment magnétique de
spin. Une autre raison dans les métaux ferromagnétiques est liée a 'effet des
électrons de conduction (voir 9.6).

A partir de Uexpression calculée pour T, (9.58) et la valeur de la constante
de champ moyen A (9.51) on peut déterminer la valeur numérique de A.

B 3kgT,
N/V (gug)® S (S +1)

(9.62)
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Magnétisation Mj, ng (0k)
[Gauss] par unité Temp.
Temp. de formule de Curie

Substance ambiante 0K chimique K]
Fe 1707 1740 2.22 1043
Co 1400 1446 1.72 1388
Ni 485 510 0.606 627
Gd --- 2060 7.63 292
Dy - 2920 10.2 88
MnAs 670 870 34 318
MnBi 620 680 3.52 630
MnSb 710 --- 3.5 o87
CrO2 515 --- 2.03 386
MnOFe;03 410 --- 5.0 o973
FeOFe,03 480 --- 4.1 858
NiOFe,O3 270 --- 2.4 858
CuOFe,04 135 --- 1.3 728
MgOFe;03 110 --- 1.1 713
EuO --- 1920 6.8 69
Y3Fe5019 130 200 5.0 560

TABLE 9.2 — Valeurs mesurées pour quelques solides ferromagnétiques. ng est
défini par M, = %nB ‘B.

Dans le cas du Fe, T, ~ 1000K, g ~ 2, S = 1, on en déduit A\[V's/Am] = 5000,
soit avec My = 1700 G, un champ interne

(Bint) p, ~ 107G =10°T

Ainsi le champ interne est beaucoup plus grand que les champs extérieurs
ou que le champ magnétique qu'un moment magnétique placé dans le cristal
crée. En effet pour un moment m = g placé a distance a = 1A on trouve un
champ

B~HotE g
41 as

De méme on peut estimer la constante d’échange J a partir de (9.58). Si l'on
admet que le F'e est représenté par un modele de Heisenberg, on trouve
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3kpT. kgT,

e ~Y ¢ ~Y 14
T = s+~ 10 mey

9.5.3 La loi de Curie-Weiss

A des températures T') T, I’échantillon est dans une phase paramagnétique.
Le champ appliqué B induit une aimantation et ’'on a

oM,  OM
~oH "B
ou 'on a utilisé le fait que y est faible dans la phase paramagnétique. M est

donné par (9.53) et pour des champs faibles par son développement limité
(9.54). 11 vient donc

X (9.63)

0r _ S 0Bery _ I3 1y 4

0B~ kT 0B  kgT

En remplagant A par sa valeur et en résolvant pour x, on obtient

XCurie 1
= ~ 9.64
X1 T ToT, (9:64)
Ol Xcuie €St donné par (9.31), soit
N (gpp)* S (S +1)
= 9.65
XCurie Ho Vv 3 ]{JBT ( )

Cette expression décrit relativement bien la variation de la susceptibilité au-
dessus du point de Curie. Les calculs détaillés prédisent

1

X m avec Y= 1.33 (966)

Les parametres v expérimentaux pour divers ferromagnétiques sont donnés
dans la Table 9.1.
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9.6 Le modele de bande du ferromagnétisme

Le modele de Heisenberg n’est valable, au moins en premiere approxi-
mation, que dans le cas d’électrons localisés, alors que les ferromagnétiques
usuels sont des métaux ou des alliages métalliques. 11 est donc nécessaire
d’introduire un modele qui tienne compte du fait que les électrons déloca-
lisés forment des bandes. Un tel modele explique naturellement le fait que
le nombre de magnéton de Bohr ng (voir Table 9.2) n’est pas entier et le
comportement des alliages métalliques.

9.6.1 Origine de l'interaction ferromagnétique dans les mé-
taux

Nous avons montré au § 4 que le principe d’exclusion de Pauli conduit a
une interaction, dite d’échange, entre les électrons qui dépend de leur spin.
La constante d’échange J;; entre les électrons 7 et j de la molécule H2 est
négative, elle conduit a une énergie de ’état singulet (S = 0) inférieure a
celle dans laquelle les spins sont paralleles (état triplet S = 1). Dans le cas
des électrons délocalisés la constante d’échange est positive.

