
Chapitre 9

Propriétés magnétiques des solides

Dans les chapitres précédents nous avons discuté la structure électro-
nique des matériaux dans l’approximation des électrons indépendants. Dans
le cadre de ce modèle il est possible de déterminer d’une façon qualitativement
correcte la structure de bande des matériaux et d’expliquer de nombreuses
propriétés. Il est aussi possible de rendre compte des états excités d’un sys-
tème, résultant par exemple de l’interaction avec des photons ou d’autres
particules.

Dans le cas des propriétés magnétiques, en particulier pour les matériaux
ferromagnétiques ou antiferromagnétiques, le modèle à un électron ne suffit
pas et il faut tenir compte des corrélations entre électrons. De plus la théorie
du magnétisme est compliquée par le fait qu’il faut introduire les aspects
locaux et collectifs, c’est le cas en particulier pour le ferromagnétisme des
métaux.

Dans le § 9.1 nous introduisons l’Hamiltonien magnétique d’un ion isolé.
Dans les § 9.2 et 9.3 nous décrivons le comportement magnétique d’un en-
semble d’ions localisés (§ 9.2) ou d’électrons de conduction (§ 9.3) sans inter-
action mutuelle. L’interaction d’échange de Heisenberg sera qualitativement
introduite au § 9.4, elle permet de rendre compte de l’interaction mutuelle
entre les moments magnétiques pour les substances ferro, ferri ou antifer-
romagnétiques. La théorie du champ moyen sera introduite pour décrire le
comportement des ferromagnétiques (§ 9.5) et antiferromagnétiques (§ 9.7)
de systèmes portant des moments magnétiques localisés. Une description qua-
litative du magnétisme itinérant est donnée au § 9.6. La notion d’excitation
collective (onde de spin) est introduite au § 9.8. Enfin le § 9.9 décrit quelques
propriétés des systèmes ferromagnétiques reliés à la présence de domaines
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magnétiques.
En plus des références générales valables pour tous les chapitres de ce

cours, mentionnons plus spécifiquement pour ce chapitre :
— D. Jiles, Introduction to magnetism and magnetic materials, Chapman

and Hall (1991).
— A. Herpin, Théorie du magnétisme, Presses Universitaires de France

(1968).

9.1 Susceptibilité et Hamiltonien magnétique d’un

ion (atome) isolé

Il a été montré au cours de physique générale que les propriétés ma-
gnétiques d’un solide ou d’un fluide sont caractérisées par la susceptibilité
magnétique χ définie par

M = χH (9.1)

où M est l’aimantation par unité de volume définie par

M =
1

V

∑
i

mi (9.2)

et la somme est prise sur tous les moments magnétiques individuels mi

contenus dans le volume V .
Le but de ce § est d’introduire la susceptibillité dans le cas quantique et de

donner une formulation générale à partir de laquelle il est possible de calculer
la susceptibilité d’un solide formé d’un ensemble d’ions ou de molécules dont
les moments magnétiques individuels n’interagissent pas entre eux.

9.1.1 La susceptibilité magnétique

D’un point de vue classique l’énergie d’interaction d’un moment mi avec le
champ B s’écrit Ei = −mi ·B, l’énergie magnétique E des moments contenus
dans le volume V est ainsi donnée par

E =
∑
i

Ei = −VM ·B

d’où l’on tire

M = − 1

V

∂E

∂B
(9.3)
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Cette relation peut se transposer dans le cas quantique, et l’on définit l’aiman-
tation M d’un système quantique dans un champ uniforme B à température
nulle par

M = − 1

V

∂E0

∂B

où E0 est l’énergie de l’état fondamental.
Si le système est en équilibre thermique à température T , l’aimantation

se calcule en prenant la moyenne sur les états excités du système d’énergie
totale En,

M (B, T ) =

∑
n

Mn exp

(
− En
kBT

)
∑
n

exp

(
− En
kBT

) (9.4)

où

Mn = Mn (B, T ) = − 1

V

∂En
∂B

(9.5)

En remplaçant (9.5) dans (9.4) et en tenant compte de l’expression déduite
en mécanique statistique pour l’énergie libre

F = −kBT`nZ

où Z est la fonction de partition quantique, on trouve

M = − 1

V

(
∂F

∂B

)
T,V

(9.6)

Le tenseur de susceptibilité χαβ est défini par

χαβ =
∂Mα

∂Hβ

∼= −µ0

1

V

∂2F

∂Bα∂Bβ

(9.7)

où l’on a utilisé le fait que, si l’on exclut le cas des corps ferromagnétiques,
la susceptibilité est faible, soit

B = µ0H + µ0M = µ0 (1 + χ)H ∼= µ0H

Dans le cas d’un corps isotrope, il vient

χ ∼= −µ0

1

V

∂2F

∂B2
(9.8)
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9.1.2 L’Hamiltonien magnétique d’un ion (atome) isolé

En présence d’un champ magnétique uniforme l’Hamiltonien d’un ion (ou
d’un atome) est modifié

— en remplaçant dans l’énergie cinétique la quantité de mouvement de
chaque électron par

pi −→ pi + eA (9.9)

où A est le potentiel vecteur. Dans ce chapitre nous choisirons A tel
que

A = −1

2
r×B (9.10)

de telle sorte que les conditions

B = rot A et div B = 0

soient satisfaites.
— en ajoutant l’énergie d’interaction ∆H de B avec le moment magné-

tique mi de l’électron i (voir Chap. 2, § 4) où

mi = −2µBSi (9.11)

et µB est le magnéton de Bohr tel que

µB =
e~

2me

= 5.79 10−5eV/T (9.12)

Pour l’ensemble des électrons i de l’atome (ou du ion), on a donc

∆H = −
∑
i

mi ·B = 2µBBSz (9.13)

où B est orienté selon l’axe z et

Sz =
∑
i

(Si)z (9.14)

En tenant compte de (9.9) la partie Hcin de l’Hamiltonien s’écrit

Hcin =
1

2m

∑
i

[pi + eA (ri)]
2 =

1

2m

∑
i

(
pi −

e

2
ri ×B

)2

soit en développant,

Hcin =
1

2m

∑
i

p2
i + µBB · L +

e2B2

8m

∑
i

(
x2
i + y2

i

)
(9.15)

où ~L est le moment cinétique orbital total défini par

~L =
∑
i

ri × pi
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En combinant (9.13) avec (9.15) on obtient l’Hamiltonien à N élec-
trons d’un ion plongé dans un champ B uniforme

H = H0 +Hm

où H0 est l’Hamiltonien du ion sans tenir compte des termes magné-
tiques et Hm est donné par

Hm = µBB · (L + 2S) +
e2B2

8m

∑
i

(
x2
i + y2

i

)
(9.16)

Les variations d’énergie associées à (9.16) sont faibles, on peut donc
traiter Hm comme une perturbation. Au second ordre dans la théorie
des perturbations, dans le cas où les états de H0 sont non dégénérés,

H0 |n〉 = En|n〉,

on obtient en ne gardant que les termes linéaires et quadratiques en
B

DeltaEn = µBB〈n | L + 2S | n〉+
e2B2

8m
〈n |

∑
i

(
x2
i + y2

i

)
| n〉

+
∑
n′ 6=n

| 〈n | µBB · (L + 2S) | n′〉 |2

En − En′
(9.17)

9.1.3 Ordres de grandeur

Dans certaines situations (voir ci-dessous) le terme linéaire en B s’annule.
Si ce n’est pas le cas, ce sera le terme dominant, en effet

µBB · 〈n | L + 2S | n〉 ∼ µBB = ~ωc ∼ 10−4eV

pour un champ B de 1 Tesla.
Le terme du 1er ordre en B2 est tel que

e2B2

8m
〈n |

∑
i

(x2
i + y2

i ) | n〉 ∼
e2B2

8m
a2

0 ∼ (~ωc)
~ωc

e2/4πE0a0

où e2/4πE0a0 = 27.2 eV. Ce terme est 6.17 × 10−11 eV/électron et donc de
l’ordre de 10−9eV .

Le terme du second ordre est de l’ordre de grandeur de ~ωc (~ωc/∆) où
∆ est la minimum de | En − En′ | qui est une énergie d’excitation atomique
typique, soit dans la plupart des cas ∼ 1eV . C’est donc aussi un terme faible.
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Pour poursuivre l’étude des propriétés magnétiques des ions dans un so-
lide, il faut savoir décrire les états électroniques de basse énergie d’un ion
ou d’un atome, soit d’un système à plusieurs électrons. Les règles, dites de
Hund, qui permettent de déterminer les valeurs de L, S et J de l’état fonda-
mental d’un atome ou d’un ion.

9.2 Susceptibilité d’un ensemble d’ions sans inter-

action mutuelle

Nous étudions dans ce § la susceptibilité d’un solide formé d’un ensemble
d’ions qui interagissent avec un champ magnétique extérieur, mais dont on
néglige l’interaction mutuelle. Il faut pour étudier d’un point de vue quan-
tique ce problème, partir de la relation (9.17), de laquelle on pourra déduire
la susceptibilité χ donnée par (9.8). Chacun des termes de (9.17) correspond
à une contribution distincte à χ.