Pour le montrer qualitativement considérons deux électrons libres 7 et
j et la fonction d’onde & deux électrons 1 (ry,ry). Dans le cas ou les élec-
trons sont de spin parallele, la partie spatiale de la fonction d’onde doit étre
antisymétrique (voir 9.4), on a donc,

P (ry, 1) = lexp (ik; - r1) exp (ik; - r2) — exp (ik; - r2) exp (ik; - r7)]

1
V2V
(9.67)

La probabilité que ’électron 1 se trouve dans le volume d3r; et 1'électron 2
dans le volume d3r, est donc égale &

1
‘@Z)2‘ d3T1d3T2 = W []_ — COS (kz — k]) (I‘l — I'Q)] d3T1d37’2 (968)
Cette expression contient tous les éléments importants : la probabilité que
deux électrons de méme spin se trouvent au méme endroit est nulle, quels
que soient k; et k;. Ainsi pour un électron de spin "up”, les autres électrons
de spin up ne peuvent pas écranter localement le potentiel du coeur ionique
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efficacement, ce qui conduit a une réduction de I’énergie des électrons de spin-
up. Cette réduction en énergie est renforcée lorsque le nombre d’électrons de
spin "up” par rapport aux électrons de spin "down” augmente. L’effet résultant
est ainsi un gain en énergie électronique pour les électrons de spins paralleles,
ce qui correspond a une énergie d’échange collective de spin négative et donc
(voir 9.43) & une constante d’échange positive.

Ces idées peuvent étre rendues plus quantitatives en introduisant le concept
de trou d’échange (voir par ex. Ibach et Luth, § 8.3) et I'effet de 'interaction
coulombienne entre les électrons que I'on néglige dans un modele d’électrons
libres.

On peut tenir compte qualitativement de ces effets en introduisant une
énergie de bande a un électron différente pour les spins up et les spins down

E (k) = E (k) — I%T
(9.69)
E, (k)= E (k) — I%

ou ny et my sont respectivement le nombre d’électrons de spin 1 et | et NV
est le nombre d’atomes. En accord avec ce que nous avons dit ci-dessus,
les relations (9.69) tendent & abaisser 1'énergie des électrons de spin up par
rapport a celle des électrons de spin down si ny > n , et ainsi conduire a une
séparation en énergie des bandes pour les électrons de spin up et down.

9.6.2 Le modele de bande du ferromagnétisme

Tous les métaux ferromagnétiques simples sont soit des terres rares (Gd,
Dy) ou formés a partir des éléments de transition de la série 3d (Fe, Co, Ni).
Le modele de bande décrit ici s’applique particulierement aux métaux de la
série 3d, pour lesquels on sait que les électrons d participent a la conduction
et forment une bande, relativement étroite.

Prenons pour exemple le cas du Ni. On peut schématiquement repré-
senter sa structure de bande comme étant formée de la superposition d’une
bande s large et d'une bande d plus étroite. Nous montrons dans la Fig. 9.6
un schéma de bande au zéro absolu en ne tenant pas compte (Fig. 9.6 a) et
en tenant compte (Fig, 9.6 b) de la séparation entre les bandes de spins up
et down.

Au zéro absolu on mesure dans le Ni (voir Table 9.2) une aimantation a
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0.54 électrons 0.54 électrons

0.27 trous 0.54 trous
Surface ¥y \ Surface “'/

de Fermi * ? de fermi * f

4s 4.73 électrons 4s 446 Electrons 5 électrons

3d 3d T 3d 3d T
(a) (b)

FIGURE 9.6 — Relation schématique entre les bandes du Nickel au zéro absolu.
Dans la Fig. 9.6 a) le moment magnétique résultant est nul, car il y a un nombre
égal de trous dans les bandes up et down. Dans le Fig. 9.6 b) les énergies des bandes
3d 1 et 3d | sont séparées par interaction d’échange. Le moment magnétique
résultant de 0.54up par atome provient de ’exces de population de spins up par
rapport aux spins down.

saturation My = %nBB telle que ng = 0.606 magnéton de Bohr par atome.
Si 'on tient compte de la contribution due au moment magnétique orbital
(my, = 0.066 1) on conclut que le Ni a un exces de 0.54 électrons par atome
de spin 1T par apport au spin J. Bien que 'atome de Ni possede 8 électrons
dans la couche 3d et 2 dans la couche 4s, le calcul de bande indique que
dans le solide on a un transfert s — d, et ’on peut schématiquement décrire
la structure de bande comme contenant 0.54 électrons dans la bande 4s et
9.46 dans la bande d. En présence de l'interaction d’échange apparait une
séparation entre les bandes 3d 1 et 3d |, qui conduit a un exces d’électrons
1 par rapport aux électrons | (voir Fig. 9.6 b). Une facon de parler est de
dire que l'aimantation résulte de la présence de 0.54 trous dans la bande
3d . Nous donnons dans la Fig. 9.7 le résultat d’un calcul plus réaliste de
la densité d’état du Ni, qui fait appraitre clairement la séparation entre les
bandes 3d 1 et 3d |.

On considere que la situation est similaire dans le Cobalt (ng = 1.72)
pour lequel la bande 3d | contient 5 électrons et la bande 3d 1 3.28 électrons.
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FIGURE 9.7 — Densité d’état du Nickel dans 1’état ferromagnétique.

Par contre dans le cas du Fe les bandes 3d 1 et 3d | sont I'une et 'autre
partiellement remplies, avec un exces de spin 1 de 2.2 électrons/atome.

9.6.3 Condition d’instabilité de 1’état paramagnétique

On peut se demander pour quelle raison seuls Fe, Co et Ni sont ferroma-
gnétiques, tandis que les autres éléments de la série 3d ou 4d ne le sont pas.
On peut répondre qualitativement a cette question en utilisant un modele
simple. Pour cela, il faut réaliser que la séparation en énergie des bandes
sous 'effet de l'interaction d’échange s’accompagne d’'une augmentation de
I’énergie de bande (cinétique dans le cas d’électrons libres), le ferromagné-

tisme apparait si,
0FEin + 0Eeen <0 (9.70)

ou 0E.;, (> 0) est la variation de I’énergie de bande lorsqu’on a un transfert
d’électrons dn de la bande | a la bande T et §Ee, (> 0) est le gain en énergie
d’échange. On peut écrire

OF 1 9
E. = e = 1
dEin = 0n (8n (5n) V(B (on) (9.71)

ou l'on a introduit la densité d’état par unité de volume au niveau de Fermi
9(Ew). 0 Eeep, est donné par

B |(5+00) 4 (5-om) -2(5) | a5 o)

2 2
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ou AE,((0) est I'énergie d’échange moyenne entre 2 électrons de la bande,
elle est proportionnelle & la constante I introduite en (9.69). On a introduit
une dépendance quadratique de dFy.,, en fonction du nombre d’électrons
pour tenir compte du fait que (voir 9.69) le gain d’énergie par électron du
a 'interaction d’échange est proportionnel au nombre d’électrons de spin up
ou down. La condition (9.70) s’écrit ainsi,

1
0F in + 0Feen = (0n)° | ——— + 2AE,| (0
soit

2V |AE| g (EFp))1 (9.73)

Cette condition, dite critere de Stoner, a été estimée pour divers métaux et
il apparait clairement qu’elle n’est vérifiée que pour Fe, Co, Ni.

Les lecteurs intéressés liront avec profit les § 8.4 et 8.5 de Ibach et Liith
dans lesquels le modele de Stoner - Wohlfart du magnétisme itinérant est
introduit. Une conséquence intéressante de ce modele est le calcul de la sus-
ceptibilité paramagnétique des électrons de conduction en tenant compte de
I'interaction d’échange. On trouve que

. Xo
X = 1 — ]’VQ(EF)

2N

(9.74)

ou x, est la susceptibilité de Pauli donnée par (2.72). L’augmentation de
susceptibilité peut étre tres importante, elle est égale a 4.5 dans le cas du
Pd.

9.7 L’antiferromagnétisme

9.7.1 Diffusion de neutrons et antiferromagnétisme

Les rayons X "voient” la distribution spatiale de la charge électronique,
qu’elle soit polarisée magnétiquement ou pas. Un neutron "voit” deux as-
pects d'un cristal : la distribution spatiale des noyaux et la distribution des
moments magnétiques. En effet le moment magnétique du neutron interagit
avec le moment magnétique de 1’électron et les sections efficaces pour 'inter-
action neutron-électron et l'interaction neutron-noyau sont du méme ordre
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de grandeur. Ainsi la diffraction des neutrons par un cristal permet de dé-
terminer la distribution, la direction et 'arrangement ordonné des moments
magnétiques.

A titre d’exemple nous donnons dans la Fig. 9.8 la figure de diffraction
du MnO, qui a la structure NaCl, a deux températures, soit 80 K et 293 K.