9.2.1 Le diamagnétisme de Larmor

Considérons, pour introduire le diamagnétisme, le cas d’un solide formé
d’ions dont toutes les couches électroniques sont remplies. Un tel ion, dans
son état fondamental, est tel que

J | 0〉 = L | 0〉 = S | 0〉 = 0

Ainsi seul le second terme de (9.17) contribue à ∆En lorsque | n〉 correspond
à l’état fondamental. Il vient donc

∆E0 =
e2B2

8m
〈0 |

∑
i

(
x2
i + y2

i

)
| 0〉 =

e2B2

12m
〈0 |

∑
r2
i | 0〉 (9.18)

où l’on a tenu compte du fait que l’ion est de symétrie sphérique. Si la pro-
babilité que l’ ion soit dans un état excité est faible, ce qui est vérifié sauf à
très haute température, la susceptibilité volumique d’un solide composé de
N ions est donnée par

χdia = −µ0

N

V

∂2∆E0

∂B2
= −µ0

N

V

e2

6m
〈0 |

∑
i

r2
i | 0〉 (9.19)
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Cette contribution est la susceptibilité diamagnétique de Larmor. On peut
la retrouver d’un point de vue classique (voir cours de physique générale)
en calculant la variation du moment magnétique d’une spire sans résistance
(correspondant à l’orbite électronique) lorsqu’on enclenche le champ magné-
tique de zéro à sa valeur maximum. Cette contribution négative est toujours
présente, quelles que soient les valeurs de L et S. Cependant dans le cas
où le moment magnétique permanent est non nul, elle est dominée par la
contribution paramagnétique (voir § 1.3)).

L’équation (9.19) décrit bien la réponse magnétique d’un solide de gaz
rare ou de cristaux ioniques simples tels que les ”alkali halides”, car dans ces
solides les ions sont peu perturbés par leur environnement cristallin.

On exprime souvent la susceptibilité par mole, dans ce cas

(χ)mole = −µ0NAZ
e2a2

0

6m
〈r

2

a2
0

〉 (9.19 bis)

où NA est le nombre d’Avogadro, Z le nombre total d’électrons dans le ion
et 〈r2〉 est un rayon ionique moyen défini par

〈r2〉 =
1

Z

∑
i

〈0 | r2
i | 0〉

En système MKSA la susceptibilité est égale à

χ = −0.99 10−5Z〈(r/a0)2〉cm3/mole (9.19 ter)

La grandeur 〈(r/a0)2〉 est de l’ordre de grandeur de l’unité, de même que
le nombre de cm3/mole (par laquelle la susceptibilité (9.19 ter) doit être
multipliée pour obtenir la susceptibilité sans dimension (9.19)). Ainsi les sus-
ceptibilités diamagnétiques sont de l’ordre de 10−4, c’est-à-dire que M est
faible par rapport à H. Nous donnons dans la Fig. 9.1 la susceptibilité dia-
magnétique d’ions et d’atomes avec des couches fermées en fonction de Z〈r2〉.

9.2.2 Le paramagnétisme de Van Vleck

Dans le cas où l’on a une couche non pleine, mais telle que J = 0 (c’est
par exemple le cas du Eu+++), le terme linéaire en B de (9.17) s’annule
et l’état fondamental est non dégénéré. Dans ce cas subsiste la contribution
diamagnétique, mais il s’y ajoute aussi une contribution due au 3ème terme
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Figure 9.1 – Susceptibilité diamagnétique molaire (en unité cgs) d’atomes et
ions à couches pleines, en fonction de Z〈r2〉. Pour transformer χ en unité MKSA
il faut multiplier par 4π.

de (9.17). Dans le cas où seul l’état fondamental (| n〉 =| 0〉) est occupé, la
différence d’énergie En−En′ est négative, ce qui implique que la susceptibilité
associée au 3ème terme est positive. Elle est dite susceptibilité paramagné-
tique de Van Vleck. Cette susceptibilité, qui apparâıt aussi dans les métaux,
s’oppose à la susceptibilité diamagnétique et ne peut pas être négligée dans
le cas où les multiplets J 6= 0 ne sont pas très éloignés en énergie.

9.2.3 Valeurs propres de basse énergie dans le cas où J 6= 0

Dans le cas où J 6= 0, on ne peut plus négliger le 1er terme de (9.17)
qui représente la contribution dominante à la susceptibilité. Dans ce cas en
l’absence de champ B, mais en présence de couplage spin-orbite, H commute
avec J2, L2, S2, Jz et l’état fondamental est (2J+1) fois dégénéré, nous notons
les états correspondants | JLSMJ〉 où MJ est compris entre −J et +J . Si
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l’on néglige le terme diamagnétique, il s’agit alors pour trouver les valeurs
propres et états propres de la perturbation Hm, de diagonaliser le terme

Hm = µBB · (L + 2S) (9.20)

dans le sous-espace sous-tendu par | JLSMJ〉 où J, L, S sont fixes.
A l’intérieur du sous-espace | JLSMJ〉, on peut remplacer L + 2S par

L + 2S =⇒ g(JLS)J (9.21)

où g(JLS) est le facteur de Landé égal à

g(JLS) = 1 +
J (J + 1) + S (S + 1)− L (L+ 1)

2J (J + 1)
(9.22)

Dans ce cas l’Hamiltonien Zeeman Hm peut être remplacé pour le calcul des
éléments de matrice par

Hm =⇒ µBg(JLS)J ·B (9.23)

ce qui est équivalent à introduire un moment magnétique

m =⇒ −µBg(JLS)J (9.24)

Dans le cas où S = 0 (soit J = L) le facteur de Landé est égal à 1 ; dans le
cas où L = 0 (soit J = S) il est égal à 2. On retrouve donc le comportement
connu pour le moment magnétique orbital et de spin.

Avec le remplacement (9.21) la diagonalisation dans le sous-espace |
JLSMJ〉 est immédiate, et l’on a,

Hm | JLSMJ〉 = µBg(JLS)MJB | JLSMJ〉 (9.25)

Les valeurs propres en présence de B sont donc données par

En = µBg(JLS)MJB MJ = −J −→ +J (9.26)

9.2.4 La susceptibilité paramagnétique de Curie

Si les (2J + 1) niveaux de basse énergie sont thermiquement excités, ce
qui est le cas même pour des températures basses car la répartition entre les
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niveaux d’énergie est de l’ordre de 10−4 eV (∼= kB 1 K) pour des champs de
10 kG, on peut calculer l’aimantation M par la relation (voir 9.6)

M = −N
V

∂F

∂B
où (9.27)

F = −kBT`nZ = −kBT`n
+J∑

MJ=−J

exp

[
−µBg(JLS)BMJ

kBT

]
(9.28)

La série géométrique se somme sans peine et donne

Z =
sinh [(2J + 1)x/2]

sinh (x/2)
où x =

g(JLS)µBB

kBT

et en utilisant (9.27) et (9.28)

M =
N

V
g (JLS)µBJBJ (y) où y =

g(JLS)µBJB

kBT
(9.29)

et la fonction de Brillouin BJ(y) est définie par

BJ (y) =
2J + 1

2J
coth

(
2J + 1

2J
y

)
− 1

2J
coth

(
1

2J
y

)
(9.30)

La fonction de Brillouin est reportée dans la Fig.9.2 pour plusieurs valeurs
de J .

Lorsque T tend vers zéro dans un champ B fini, soit lorsque y tend vers
l’infini, la fonction de Brillouin tend vers un et M tend vers N

V
g(JLS)BJ

g(JLS)µBJB

kBT
� 1 −→M ∼=

N

V
g(JLS)µBJ

C’est la situation, dite de saturation, où tous les moments magnétiques sont
parallèles au champ appliqué. Cette situation ne peut arriver que pour de très
hauts champs à très basses température (x ∼= 1 pour B = 1 T et T = 1 K).

Lorsque y est petit, BJ(y) peut être remplacé par son développement en
série

BJ (y) ∼=
J + 1

3J
y +O

(
y3
)
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Figure 9.2 – Fonction de Brillouin pour plusieurs valeurs de J . La valeur J =∞
correspond au résultat que donnerait la théorie classique de Langevin.

ce qui permet de calculer χ, soit

χ = µ0

N

V

(gµB)2

3

J (J + 1)

kBT
(9.31)

valable lorsque kBT � gBB.
Cette variation de χ en 1/T est la loi de Curie. Elle caractérise les sys-

tèmes paramagnétiques, avec des moments permanents, dont l’alignement est
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favorisé par le champ et contrarié par le désordre thermique. La susceptibilité
paramagnétique est supérieure au diamagnétisme de Larmor par un facteur
proche de 1000 à température ambiante.

On écrit fréquemment la loi de Curie sous la forme

χ =
1

3
µ0

N

V

µ2
B · p2

kBT
(9.32)

où p est le nombre effectif de magnéton de Bohr donné par

p = g(JLS) [J (J + 1)]1/2 (9.33)

Dans le cas des solides avec des ions de terre rare l’accord entre les valeurs
mesurées et calculées de p est excellent, sauf pour le samarium et l’europium.
Eu+++ a un état fondamental avec J = 0 et le paramagnétisme de Van Vleck
est important. Dans le cas du Sm+++ on ne peut pas négliger les multiplets
de J ′ 6= J fondamental, qui sont proches en énergie et que l’on a négligé dans
la dérivation de la loi de Curie.

Pour les ions des métaux de transition on trouve que la loi de Curie est
bien vérifiée, mais la valeur p n’est pas donnée par la relation (9.33). Pour
trouver un accord avec l’expérience il faut admettre que L = 0, soit que
J = S. Le fait que 〈L〉 = 0 est décrit comme le ”blocage” du moment orbital,
c’est une conséquence de l’effet du potentiel des ions voisins agissant sur le
ion considéré. On parle d’effet de champ cristallin.

9.3 La susceptibilité des métaux

Le calcul de la susceptibilité des métaux est très différent du calcul décrit
au § 2 pour des ions localisés. Cette différence est liée à la nature délocalisée
des électrons décrits en 1ère approximation par une onde plane et au remplis-
sage des niveaux électroniques imposé par le principe d’exclusion (statistique
de Fermi-Dirac).

Le problème du magnétisme des électrons de conduction peut être résolu
en 1ère approximation dans le modèle des électrons indépendants. La solution
est cependant compliquée car il faut tenir compte de la réponse du mouve-
ment orbital des électrons au champ magnétique appliqué. Le problème est
beaucoup plus simple si l’on néglige le mouvement orbital et ne tient compte
que du moment magnétique associé à l’électron, c’est le modèle que nous
avons traité au Chap. 4.
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Nous avons montré (Chap. 4) que la réponse des moments magnétiques
des électrons à un champ B est caractérisée par une susceptibilité, dite sus-
ceptibilité paramagnétique de Pauli, indépendante de la température et don-
née par

χPauli = µ0µ
2
Bg(EF) (9.34)

où g(EF) est la densité d’états par unité de volume au niveau de Fermi. χPauli

est de l’ordre de grandeur de la contribution diamagnétique de Larmor, on
montre en particulier (voir Chap. 4) que

χPauli ∼ χCurie

(
T

TF

)
∼
↑

T∼300K

10−2χCurie

La réponse du mouvement orbital des électrons donne une susceptibilité dia-
magnétique (χ < 0) dite diamagnétisme de Landau. Pour des électrons libres,
on montre que

χLandau = −1

3
χPauli (9.35)

Ainsi la susceptibilité des métaux est la somme de 3 contributions

χ = χPauli + χLandau + χdia

où χdia est la susceptibilité diamagnétique de Larmor des ions du métal.
Les termes sont du même ordre de grandeur et sont en 1ère approximation
tous indépendants de la température, il n’est donc pas aisé de séparer les
différentes contributions dans un métal. Une technique, telle que la résonance
paramagnétique des électrons de conduction, permet cependant de mesurer
séparément χPauli.

Dans le cas des semiconducteurs il faut tenir compte de la masse effective
des porteurs de charge et l’on montre que

χLandau

χPauli

∼ −
( m
m∗

)2

Dans la plupart des semiconducteurs m/m∗ � 1, la contribution diamagné-
tique peut donc être nettement supérieure à la contribution paramagnétique.
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9.4 L’interaction d’échange de Heisenberg

9.4.1 Introduction

La théorie des propriétés magnétiques des solides décrite aux § 1, 2, 3 fait
l’hypothèse que les ions ou les électrons n’interagissent pas entre eux. Cette
hypothèse, qui est une bonne première approximation pour les systèmes pa-
ramagnétiques, n’est certainement pas vérifiée dans les systèmes ferromagné-
tiques qui possèdent une aimantation spontanée. S’il n’y avait pas d’interac-
tion magnétique, les moments magnétiques individuels seraient désordonnés
en champ nul à cause de l’agitation thermique, et l’aimantation moyenne se-
rait nulle. L’orientation parallèle des moments dans un ferromagnétique est
due à leur interaction mutuelle. Dans d’autres solides, notés antiferromagné-
tiques, l’aimantation résultante est nulle, cependant les moments sont aussi
en interaction, mais elle favorise les orientations antiparallèles des moments
magnétiques (voir Fig. 9.3).

(a) (b) (c) 

Figure 9.3 – Orientation des moments magnétiques locaux quand B = 0. a)
dans un solide sans interaction magnétique, b) dans un ferromagnétique sous la
température critique, c) dans un antiferromagnétique sous la température critique.

Il est important de réaliser que l’interaction magnétique entre les atomes
est d’origine électrostatique, c’est en fait une conséquence du principe d’ex-
clusion de Pauli. Les termes magnétiques proprement dits, tels que l’interac-
tion dipolaire entre les moments magnétiques portés par les atomes (ions) ou
les électrons, sont beaucoup plus faibles, de l’ordre de 10−4eV . De même l’in-
teraction spin-orbite n’est pas une source majeure d’interaction magnétique.

Dans ce § nous décrivons qualitativement l’origine de l’interaction entre
les moments magnétiques, en prenant pour modèle la molécule H2. Nous
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montrerons que le modèle des électrons indépendants que nous avons utilisé
jusque là ne rend pas compte des phénomènes magnétiques.

9.4.2 La molécule H2 – Etats triplet et singulet

L’objectif de ce § est de montrer comment le principe de Pauli peut en-
gendrer des effets magnétiques, même si l’Hamiltonien ne contient pas de
termes dépendant du spin des électrons. Pour cela considérons l’équation de
Schrödinger stationnaire d’une molécule H2

Hψ (r1, r2) =

[
− ~2

2m

(
∇2

1 +∇2
2

)
+ V (r1, r2)

]
ψ (r1, r2) = Eψ (r1, r2) (9.36)

dont l’état stationnaire Ψ est le produit d’une fonction ψ(r1, r2) orbitale qui
satisfait (9.36) et d’une combinaison linéaire des 4 états de spin

|↑↑〉, |↑↓〉, |↓↑〉, |↓↓〉

Nous pouvons choisir la combinaison linéaire de telle sorte qu’elle ait une
valeur définie du spin total S et de Sz. On montre (voir par ex. Cohen-
Tannoudji, chap. XI, B) que l’on peut construire 4 états | S,Ms〉 tels que

| 0, 0〉 =
1√
2

[|↑↓〉− |↓↑〉]

| 1, 1〉 = |↑↑〉

| 1, 0〉 =
1√
2

[|↑↓〉+ |↓↑〉]

| 1,-1〉 = |↓↓〉

(9.37)

L’état de spin S = 0 (noté état singulet) change de signe lorsqu’on permute
le spin des 2 électrons. Par contre les 3 états de spin S = 1 (noté état triplet)
restent inchangés. Le principe de Pauli implique que la fonction d’onde Ψ

Ψ = ψ (r1, r2) | S,Ms〉

change de signe lorsqu’on permute les électrons (changement des variables de
spin et d’espace). Cela signifie que la fonction d’onde spatiale ψs(r1, r2) asso-
ciée à l’état singulet doit être symétrique et que la fonction d’onde ψt(r1, r2)
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associée à l’état triplet est antisymétrique. Les valeurs propres Es et Et de
ψs et ψt seront donc différentes, et l’état fondamental sera de spin S = 0 ou
S = 1 suivant les valeurs relatives de Es et Et. Il faut souligner que l’état de
spin correspondant au niveau fondamental ne dépend que des valeurs propres
associées à l’équation de Schrödinger (9.36), qui ne dépend pas du spin.

9.4.3 Calcul de l’écart d’énergie entre l’état triplet et singulet

L’écart d’énergie Es − Et permet de connâıtre dans quelle mesure l’ali-
gnement antiparallèle des spins électroniques (S = 0) est plus favorable que
l’alignement parallèle (S = 1). Cette différence d’énergie, qui ne dépend que
des termes électrostatiques, est de l’ordre de grandeur des énergies électro-
statiques (∼ 1eV ), c’est la source de l’interaction magnétique entre les ions.

Dans l’approximation de Heitler-London, dans la limite où la séparation
entre les atomes est assez grande, la séparation d’énergie singulet-triplet est
donnée par,

Es − Et = 2

∫
dr1dr2

[
φ1 (r1)φ2 (r2)

(
e2

| r1 − r2 |
+

e2

| R1 −R2 |

− e2

| r1 −R1 |
− e2

| r2 −R2 |

)
φ1 (r2)φ2 (r1)

]
(9.38)

Comme (Es − Et) est un élément de matrice entre 2 états qui ne diffèrent
que par l’échange des coordonnées des 2 électrons, on dit que la différence
d’énergie singulet-triplet est due à un terme d’échange. Du point de vue des
interactions magnétiques, on parle d’interaction d’échange.