100 (]11) (31) (3?1) (511)

80
60 |-
40 |
20

0 (1?0) (1}0) (111)(2?0) TG
100 |
80 | a0= 443 A

60 MnO

Intensité (neutrons/min)

40
20

O | | —
10° 20° 30° 40° 50°

Angle de diffraction

FIGURE 9.8 — Spectre de diffraction de neutrons du MnO a 2 températures (80 K
et 293 K). La température la plus basse se trouve sous la température de transition
antiferromagnétique (120 K), et 293 K se trouve au-dessus de la température de
transition. Les indices de réflexion sont basés sur une cellule unité de 8.85 A (&
80 K) et de 4.43 A & 293 K. Au-dessus de 120 K les ions Mn™" sont encore

magnétiques, mais il ne sont plus ordonnés.

On constate que pour des températures inférieures a 120 K, la cellule
unité est de 8.85 A tandis qu’elle est de dimension moitié pour 7)120 K. On
peut en conclure que au-dessous de 120 K les ions Mn*™, porteurs du mo-
ment magnétique, sont ordonnés dans un arrangement non ferromagnétique.
Si MnO était ferromagnétique les cellules unité “chimique” et "magnétique”
donneraient le méme spectre de diffraction.
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En fait 'arrangement des moments magnétiques décrit dans la Fig. 9.9
rend compte des résultats obtenus par diffraction de neutrons. Les spins dans
un méme plan [111] sont paralleles, mais les spins dans les plans [111] adja-
cents sont antiparalleles. On dit que MnO est un antiferromagnétique.

Dans un cristal antiferromagnétique (voir aussi 9.4.1) les spins sont ordon-
nés dans un arrangement antiparallele, avec une aimantation totale nulle aux
températures inférieures a une température de transition, dite température
de

N\

AN
cellule unité

magnétique

Aﬁlvule unité

chimique

FIGURE 9.9 — Arrangement des spins des ions Mn*™+ dans MnO. Les ions O~ ~
ne sont pas représentés.

Néel (Tly). C’est un cas particulier d'une classe de substances plus géné-
rales dans lesquelles il existe aussi deux sous-réseaux magnétiques de spins
opposés mais dont ’aimantation résultante n’est pas nulle. On parle de sub-
stances ferrimagnétiques.

Nous donnons dans la Table 9.3 les valeurs mesurées pour quelques cris-
taux antiferromagnétiques.
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Réseau de Température Température
ion de transition de Curie-Weiss
Substance paramagnétique Ty, [K] 0, [K]
MnO fcc 116 610
MnS fee 160 528
MnTe hex. layer 307 690
MnF, bec tetr 67 82
FeF, bc tetr 79 117
FeCl, hex. layer 24 48
FeO fce 198 570
CoCly hex. layer 25 38.1
CoO fec 291 330
NiCly hex. layer 50 68.2
NiO fce 525 ~ 2000
Cr bee 308

TABLE 9.3 — Valeurs mesurées de quelques cristaux antiferromagnétiques.

9.7.2 Calcul de Ty dans ’approximation du champ moyen

Nous choisissons ici le cas d'une structure modele, particulierement simple,
dans laquelle tous les plus proches voisins ont des spins antiparalléles, c¢’est
le cas par exemple des structures a) et b) représentées dans la Fig. 9.10, mais
cela ne peut pas étre le cas dans la structure du MnO présentée dans la Fig.
9.9.

Nous pouvons pour étudier ce cas utiliser pour chaque sous-réseau ma-
gnétique les résultats dérivés dans I'approximation du champ moyen au § 5,
mais il faut tenir compte du fait que la constante de couplage J est néga-
tive. Dans cette situation le champ moyen pour le sous-réseau d’orientation
de spin positive est créé par le sous-réseau de spins négatifs et vice-versa.
On obtient donc dans le cas d'un état ordonné antiferromagnétique la paire
d’équations (voir Eq.9.53)

N gpsS 4

N~ _
M- = Vg,uBSBS |:]{,‘B—TB€ff:| (975)



34 CHAPITRE 9. PROPRIETES MAGNETIQUES DES SOLIDES
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FIGURE 9.10 — a) Cristal modele avec une orientation antiferromagnétique des
spins plus proches voisins, b) structure simple de réseau tétragonal, elle est observée
pour les cristaux MnF5, FeF5 et CoF's.

ou
Bl =B+ ATM* (9.76)
avec
Vv
M= 7 (9.77)
N7 (gug)