Il faut remarquer que le terme (9.38) ne peut pas être obtenu dans l’ap-
proximation des électrons indépendants. Les concepts simples que nous avons
utilisés en théorie des bandes ne permettent pas de rendre compte des inter-
actions magnétiques.

9.4.4 L’interaction d’échange de Heisenberg

Dans le cas des interactions magnétiques il est utile d’exprimer la dépen-
dance du spin des états singulet et triplet en introduisant un Hamiltonien,
dit Hamiltonien de spin, qui dépend explicitement des spins S1 et S2 des
électrons 1 et 2 de la molécule H2.
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Pour construire cet Hamiltonien, notons que S2
i = 1

2

(
1 + 1

2

)
= 3

4
, de telle

sorte que le spin total S = S1 + S2 est tel que,

S2 = (S1 + S2)2 =
3

2
+ 2S1 · S2 (9.39)

Dans le cas d’un état singulet (S2 = 0), cela implique que S1 · S2 a la valeur
propre −3/4. Pour un état triplet (S2 = 2),S1 · S2 a la valeur propre 1/4.
Ainsi l’Hamiltonien de spin Hspin

Hspin =
1

4
(Es + 3Et)− (Es − Et)S1 · S2 (9.40)

possède la valeur propre Es pour l’état singulet et Et pour l’état triplet. C’est
l’Hamiltonien de spin que nous cherchons

HspinΨs = Hspinψs (r1, r2) | 0, 0〉 = EsΨs

HspinΨt = Hspinψt (r1, r2) | 1,Ms〉 = EtΨt

(9.41)

En redéfinissant le zéro de l’énergie, on peut écrire Hspin comme

Hspin = −JS1 · S2 où J = Es − Et (9.42)

Comme Hspin est le produit scalaire de S1 et S2, il favorise l’alignement
parallèle des spins si J > 0 et antiparallèle si J < 0. On peut aussi noter
que Hspin est isotrope, il faut introduire des termes qui brisent la symétrie
rotationnelle dans l’espace des spins (par exemple l’interaction dipolaire ou
le couplage spin orbite) pour rendre compte d’un couplage anisotrope.

Dans le cas d’un système formé d’un ensemble d’ions magnétiques, on
généralise (9.42) en sommant sur toutes les paires d’ions

Hspin = −
∑

JijSi · Sj (9.43)

L’Hamiltonien (9.43) est dit Hamiltonien de Heisenberg et les Jij sont les
constantes d’échange.

9.4.5 Autres formes d’échange

L’interaction que nous venons de décrire est dite interaction d’échange
directe, elle provient de l’interaction Coulombienne entre les électrons de 2
ions.
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Dans le cas des couches f partiellement remplies de terres rares, en plus de
l’interaction directe, on peut avoir une interaction d’échange indirecte, dans
laquelle les électrons des couches f sont couplés à travers leur interaction
avec les électrons de conduction du métal.

Il y a aussi des interactions d’échange importantes entre les électrons de
conduction du métal (c’est par exemple le cas de métaux, tels que Fe, Ni,
Co). On parle dans ce cas d’échange itinérant.

Finalement, une interaction magnétique entre deux atomes métalliques
peut être médiée par un atome non-magnétique, souvent de l’oxygène dans
les oxydes. Cette interaction s’appelle super-échange.

9.5 Les ferromagnétiques localisés dans l’approxi-

mation du champ moyen

Les premières approches pour comprendre le ferromagnétisme ont été pro-
posées par P . Weiss et portent le nom de théorie du champ moyen. C’est la
théorie que nous avons choisi de décrire ici. Elle permet de rendre compte de
la variation de l’aimantation spontanée en fonction de la température et en
particulier de sa disparition au-dessus d’une température critique, dite tem-
pérature de Curie. Elle permet aussi de décrire le comportement qualitatif
de la susceptibilité dans la phase paramagnétique, soit pour T > Tc. Cepen-
dant le comportement détaillé donné par une théorie de champ moyen n’est
pas en accord avec l’expérience, en particulier l’évolution de l’aimantation M
et χ proche de Tc est mal reproduite.

9.5.1 L’approximation du champ moyen

Considérons pour cela un solide formé de ions portant un moment ma-
gnétique. Dans le cas d’une interaction magnétique de type échange de Hei-
senberg, on note S le moment cinétique associé au ion, bien que dans le cas
général il contienne aussi une partie orbitale. Nous admettons aussi que les
électrons des couches internes responsables du moment magnétique restent
bien localisés sur les ions. Une description différente devrait être utilisée dans
le cas où les électrons responsables du magnétisme participent à la conduc-
tion, bien que le comportement général ne soit pas très différent de celui
associé à des électrons localisés.
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L’Hamiltonien du système tenant compte de l’interaction d’échange de
Heisenberg et d’un champ extérieur B s’écrit

H = −
∑
i

∑
j

JijSi · Sj − gµBB
∑
i

Si (9.44)

où i, j notent les sites sur lesquels sont localisés les spins. Nous admettrons
que seuls les plus proches voisins d’un ion i donné participent à l’échange,
ainsi pour un i donné, les indices j tels que Jij = J soit non nul corres-
pondent aux ν proches voisins du site i. On remarquera d’autre part que le
terme Zeeman dépendant du champ extérieur B apparâıt avec le signe −,
contrairement à la relation (9.23) qui a le signe +. On admet par convention
que l’énergie est minimum lorsque S est aligné selon B (en réalité elle est mi-
nimum lorsque S est antiparallèle à B) et pour en tenir compte on introduit
un moment magnétique (voir 9.24)

m = +µBgS (9.45)

L’Hamiltonien (9.44) est un Hamiltonien ferromagnétique si l’on choisit une
constante d’échange J positive.

Dans l’approximation du champ moyen on remplace le produit d’opéra-
teurs Si · Sj de (9.44) par le produit de l’opérateur de spin Si et la valeur
moyenne 〈Sj〉 des opérateurs de spin Sj des ions voisins. L’Hamiltonien de-
vient ainsi

H = −
∑
i

Si ·

(∑
j

Jij〈Sj〉+ gµBB

)
(9.46)

L’effet de l’interaction d’échange est ainsi d’introduire un champ moyen in-
terne donné par

Bint =
1

gµB

∑
j

Jij〈Sj〉 (9.47)

Pour des systèmes homogènes, 〈Sj〉 est le même pour tous les atomes et la
valeur moyenne 〈S〉 est reliée à l’aimantation M par

M = gµB

N

V
〈S〉 (9.48)

Nous obtenons ainsi pour le champ moyen interne

Bint =
V

N (gµB)2νJM (9.49)
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où l’on a sommé sur les ν proches voisins. L’Hamiltonien dans l’approxima-
tion du champ moyen est ainsi identique à l’Hamiltonien de N spins indé-
pendants placés dans un champ B effectif

Beff = B + Bint = B + λM (9.50)

où

λ =
V

N (gµB)2νJ (9.51)

On a donc

H = −gµB

∑
i

Si · (Beff ) (9.52)

9.5.2 Calcul de Tc et de M(T )

C’est un problème que nous avons déjà rencontré dans le calcul de la
susceptibilité paramagnétique de Curie (voir 9.2.4). Nous avons montré dans
ce cas que

M =
N

V
gµBSBL

[
gµBSBeff

kBT

]
(9.53)

où BL(x) est la fonction de Brillouin, dont nous rappelons le développement
limité pour x faible

BL (x) =
S + 1

3S
x− αx3 + · · · (9.54)

La relation (9.53) possède des solutions non nulles pour l’aimantation, même
en l’absence de champ B extérieur, dans le cas où J〉0 (soit λ〉0). Pour ana-
lyser cette relation introduisons l’aimantation à saturation Ms donnée par

Ms =
N

V
gµBS (9.55)

et la température T0 définie par

T0 =
νJS2

kB

(9.56)
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Avec ces définitions, on vérifie sans peine que dans le cas où B = 0, soit
Beff = λM, (9.53) s’écrit

M

Ms

= Bs
(
M

Ms

T0

T

)
(9.57)

L’équation (9.57) peut être résolue graphiquement, il suffit pour cela de cher-
cher l’intersection de Bs(x) où x = M

Ms

T0
T

avec les droites M/Ms = x · T/T0

(voir Fig. 9.4).

1 

 ( )

/ /  /  /  /

 =

Figure 9.4 – Résolution graphique de l’équation (9.57). Les températures T1 <
T2 < Tc < T4. La température critique Tc au-dessus de laquelle l’aimantation
spontanée disparâıt est telle que xTc/T0 est tangente à la fonction de Brillouin à
l’origine.

L’équation (9.57) ne possède de solution M(T ) non nulle que si T < Tc
où la température critique Tc est dite température de Curie. Tc est tel que
(voir 9.54)

Tc
T0

=
∂Bs (x)

∂x

∣∣∣∣
x=0

=
S + 1

3S

soit

Tc =
S (S + 1) νJ

3kB

(9.58)

Les solutions de l’équation (9.57) sont représentées dans la Fig. 9.5 où nous
avons représenté pour différentes valeurs de J,M(T )/Ms en fonction de T/Tc.
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Figure 9.5 – Dépendance en fonction de la température de l’aimantation spon-
tanée : calculée dans l’approximation du champ moyen et mesurée pour Fe, Ni,
Co.

Le comportement de M(T ) proche de la température critique peut être
calculée en partant du développement limité (9.54), soit

M

Ms

= x
T

T0

=
S + 1

3S
x− αx3

d’où l’on déduit

x = (Tc − T )1/2 (αT0)−1/2

soit

M

Ms

∼
(

1− T

Tc

)1/2

(9.59)

En réalité on observe des exposants critiques proches de 1/3. Nous donnons
dans la Table 9.1 les valeurs de l’exposant critique (β) obtenu pour divers
ferromagnétiques.
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γ β

Fe
Co
Ni
Gd
CrO2

CrBr3

Eu S

1.33 ± 0.015
1.21 ± 0.04
1.35 ± 0.02
1.3 ± 0.1
1.63 ± 0.02
1.21 ± 0.02

0.34 ± 0.04
- -

0.42 ± 0.07
- -
- -

0.37 ± 0.005
0.33 ± 0.015

Table 9.1 – Exposants critiques de substances ferromagnétiques. L’exposant γ est
tel que lorsque T → Tc (avec T > Tc) la susceptibilité χ ∼ (T − Tc)−γ .L’exposant
β est tel que lorsque T → Tc(T < Tc)

β, l’aimantation M(T ) ∼ (Tc − T )β. Dans
l’approximation du champ moyen γ = 1 et β = 1/2.

De même le comportement de M(T ) pour T ∼ 0 peut être calculé, on
trouve

Ms −M (T ) ∼ exp

[
−νJS
kBT

]
(9.60)

ce qui est en désaccord avec l’expérience et un calcul tenant compte de l’exis-
tence d’ondes de spin (voir 9.8) qui indique que

Ms −M (T )

Ms

∼
(
T

Tc

)3/2

(9.61)

Nous donnons dans la Table 9.2 les valeurs expérimentales mesurées pour
quelques ferromagnétiques

Les valeurs de nB observées sont souvent non entières. Il peut y avoir
plusieurs raisons à cela, l’une est l’interaction spin-orbite qui permet d’ajou-
ter ou de soustraire des composantes orbitales au moment magnétique de
spin. Une autre raison dans les métaux ferromagnétiques est liée à l’effet des
électrons de conduction (voir 9.6).

A partir de l’expression calculée pour Tc (9.58) et la valeur de la constante
de champ moyen λ (9.51) on peut déterminer la valeur numérique de λ.

λ =
3kBTc

N/V (gµB)2 S (S + 1)
(9.62)
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Substance

Magnétisation Ms,
[Gauss]

Temp.
ambiante 0K

nB (0k)
par unité

de formule
chimique

Temp.
de Curie

[K]
Fe
Co
Ni
Gd
Dy
MnAs
MnBi
MnSb
CrO2
MnOFe2O3

FeOFe2O3

NiOFe2O3

CuOFe2O3

MgOFe2O3

EuO
Y3Fe5O12

1707
1400
485
- - -
- - -
670
620
710
515
410
480
270
135
110
- - -
130

1740
1446
510
2060
2920
870
680
- - -
- - -
- - -
- - -
- - -
- - -
- - -
1920
200

2.22
1.72
0.606
7.63
10.2
3.4
3.52
3.5
2.03
5.0
4.1
2.4
1.3
1.1
6.8
5.0

1043
1388
627
292
88
318
630
587
386
573
858
858
728
713
69
560

Table 9.2 – Valeurs mesurées pour quelques solides ferromagnétiques. nB est
défini par Ms = N

V nB · B.

Dans le cas du Fe, Tc ∼ 1000K, g ∼ 2, S = 1, on en déduit λ[V s/Am] = 5000,
soit avec Ms = 1700 G, un champ interne

(Bint)Fe ∼ 107 G = 103 T

Ainsi le champ interne est beaucoup plus grand que les champs extérieurs
ou que le champ magnétique qu’un moment magnétique placé dans le cristal
crée. En effet pour un moment m = B placé à distance a = 1Å on trouve un
champ

B ∼ µ0

4π

µB

a3

∼ 1 T

De même on peut estimer la constante d’échange J à partir de (9.58). Si l’on
admet que le Fe est représenté par un modèle de Heisenberg, on trouve
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J =
3kBTc

2νS (S + 1)
∼ kBTc

10
∼ 14 meV

9.5.3 La loi de Curie-Weiss

A des températures T 〉Tc l’échantillon est dans une phase paramagnétique.
Le champ appliqué B induit une aimantation et l’on a

χ =
∂M

∂H
∼= µ0

∂M

∂B
(9.63)

où l’on a utilisé le fait que χ est faible dans la phase paramagnétique. M est
donné par (9.53) et pour des champs faibles par son développement limité
(9.54). Il vient donc

χ = µ0

N

V
gµBS ·

S + 1

3S

∂x

∂B
où

∂x

∂B
=
gµBS

kBT

∂Beff

∂B
=
gµBS

kBT
[1 + λχ/µ0]

En remplaçant λ par sa valeur et en résolvant pour χ, on obtient

χ =
χCurie

1− Tc/T
∼ 1

T − Tc
(9.64)

où χCurie est donné par (9.31), soit

χCurie = µ0

N

V

(gµB)2

3

S (S + 1)

kBT
(9.65)

Cette expression décrit relativement bien la variation de la susceptibilité au-
dessus du point de Curie. Les calculs détaillés prédisent

χ ∼ 1

(T − Tc)γ
avec γ = 1.33 (9.66)

Les paramètres γ expérimentaux pour divers ferromagnétiques sont donnés
dans la Table 9.1.
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9.6 Le modèle de bande du ferromagnétisme

Le modèle de Heisenberg n’est valable, au moins en première approxi-
mation, que dans le cas d’électrons localisés, alors que les ferromagnétiques
usuels sont des métaux ou des alliages métalliques. Il est donc nécessaire
d’introduire un modèle qui tienne compte du fait que les électrons déloca-
lisés forment des bandes. Un tel modèle explique naturellement le fait que
le nombre de magnéton de Bohr nB (voir Table 9.2) n’est pas entier et le
comportement des alliages métalliques.

9.6.1 Origine de l’interaction ferromagnétique dans les mé-

taux

Nous avons montré au § 4 que le principe d’exclusion de Pauli conduit à
une interaction, dite d’échange, entre les électrons qui dépend de leur spin.
La constante d’échange Jij entre les électrons i et j de la molécule H2 est
négative, elle conduit à une énergie de l’état singulet (S = 0) inférieure à
celle dans laquelle les spins sont parallèles (état triplet S = 1). Dans le cas
des électrons délocalisés la constante d’échange est positive.

Pour le montrer qualitativement considérons deux électrons libres i et
j et la fonction d’onde à deux électrons ψ(r1, r2). Dans le cas où les élec-
trons sont de spin parallèle, la partie spatiale de la fonction d’onde doit être
antisymétrique (voir 9.4), on a donc,

ψ (r1, r2) =
1√
2V

[exp (iki · r1) exp (ikj · r2)− exp (iki · r2) exp (ikj · r1)]

(9.67)
La probabilité que l’électron 1 se trouve dans le volume d3r1 et l’électron 2
dans le volume d3r2 est donc égale à

∣∣ψ2
∣∣ d3r1d

3r2 =
1

V 2
[1− cos (ki − kj) (r1 − r2)] d3r1d

3r2 (9.68)

Cette expression contient tous les éléments importants : la probabilité que
deux électrons de même spin se trouvent au même endroit est nulle, quels
que soient ki et kj. Ainsi pour un électron de spin ”up”, les autres électrons
de spin up ne peuvent pas écranter localement le potentiel du coeur ionique
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efficacement, ce qui conduit à une réduction de l’énergie des électrons de spin-
up. Cette réduction en énergie est renforcée lorsque le nombre d’électrons de
spin ”up”par rapport aux électrons de spin ”down”augmente. L’effet résultant
est ainsi un gain en énergie électronique pour les électrons de spins parallèles,
ce qui correspond à une énergie d’échange collective de spin négative et donc
(voir 9.43) à une constante d’échange positive.

Ces idées peuvent être rendues plus quantitatives en introduisant le concept
de trou d’échange (voir par ex. Ibach et Luth, § 8.3) et l’effet de l’interaction
coulombienne entre les électrons que l’on néglige dans un modèle d’électrons
libres.

On peut tenir compte qualitativement de ces effets en introduisant une
énergie de bande à un électron différente pour les spins up et les spins down

E↑ (k) = E (k)− I n ↑
N

E↓ (k) = E (k)− I n ↓
N

(9.69)

où n↑ et n↓ sont respectivement le nombre d’électrons de spin ↑ et ↓ et N
est le nombre d’atomes. En accord avec ce que nous avons dit ci-dessus,
les relations (9.69) tendent à abaisser l’énergie des électrons de spin up par
rapport à celle des électrons de spin down si n↑ > n↓ , et ainsi conduire à une
séparation en énergie des bandes pour les électrons de spin up et down.