Dans ces relations N* et N~ correspondent respectivement au nombre de
moments magnétiques contenus dans le volume V' de spins up et de spin
down. Dans l’exemple que nous avons choisi N* = N~ = N/2. De plus les
constantes A™ et A” sont reliées & A défini en (9.51) par
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Vo vJ
A== (9.78)
N (gpp)
Dans I’état antiferromagnétique et pour un champ extérieur nul, M+ = — M~
nous obtenons donc
Nt v s vJ
Mt = "—qgupSBs | — M 9.79

et une équation correspondante pour M ~. En introduisant, comme au § 5,

N+
M =<7 gusS (9.80)
et )
T =Ty = —VZS = Tp)0 (9.81)
B

on vérifie que par analogie avec (9.57)

MA;;T) . (M]\J;[;T) %; )

(9.82)

[aimantation de chaque sous-réseau M (T) et M~ (T) suit une équation
identique a celle obtenue pour 'aimantation résultante dans le cas ferroma-
gnétique. Le comportement de M ™ (T') est donc semblable & celui donné dans
la Fig. 9.5. En particulier 'aimantation spontanée de chaque sous-réseau
s’annule a la température critique de Néel, donnée par

Ty = _M (9.83)
3kp

9.7.3 Calcul de la susceptibilité

Le calcul de la susceptibilité, contrairement au cas des ferromagnétiques,
peut étre aussi fait pour des températures T' < Tly, car ce n’est qu’en présence
d’'un champ extérieur qu’apparait une aimantation totale M = M™ 4+ M~
non nulle.

Il faut bien distinguer le cas ou le champ B extérieur s’applique paral-
lelement aux aimantations M™ et M~ des sous-réseaux et le cas ou B est
perpendiculaire. Les 2 situations sont schématisées dans la Fig. 9.11.
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M A
M* A
B
MY
MY
a) b) c)

FIGURE 9.11 — Aimantations MT et M~ des sous-réseaux dans le cas ot a) B = 0
b) B paralléle (ou antiparallele) aux aimantations M, M~ ¢) B perpendiculaire &
M et M. Il faut noter que si on ne tient pas compte de I’anisotropie cristalline,
en présence de B les aimantations M™T et M~ “tourneraient "toujours de telle
sorte que 'énergie soit minimisée, elle choisirait donc la situation b) ou c¢). La
dépendance de y en-dessous de T, est donc due a ’anisotropie cristalline.

Nous choisissons de traiter tout d’abord le cas ou B paralléle (ou anti-
parallele) 4 M™ et M.
Nous devons donc calculer

oM oMt oM~
ou
1IN
M* = évguBSBs (zF) (9.85)
avec S
o+ = 2282 (B4 20MF) (9.86)
B

Il vient donc apres calculs, en utilisant le fait que OM* /0B = OM~ /0B =
sOM/0B,

0B,
ox

0B;

a+(B=0) O

1N gpsS X
= llg= S 1+ 22
X = Hog g 9Hso 7 + e

] (9.87)
z— (B=0)
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Dans le cas ou T) Ty, aimantation en 1'absence de B est nulle, 'argument
de la fonction de Brillouin est faible et I'on peut utiliser le développement
(9.54), on a donc par un développement semblable & celui qui a conduit & la
loi de Curie-Weiss

X Curie 1
= ~ 9.88
XN T T/ T T+ Ty (9.88)

ou la différence de signe entre les cas ferromagnétique et antiferromagnétiques
est liée au fait que A est (0 (car J(0).

On constate donc que la susceptibilité y ne diverge pas a la température
de transition antiferromagnétique. Il faut cependant remarquer que dans un
cas plus général, c’est-a-dire en tenant aussi compte des seconds plus proches
voisins, etc., on obtiendrait

A
T+6
Les valeurs de 6 mesurées sont données dans la Table 9.3.
Dans le cas ou T(T la situation est plus difficile & analyser algébrique-
ment. Par simplicité nous prenons le cas S = 1/2, car dans ce cas la fonction
de Brillouin se réduit a

X = (9.89)

85:1/2 (I) = tanh =z (990)
En effectuant les calculs de la relation (9.87) on obtient alors,
XcCurie
3 (1) = ——— X (9.91)
(T) T
cos? h (TNM;"(T)> +

On retrouve le résultat (9.88) dans le cas o T' > Ty car M*(T) = 0. Dans
le cas ou T < T, soit lorsque M(T) = M}, on a

XcCurie A
= = 9.92

La susceptibilité résultante x est dans ce cas tres faible, elle tend vers zéro
comme

VEkgT T

La situation est résumée dans la Fig. 9.12.

2 2N T
X (1) = ,uog ad exp <—2—N> (9.93)
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} >
T

FIGURE 9.12 — Représentation de la susceptibilité magnétique y d’un cristal anti-
ferromagnétique. Sous la température de Néel Ty la susceptibilité differe pour les
orientations parallele et perpendiculaire du champ extérieur par rapport a ’orien-
tation des spins.

Dans le cas ou B est perpendiculaire a ’aimantation des sous-réseaux,
on peut interpréter ’'Hamiltonien (9.46) comme une équation classique pour
I’énergie (voir aussi 9.52),

U=—-M"+M") -B-— % (M*-\"B;,, + M \"B} ) (9.94)

ou l'on a introduit un facteur % pour tenir compte de ce que les champs
internes B:, associés aux 2 sous-réseaux sont proportionnels & M*. En tenant

compte de (9.76) et de A* = 2, (9.94) peut étre rééerit

U=-B-(M"+M")—-2\M"-M" (9.95)

En admettant que pour des angles de rotation ¢ faibles (voir Fig. 9.10 b)
I’amplitude des aimantations des sous-réseaux ne change pas, on a,

U = —2BM sin ¢ + 2AM? cos (2¢)
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L’angle ¢ est tel que U est minimum, soit

ou 1 B
— =0 = sinp=——-— 9.96
Do Y S T (9.96)
L’aimantation perpendiculaire résultante M, vaut donc
M, = 2Msi b (9.97)
1 in )
On en déduit
o aMl Y % (gNB)2
XL =logpm = —gy = Moo & (9.98)

On vérifie sans peine en utilisant les relations (9.88) et (9.83) que x, est la
susceptibilité calculée précédemment en T'= Ty

X, (T <Ty)=x(T="Ty) (9.99)

La susceptibilité perpendiculaire est représentée dans la Fig. 9.12. Il faut
remarquer que le comportement décrit dans la Fig. 9.12 n’est vérifié que si ’on
a un seul domaine magnétique. Dans le cas d’une substance polycristalline
par exemple on n’observe qu'une susceptibilité moyenne, intermédiaire entre
X1 et xj- Nous donnons dans la Fig. 9.13 la susceptibilité mesurée dans le
cas d’un monocristal de MnF,

9.8 Les ondes de spin

L’énergie nécessaire pour inverser le spin d'un électron est donnée par
I'interaction d’échange. Ceci est vrai dans les cas du ferromagnétisme de mo-
ments localisés et pour le magnétisme itinérant. Dans le modele de bande
le renversement d’un spin correspond a une transition interbande d’un élec-
tron entre les deux bandes de spins up et down, qui sont séparées en énergie.
L’énergie nécessaire pour renverser un spin est donc égale a la différence
d’énergie entre les 2 bandes, elle correspond a I’énergie A de la Fig. 9.6. 1l
existe d’autres excitations d’énergie inférieure a celle associée au renverse-
ment d’un spin, ce sont les ondes de spin. Pour les décrire tres brievement
nous considérons le cas d'un ferromagnétique a moments localisés, dont 1'in-
teraction entre les spins est décrite par un Hamiltonien de Heisenberg (voir
9.43).



40 CHAPITRE 9. PROPRIETES MAGNETIQUES DES SOLIDES

30
[Peeecesecccce e ST,
- °
= 20F ¥ oo
= ° ® e
g . ® o0
D] ) [ J
o )
= il
~— [ ]
R 10| e
®
S
¢
ha? !
0 100 200
T (K)

FIGURE 9.13 — Susceptibilité mesurée pour un monocristal de MnF5 sous la tem-
pérature de Néel.

9.8.1 Ondes de spins dans le cas localisé

Nous ne donnons ici qu'une description tres qualitative, en utilisant un
traitement classique. Le lecteur intéressé a un traitement quantique pourra
consulter Ascroft-Mermin, chap. 33 ou Ibach-Liith § 8.8.

Dans 'état fondamental d’un ferromagnétique tous les spins sont paral-
leles (voir Fig. 9.14 a). Considérons N spins d’amplitude S situés sur un
anneau, dont les plus proches voisins sont couplés par 1’ interaction de Hei-
senberg

N
U=-J> S, Sy (9.100)
p=1

Si l'on traite les spins comme des vecteurs classiques, S, - S,;1 = S? dans
I’état fondamental et ’énergie d’échange du systeme vaut

Uy =—NJS? (9.101)

Nous cherchons I'énergie du 1¢ état excité. Considérons pour cela un état
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avec un spin inversé, comme dans la Fig. 9.14 b). On voit a partir de (9.100)
que I'énergie a augmenté de 4.J52, ainsi pour cet état

Uy =Uy+4J5° (9.102)

On peut en fait former une excitation d’énergie inférieure si le renversement
de spin est réparti entre tous les spins, comme dans la Fig. 9.14 ¢).