9.6.2 Le modèle de bande du ferromagnétisme

Tous les métaux ferromagnétiques simples sont soit des terres rares (Gd,
Dy) ou formés à partir des éléments de transition de la série 3d (Fe, Co, Ni).
Le modèle de bande décrit ici s’applique particulièrement aux métaux de la
série 3d, pour lesquels on sait que les électrons d participent à la conduction
et forment une bande, relativement étroite.

Prenons pour exemple le cas du Ni. On peut schématiquement repré-
senter sa structure de bande comme étant formée de la superposition d’une
bande s large et d’une bande d plus étroite. Nous montrons dans la Fig. 9.6
un schéma de bande au zéro absolu en ne tenant pas compte (Fig. 9.6 a) et
en tenant compte (Fig, 9.6 b) de la séparation entre les bandes de spins up
et down.

Au zéro absolu on mesure dans le Ni (voir Table 9.2) une aimantation à
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(a) (b)

Surface
de fermi

Surface
de Fermi

4.73 électrons 4.46 électrons
5 électrons

3  3  3  3  

4s4s

0.54 électrons 0.54 électrons
0.27 trous 0.54 trous

Figure 9.6 – Relation schématique entre les bandes du Nickel au zéro absolu.
Dans la Fig. 9.6 a) le moment magnétique résultant est nul, car il y a un nombre
égal de trous dans les bandes up et down. Dans le Fig. 9.6 b) les énergies des bandes
3d ↑ et 3d ↓ sont séparées par l’interaction d’échange. Le moment magnétique
résultant de 0.54µB par atome provient de l’excès de population de spins up par
rapport aux spins down.

saturation Ms = N
V
nBB telle que nB = 0.606 magnéton de Bohr par atome.

Si l’on tient compte de la contribution due au moment magnétique orbital
(mL = 0.066µB) on conclut que le Ni a un excès de 0.54 électrons par atome
de spin ↑ par apport au spin ↓. Bien que l’atome de Ni possède 8 électrons
dans la couche 3d et 2 dans la couche 4s, le calcul de bande indique que
dans le solide on a un transfert s − d, et l’on peut schématiquement décrire
la structure de bande comme contenant 0.54 électrons dans la bande 4s et
9.46 dans la bande d. En présence de l’interaction d’échange apparâıt une
séparation entre les bandes 3d ↑ et 3d ↓, qui conduit à un excès d’électrons
↑ par rapport aux électrons ↓ (voir Fig. 9.6 b). Une façon de parler est de
dire que l’aimantation résulte de la présence de 0.54 trous dans la bande
3d ↓. Nous donnons dans la Fig. 9.7 le résultat d’un calcul plus réaliste de
la densité d’état du Ni, qui fait apprâıtre clairement la séparation entre les
bandes 3d ↑ et 3d ↓.

On considère que la situation est similaire dans le Cobalt (nB = 1.72)
pour lequel la bande 3d ↓ contient 5 électrons et la bande 3d ↑ 3.28 électrons.
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Figure 9.7 – Densité d’état du Nickel dans l’état ferromagnétique.

Par contre dans le cas du Fe les bandes 3d ↑ et 3d ↓ sont l’une et l’autre
partiellement remplies, avec un excès de spin ↑ de 2.2 électrons/atome.

9.6.3 Condition d’instabilité de l’état paramagnétique

On peut se demander pour quelle raison seuls Fe, Co et Ni sont ferroma-
gnétiques, tandis que les autres éléments de la série 3d ou 4d ne le sont pas.
On peut répondre qualitativement à cette question en utilisant un modèle
simple. Pour cela, il faut réaliser que la séparation en énergie des bandes
sous l’effet de l’interaction d’échange s’accompagne d’une augmentation de
l’énergie de bande (cinétique dans le cas d’électrons libres), le ferromagné-
tisme apparâıt si,

δEcin + δEech < 0 (9.70)

où δEcin (> 0) est la variation de l’énergie de bande lorsqu’on a un transfert
d’électrons δn de la bande ↓ à la bande ↑ et δEech (> 0) est le gain en énergie
d’échange. On peut écrire

δEcin = δn

(
∂E

∂n
δn

)
=

1

V g(EF)
(δn)2 (9.71)

où l’on a introduit la densité d’état par unité de volume au niveau de Fermi
g(EF). δEech est donné par

δEech =

[(n
2

+ δn
)2

+
(n

2
− δn

)2

− 2
(n

2

)2
]

∆Ec (9.72)
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où ∆Ec(〈0) est l’énergie d’échange moyenne entre 2 électrons de la bande,
elle est proportionnelle à la constante I introduite en (9.69). On a introduit
une dépendance quadratique de δEéch en fonction du nombre d’électrons
pour tenir compte du fait que (voir 9.69) le gain d’énergie par électron du
à l’interaction d’échange est proportionnel au nombre d’électrons de spin up
ou down. La condition (9.70) s’écrit ainsi,

δEcin + δEech = (δn)2

[
1

V g (EF )
+ 2∆Ec

]
〈0

soit

2V |∆Ec| g (EF )〉1 (9.73)

Cette condition, dite critère de Stoner, a été estimée pour divers métaux et
il apparâıt clairement qu’elle n’est vérifiée que pour Fe, Co, Ni.

Les lecteurs intéressés liront avec profit les § 8.4 et 8.5 de Ibach et Lüth
dans lesquels le modèle de Stoner - Wohlfart du magnétisme itinérant est
introduit. Une conséquence intéressante de ce modèle est le calcul de la sus-
ceptibilité paramagnétique des électrons de conduction en tenant compte de
l’interaction d’échange. On trouve que

χ =
χ0

1− I V g(EF )
2N

(9.74)

où χ0 est la susceptibilité de Pauli donnée par (2.72). L’augmentation de
susceptibilité peut être très importante, elle est égale à 4.5 dans le cas du
Pd.

9.7 L’antiferromagnétisme

9.7.1 Diffusion de neutrons et antiferromagnétisme

Les rayons X ”voient” la distribution spatiale de la charge électronique,
qu’elle soit polarisée magnétiquement ou pas. Un neutron ”voit” deux as-
pects d’un cristal : la distribution spatiale des noyaux et la distribution des
moments magnétiques. En effet le moment magnétique du neutron interagit
avec le moment magnétique de l’électron et les sections efficaces pour l’inter-
action neutron-électron et l’interaction neutron-noyau sont du même ordre
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de grandeur. Ainsi la diffraction des neutrons par un cristal permet de dé-
terminer la distribution, la direction et l’arrangement ordonné des moments
magnétiques.

A titre d’exemple nous donnons dans la Fig. 9.8 la figure de diffraction
du MnO, qui a la structure NaCl, à deux températures, soit 80 K et 293 K.
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Figure 9.8 – Spectre de diffraction de neutrons du MnO à 2 températures (80 K
et 293 K). La température la plus basse se trouve sous la température de transition
antiferromagnétique (120 K), et 293 K se trouve au-dessus de la température de
transition. Les indices de réflexion sont basés sur une cellule unité de 8.85 Å (à
80 K) et de 4.43 Å à 293 K. Au-dessus de 120 K les ions Mn++ sont encore
magnétiques, mais il ne sont plus ordonnés.

On constate que pour des températures inférieures à 120 K, la cellule
unité est de 8.85 Å tandis qu’elle est de dimension moitié pour T 〉120 K. On
peut en conclure que au-dessous de 120 K les ions Mn++, porteurs du mo-
ment magnétique, sont ordonnés dans un arrangement non ferromagnétique.
Si MnO était ferromagnétique les cellules unité ”chimique” et ”magnétique”
donneraient le même spectre de diffraction.
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En fait l’arrangement des moments magnétiques décrit dans la Fig. 9.9
rend compte des résultats obtenus par diffraction de neutrons. Les spins dans
un même plan [111] sont parallèles, mais les spins dans les plans [111] adja-
cents sont antiparallèles. On dit que MnO est un antiferromagnétique.

Dans un cristal antiferromagnétique (voir aussi 9.4.1) les spins sont ordon-
nés dans un arrangement antiparallèle, avec une aimantation totale nulle aux
températures inférieures à une température de transition, dite température
de

cellule unité
chimiquecellule unité

magnétique

Figure 9.9 – Arrangement des spins des ions Mn++ dans MnO. Les ions O− −

ne sont pas représentés.

Néel (TN). C’est un cas particulier d’une classe de substances plus géné-
rales dans lesquelles il existe aussi deux sous-réseaux magnétiques de spins
opposés mais dont l’aimantation résultante n’est pas nulle. On parle de sub-
stances ferrimagnétiques.

Nous donnons dans la Table 9.3 les valeurs mesurées pour quelques cris-
taux antiferromagnétiques.
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Substance

Réseau de
ion

paramagnétique

Température
de transition
TN , [K]

Température
de Curie-Weiss

θ, [K]
MnO
MnS
MnTe
MnF2

FeF2

FeCl2
FeO
CoCl2
CoO
NiCl2
NiO
Cr

fcc
fcc
hex. layer
bc tetr
bc tetr
hex. layer
fcc
hex. layer
fcc
hex. layer
fcc
bcc

116
160
307
67
79
24

198
25

291
50

525
308

610
528
690
82

117
48

570
38.1

330
68.2

∼ 2000

Table 9.3 – Valeurs mesurées de quelques cristaux antiferromagnétiques.

9.7.2 Calcul de TN dans l’approximation du champ moyen

Nous choisissons ici le cas d’une structure modèle, particulièrement simple,
dans laquelle tous les plus proches voisins ont des spins antiparallèles, c’est
le cas par exemple des structures a) et b) représentées dans la Fig. 9.10, mais
cela ne peut pas être le cas dans la structure du MnO présentée dans la Fig.
9.9.

Nous pouvons pour étudier ce cas utiliser pour chaque sous-réseau ma-
gnétique les résultats dérivés dans l’approximation du champ moyen au § 5,
mais il faut tenir compte du fait que la constante de couplage J est néga-
tive. Dans cette situation le champ moyen pour le sous-réseau d’orientation
de spin positive est créé par le sous-réseau de spins négatifs et vice-versa.
On obtient donc dans le cas d’un état ordonné antiferromagnétique la paire
d’équations (voir Eq.9.53)

M+ =
N+

V
gµBSBs

[
gµBS

kBT
B+
eff

]

M− =
N−

V
gµBSBs

[
gµBS

kBT
B−eff

]
(9.75)
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Figure 9.10 – a) Cristal modèle avec une orientation antiferromagnétique des
spins plus proches voisins, b) structure simple de réseau tétragonal, elle est observée
pour les cristaux MnF2, FeF2 et CoF2.

où

B±eff = B + λ∓M± (9.76)

avec

λ∓ =
V

N∓
νJ

(gµB)2 (9.77)

Dans ces relations N+ et N− correspondent respectivement au nombre de
moments magnétiques contenus dans le volume V de spins up et de spin
down. Dans l’exemple que nous avons choisi N+ = N− = N/2. De plus les
constantes λ+ et λ− sont reliées à λ défini en (9.51) par



9.7. L’ANTIFERROMAGNÉTISME 35

λ± = 2λ = 2
V

N

νJ

(gµB)2 (9.78)

Dans l’état antiferromagnétique et pour un champ extérieur nul, M+ = −M−

nous obtenons donc

M+ =
N+

V
gµBSBs

[
− V

N+

S

(gµB)

νJ

kBT
M+

]
(9.79)

et une équation correspondante pour M−. En introduisant, comme au § 5,

M+
s =

N+

V
gµBS (9.80)

et

T+
0 = T−0 = −νJS

2

kB

= T0〉0 (9.81)

on vérifie que par analogie avec (9.57)

M+ (T )

M+
s

= Bs
(
M+ (T )

M+
s

T+
0

T

)
(9.82)

L’aimantation de chaque sous-réseau M+(T ) et M−(T ) suit une équation
identique à celle obtenue pour l’aimantation résultante dans le cas ferroma-
gnétique. Le comportement de M+(T ) est donc semblable à celui donné dans
la Fig. 9.5. En particulier l’aimantation spontanée de chaque sous-réseau
s’annule à la température critique de Néel, donnée par

TN = −S (S + 1) νJ

3kB

(9.83)

9.7.3 Calcul de la susceptibilité

Le calcul de la susceptibilité, contrairement au cas des ferromagnétiques,
peut être aussi fait pour des températures T < TN , car ce n’est qu’en présence
d’un champ extérieur qu’apparâıt une aimantation totale M = M+ + M−

non nulle.
Il faut bien distinguer le cas où le champ B extérieur s’applique paral-

lèlement aux aimantations M+ et M− des sous-réseaux et le cas où B est
perpendiculaire. Les 2 situations sont schématisées dans la Fig. 9.11.
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M +

M

B

a) b) c)

M +

M

B

M +

M

Figure 9.11 – Aimantations M+ et M− des sous-réseaux dans le cas où a) B = 0
b) B parallèle (ou antiparallèle) aux aimantations M+,M− c) B perpendiculaire à
M+ et M−. Il faut noter que si on ne tient pas compte de l’anisotropie cristalline,
en présence de B les aimantations M+ et M− ”tourneraient ”toujours de telle
sorte que l’énergie soit minimisée, elle choisirait donc la situation b) ou c). La
dépendance de χ en-dessous de Tc est donc due à l’anisotropie cristalline.

Nous choisissons de traiter tout d’abord le cas où B parallèle (ou anti-
parallèle) à M+ et M−.

Nous devons donc calculer

χ = µ0

∂M

∂B
= µ0

(
∂M+

∂B
+
∂M−

∂B

)
(9.84)

où

M± =
1

2

N

V
gµBSBs

(
x±
)

(9.85)

avec

x± =
gµBS

kBT

(
B + 2λM∓) (9.86)

Il vient donc après calculs, en utilisant le fait que ∂M+/∂B = ∂M−/∂B =
1
2
∂M/∂B,

χ = µ0

1

2

N

V
gµsS

gµBS

kBT

(
1 + λ

χ

µ0

)[
∂Bs
∂x

∣∣∣∣
x+(B=0)

+
∂Bs
∂x

∣∣∣∣
x−(B=0)

]
(9.87)
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Dans le cas où T〉TN, l’aimantation en l’absence de B est nulle, l’argument
de la fonction de Brillouin est faible et l’on peut utiliser le développement
(9.54), on a donc par un développement semblable à celui qui a conduit à la
loi de Curie-Weiss

χ =
χCurie

1 + TN/T
∼ 1

T + TN
(9.88)

où la différence de signe entre les cas ferromagnétique et antiferromagnétiques
est liée au fait que λ est 〈0 (car J〈0).

On constate donc que la susceptibilité χ ne diverge pas à la température
de transition antiferromagnétique. Il faut cependant remarquer que dans un
cas plus général, c’est-à-dire en tenant aussi compte des seconds plus proches
voisins, etc., on obtiendrait

χ =
A

T + θ
(9.89)

Les valeurs de θ mesurées sont données dans la Table 9.3.
Dans le cas où T〈TN la situation est plus difficile à analyser algébrique-

ment. Par simplicité nous prenons le cas S = 1/2, car dans ce cas la fonction
de Brillouin se réduit à

BS=1/2 (x) = tanh x (9.90)

En effectuant les calculs de la relation (9.87) on obtient alors,

χ‖ (T ) =
χCurie

cos2 h
(
TN
T

M+(T )

M+
s (T )

)
+ TN

T

(9.91)

On retrouve le résultat (9.88) dans le cas où T > TN car M+(T ) = 0. Dans
le cas où T � TN , soit lorsque Ms(T ) ∼= M+

s , on a

χ‖ =
χCurie

cos2
(
TN
T

)
+ TN

T

=
A

T cos2
(
TN
T

)
+ TN

(9.92)

La susceptibilité résultante χ est dans ce cas très faible, elle tend vers zéro
comme

χ‖ (T ) ≈ µ0

g2µ2
BN

V kBT
exp

(
−2

TN
T

)
(9.93)

La situation est résumée dans la Fig. 9.12.
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Figure 9.12 – Représentation de la susceptibilité magnétique χ d’un cristal anti-
ferromagnétique. Sous la température de Néel TN la susceptibilité diffère pour les
orientations parallèle et perpendiculaire du champ extérieur par rapport à l’orien-
tation des spins.