AARRAREARA R A A

- q -
(a) (b) (c)

FIGURE 9.14 — Représentation classique de ’état fondamental d’un ferromagné-
tique b) une excitation possible oul un spin est inversé c) les excitations de plus
basse énergie sont des ondes de spin. L’extrémité des vecteurs précesse sur la sur-
face d’un cone, les spins successifs étant en avance de phase d’un angle constant.

On peut montrer classiquement sans difficulté (voir exercices) que 1’éner-
gie associée a ces oscillations dépend du vecteur d’onde k£ de I'onde de spin,
elle est donnée dans le cas de la chalne linéaire par

fuw = 2JS (1 — cos ka) (9.103)

C’est la relation de dispersion pour les ondes de spin a une dimension en
ne tenant compte que de l'interaction entre plus proches voisins. Le méme
résultat est obtenu dans un traitement quantique. Pour des grandes longueurs
d’onde (ka < 1), on obtient

hw = (JSa®) k? (9.104)

La fréquence est proportionnelle & k2, dans la méme limite la fréquence des
phonons est proportionnelle a k.

Dans le cas d'un ferromagnétique cubique on obtiendrait en ne tenant
compte que des plus proches voisins

hw=JS [V—Zcos(k-é)]
5
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ou & correspond au vecteur reliant l'atome central considéré aux v plus
proches voisins.

Dans le cas des ondes de vibrations dans un cristal, on a associé a un
mode propre de vibration la notion de phonon. De méme a une onde de spin
on associe un magnon. La quantification des ondes de spin est semblable a
celle que nous avons décrite pour les phonons. L’énergie d’une onde de spin
de fréquence wy "contenant ny magnons est donnés par

B (k) = (nk + %) i (9.105)

L’excitation d’'un magnon correspond au renversement d’un spin 1/2. (n
change d’une unité). La variation d’énergie est certainement inférieure a
(9.102) pour les magnons tels que ka)l.

La valeur moyenne du nombre de magnons a 1’équilibre thermique est,
comme pour les phonons, donnée par la statistique de Planck (voir Chap. 4,
§2),ona

1
n =
() exp (hwy/kgT) — 1
En utilisant cette valeur de (ny), on peut calculer la variation de I’aimantation
AM par rapport a 'aimantation & saturation. On montre que (voir 9.61)
AM
M (0)

~ T5/2

Ce résultat, connu sous le nom de loi de Block en T3/2 a été confirmé
expérimentalement.

Les ondes de spin ont été observées jusqu’a des températures proches de
la température de Curie, nous donnons dans la Fig. 9.15 les résultats obtenus
pour un alliage de Cobalt.

Il existe aussi des ondes de spins dans les cristaux antiferromagnétiques,
cependant la théorie quantique est plus complexe. Dans un traitement clas-
sique on montre que (voir par ex. Kittel, chap. 15) que

w = wo |sin kal

Ainsi la relation de dispersion est différente pour un antiferromagnétique, en
particulier elle est linéaire en k pour de faibles valeurs de k. Nous donnons
dans la Fig. 9.15 b) la relation de dispersion du MnF,.
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FIGURE 9.15 — Spectres des ondes de spin mesurés par diffusion inélastique des
neutrons dans a) un ferromagnétique (alliage de Co avec 8% de Fe). La courbe est
parabolique comme on 'attend pour un ferromagnétique le saut en ¢ = 0 est dua a
I’anisotropie (voir § 9). b) cas d’un antiferromagnétique (MnF5). A faibles valeurs
de g la courbe de dispersion est linéaire. Le saut a q= 0 est aussi du a I’anisotropie.

9.9 Domaines ferromagnétiques

Pour les températures nettement inférieures au point de Curie les mo-
ments magnétiques électroniques d’'un ferromagnétique sont tous paralleles,
quand on regarde le cristal au niveau microscopique on constate que le cristal
est composé de petites régions, appelées domaines, a 'intérieur desquels les
moments sont tous paralleles. Cependant d’un domaine a ’autre I'orientation
de 'aimantation change. ’existence de domaines est liée a des considérations
énergétiques.

9.9.1 Origine des domaines

Pour comprendre 1'origine des domaines, considérons la Fig. 9.16.
Dans la situation a) il n'y a qu'un seul domaine, le champ d’induction
magnétique résultant de l'aimantation a saturation M | est intense et par
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FIGURE 9.16 — Origine des domaines.

conséquent ’énergie magnétique. En b) I’énergie magnétique est approxima-
tivement réduite d’un facteur deux par division du cristal en deux domaines
et en c) elle est réduite de 1/N par division en N domaines. Dans les ar-
rangements tels que d) et e) I’énergie magnétique est encore réduite car le
champ extérieur B créé par le ferromagnétique est essentiellement nul.

9.9.2 Energie d’anisotropie

Les cristaux ne sont pas isotropes d’un point de vue magnétique et les
courbes d’aimantation ont des formes différentes lorsque le champ extérieur
B est orienté selon des directions cristallographiques différentes. On parle
de directions d’aimantation "faciles”, les cristaux hexagonaux (par ex. Co)
sont particulierement difficiles a aimanter dans les directions autres que I’axe
c. Cette anisotropie est dite “magnétocristalline”, elle ne peut pas provenir
de l'interaction d’échange qui est isotrope. Elle est en fait liée au couplage
spin-orbite qui couple le moment magnétique de spin avec le mouvement
orbital de I’électron. En faisant tourner le spin, on modifie la distribution des
charges responsable du moment orbital, ce qui modifie I’énergie d’échange ou
électrostatique. Dans le cas du Cobalt, on peut écrire la densité d’énergie

U = kysin®0 + ko sin® 0

ou # est 'angle que forme 'aimantation avec ’axe ¢ du cristal.
Pour illustrer I'importance de 1’énergie magnétocristalline sur I’aimanta-
tion d’un cristal, nous donnons dans la Fig. 9.17 les courbes d’aimantation
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du Fe, Ni (cubiques) et du Co (hexagonal).
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FIGURE 9.17 — Anisotropie magnétocristalline observée dans Fe, Ni, Co.
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9.9.3 Les parois de Bloch

La paroi de Bloch d'un cristal est la couche de transition qui sépare deux
domaines adjacents aimantés dans des directions différentes. La variation
dans la direction du spin lorsqu’on passe d’un domaine a l'autre n’a pas
lieu de fagon discontinue, mais a lieu de facon graduelle sur plusieurs plans
atomiques (voir Fig. 9.18).

FIGURE 9.18 — Structure de la paroi de Bloch séparant deux domaines. Dans le
Fe I’épaisseur de la région de transition est de 300 constantes du réseau.

Le comportement peut s’expliquer en tenant compte de l'interaction d’échange
de Heisenberg. Si deux spins forment un angle ¢ faible entre eux, on peut
écrire

1
Usch. = —JSi - Sj = —J 5% cos p = —J 5° (1 - 5902)

Ainsi la variation d’énergie d’échange vaut 1/2J5%p? par couple de spins.
Si un changement d’orientation de II a lieu sur N spins, 1’énergie d’échange
totale d'une ligne de (IV + 1) atomes est

H2

1
AU, = 5Js?W (9.106)
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Ainsi I’épaisseur de la paroi serait infinie pour minimiser 1’énergie d’échange.
Cependant il faut tenir compte du fait que les directions d’aimantation cor-
respondent en général a des directions faciles. Les spins de la paroi de Bloch
ont en général des orientations qui s’écartent de la direction facile. Il faut donc
introduire I’énergie d’anisotropie, qui est approximativement proportionnelle
a I’épaisseur de la paroi. Il s’agit donc de minimiser

0P = Oé¢ch. + O anisotr. (9107)

ou o est I'énergie par unité d’aire de la paroi. La valeur de 4., se calcule a
partir de (9.106) en remarquant qu’il y a 1/a? lignes par unité d’aire de la
paroi

Oéch. = %J52H2/Na2

L’énergie d’anisotropie est de 'ordre de la constante d’anisotropie K (voir §
9 b) multipliée par 1’épaisseur Na de la paroi

O anisotr. — KNa
En minimisant (9.107) par rapport & N, on trouve
N = (112252 /2Ka%)"? (9.108)

ce qui donne N ~ 300 pour le Fe. Les applications des substances ferro,
antiferro ou ferrimagnétiques sont nombreuses. En particulier la possibilité
de créer des mémoires magnétiques permanentes est basée sur l'existence de
"bubbles” magnétiques.