Dans le cas où B est perpendiculaire à l’aimantation des sous-réseaux,
on peut interpréter l’Hamiltonien (9.46) comme une équation classique pour
l’énergie (voir aussi 9.52),

U = −
(
M+ + M−) ·B− 1

2

(
M+ · λ−B−int + M−λ+B+

int

)
(9.94)

où l’on a introduit un facteur 1
2

pour tenir compte de ce que les champs
internes B±int associés aux 2 sous-réseaux sont proportionnels à M±. En tenant
compte de (9.76) et de λ± = 2λ, (9.94) peut être réécrit

U = −B ·
(
M+ + M−)− 2λM+ ·M− (9.95)

En admettant que pour des angles de rotation ϕ faibles (voir Fig. 9.10 b)
l’amplitude des aimantations des sous-réseaux ne change pas, on a,

U = −2BM sinϕ+ 2λM2 cos (2ϕ)
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L’angle ϕ est tel que U est minimum, soit

∂U

∂ϕ
= 0 =⇒ sinϕ = −1

4

B

λM
(9.96)

L’aimantation perpendiculaire résultante M⊥ vaut donc

M⊥ = 2M sinϕ = − B
2λ

(9.97)

On en déduit

χ⊥ = µ0

∂M⊥
∂B

= −µ0

2λ
= −µ0

N
V

(gµB)2

2νJ
(9.98)

On vérifie sans peine en utilisant les relations (9.88) et (9.83) que χ⊥ est la
susceptibilité calculée précédemment en T = TN

χ⊥ (T < TN) = χ (T = TN) (9.99)

La susceptibilité perpendiculaire est représentée dans la Fig. 9.12. Il faut
remarquer que le comportement décrit dans la Fig. 9.12 n’est vérifié que si l’on
a un seul domaine magnétique. Dans le cas d’une substance polycristalline
par exemple on n’observe qu’une susceptibilité moyenne, intermédiaire entre
χ⊥ et χ‖. Nous donnons dans la Fig. 9.13 la susceptibilité mesurée dans le
cas d’un monocristal de MnF2

9.8 Les ondes de spin

L’énergie nécessaire pour inverser le spin d’un électron est donnée par
l’interaction d’échange. Ceci est vrai dans les cas du ferromagnétisme de mo-
ments localisés et pour le magnétisme itinérant. Dans le modèle de bande
le renversement d’un spin correspond à une transition interbande d’un élec-
tron entre les deux bandes de spins up et down, qui sont séparées en énergie.
L’énergie nécessaire pour renverser un spin est donc égale à la différence
d’énergie entre les 2 bandes, elle correspond à l’énergie ∆ de la Fig. 9.6. Il
existe d’autres excitations d’énergie inférieure à celle associée au renverse-
ment d’un spin, ce sont les ondes de spin. Pour les décrire très brièvement
nous considérons le cas d’un ferromagnétique à moments localisés, dont l’in-
teraction entre les spins est décrite par un Hamiltonien de Heisenberg (voir
9.43).
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Figure 9.13 – Susceptibilité mesurée pour un monocristal de MnF2 sous la tem-
pérature de Néel.

9.8.1 Ondes de spins dans le cas localisé

Nous ne donnons ici qu’une description très qualitative, en utilisant un
traitement classique. Le lecteur intéressé à un traitement quantique pourra
consulter Ascroft-Mermin, chap. 33 ou Ibach-Lüth § 8.8.

Dans l’état fondamental d’un ferromagnétique tous les spins sont paral-
lèles (voir Fig. 9.14 a). Considérons N spins d’amplitude S situés sur un
anneau, dont les plus proches voisins sont couplés par l’ interaction de Hei-
senberg

U = −J
N∑
p=1

Sp · Sp+1 (9.100)

Si l’on traite les spins comme des vecteurs classiques, Sp · Sp+1 = S2 dans
l’état fondamental et l’énergie d’échange du système vaut

U0 = −NJS2 (9.101)

Nous cherchons l’énergie du 1er état excité. Considérons pour cela un état
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avec un spin inversé, comme dans la Fig. 9.14 b). On voit à partir de (9.100)
que l’énergie a augmenté de 4JS2, ainsi pour cet état

U1 = U0 + 4JS2 (9.102)

On peut en fait former une excitation d’énergie inférieure si le renversement
de spin est réparti entre tous les spins, comme dans la Fig. 9.14 c).

(a) (b) (c) 

Figure 9.14 – Représentation classique de l’état fondamental d’un ferromagné-
tique b) une excitation possible où un spin est inversé c) les excitations de plus
basse énergie sont des ondes de spin. L’extrémité des vecteurs précesse sur la sur-
face d’un cône, les spins successifs étant en avance de phase d’un angle constant.

On peut montrer classiquement sans difficulté (voir exercices) que l’éner-
gie associée à ces oscillations dépend du vecteur d’onde k de l’onde de spin,
elle est donnée dans le cas de la châıne linéaire par

~ω = 2JS (1− cos ka) (9.103)

C’est la relation de dispersion pour les ondes de spin à une dimension en
ne tenant compte que de l’interaction entre plus proches voisins. Le même
résultat est obtenu dans un traitement quantique. Pour des grandes longueurs
d’onde (ka� 1), on obtient

~ω =
(
JSa2

)
k2 (9.104)

La fréquence est proportionnelle à k2, dans la même limite la fréquence des
phonons est proportionnelle à k.

Dans le cas d’un ferromagnétique cubique on obtiendrait en ne tenant
compte que des plus proches voisins

~ω = JS

[
ν −

∑
δ

cos (k · δ)

]
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où δ correspond au vecteur reliant l’atome central considéré aux ν plus
proches voisins.

Dans le cas des ondes de vibrations dans un cristal, on a associé à un
mode propre de vibration la notion de phonon. De même à une onde de spin
on associe un magnon. La quantification des ondes de spin est semblable à
celle que nous avons décrite pour les phonons. L’énergie d’une onde de spin
de fréquence ωk ”contenant nk magnons est donnés par

E (k) =

(
nk +

1

2

)
~ωk (9.105)

L’excitation d’un magnon correspond au renversement d’un spin 1/2. (nk
change d’une unité). La variation d’énergie est certainement inférieure à
(9.102) pour les magnons tels que ka〉1.

La valeur moyenne du nombre de magnons à l’équilibre thermique est,
comme pour les phonons, donnée par la statistique de Planck (voir Chap. 4,
§ 2), on a

〈nk〉 =
1

exp (~ωk/kBT )− 1

En utilisant cette valeur de 〈nk〉, on peut calculer la variation de l’aimantation
∆M par rapport à l’aimantation à saturation. On montre que (voir 9.61)

∆M

M (0)
∼ T 3/2

Ce résultat, connu sous le nom de loi de Block en T3/2, a été confirmé
expérimentalement.

Les ondes de spin ont été observées jusqu’à des températures proches de
la température de Curie, nous donnons dans la Fig. 9.15 les résultats obtenus
pour un alliage de Cobalt.

Il existe aussi des ondes de spins dans les cristaux antiferromagnétiques,
cependant la théorie quantique est plus complexe. Dans un traitement clas-
sique on montre que (voir par ex. Kittel, chap. 15) que

ω = ω0 |sin ka|

Ainsi la relation de dispersion est différente pour un antiferromagnétique, en
particulier elle est linéaire en k pour de faibles valeurs de k. Nous donnons
dans la Fig. 9.15 b) la relation de dispersion du MnF2.
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Figure 9.15 – Spectres des ondes de spin mesurés par diffusion inélastique des
neutrons dans a) un ferromagnétique (alliage de Co avec 8% de Fe). La courbe est
parabolique comme on l’attend pour un ferromagnétique le saut en q = 0 est dû à
l’anisotropie (voir § 9). b) cas d’un antiferromagnétique (MnF2). A faibles valeurs
de q la courbe de dispersion est linéaire. Le saut à q= 0 est aussi du à l’anisotropie.

9.9 Domaines ferromagnétiques

Pour les températures nettement inférieures au point de Curie les mo-
ments magnétiques électroniques d’un ferromagnétique sont tous parallèles,
quand on regarde le cristal au niveau microscopique on constate que le cristal
est composé de petites régions, appelées domaines, à l’intérieur desquels les
moments sont tous parallèles. Cependant d’un domaine à l’autre l’orientation
de l’aimantation change. L’existence de domaines est liée à des considérations
énergétiques.

9.9.1 Origine des domaines

Pour comprendre l’origine des domaines, considérons la Fig. 9.16.
Dans la situation a) il n’y a qu’un seul domaine, le champ d’induction

magnétique résultant de l’aimantation à saturation M , est intense et par
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Figure 9.16 – Origine des domaines.

conséquent l’énergie magnétique. En b) l’énergie magnétique est approxima-
tivement réduite d’un facteur deux par division du cristal en deux domaines
et en c) elle est réduite de 1/N par division en N domaines. Dans les ar-
rangements tels que d) et e) l’énergie magnétique est encore réduite car le
champ extérieur B créé par le ferromagnétique est essentiellement nul.

9.9.2 Energie d’anisotropie

Les cristaux ne sont pas isotropes d’un point de vue magnétique et les
courbes d’aimantation ont des formes différentes lorsque le champ extérieur
B est orienté selon des directions cristallographiques différentes. On parle
de directions d’aimantation ”faciles”, les cristaux hexagonaux (par ex. Co)
sont particulièrement difficiles à aimanter dans les directions autres que l’axe
c. Cette anisotropie est dite ”magnétocristalline”, elle ne peut pas provenir
de l’interaction d’échange qui est isotrope. Elle est en fait liée au couplage
spin-orbite qui couple le moment magnétique de spin avec le mouvement
orbital de l’électron. En faisant tourner le spin, on modifie la distribution des
charges responsable du moment orbital, ce qui modifie l’énergie d’échange ou
électrostatique. Dans le cas du Cobalt, on peut écrire la densité d’énergie

U = k1 sin2 θ + k2 sin4 θ

où θ est l’angle que forme l’aimantation avec l’axe c du cristal.
Pour illustrer l’importance de l’énergie magnétocristalline sur l’aimanta-

tion d’un cristal, nous donnons dans la Fig. 9.17 les courbes d’aimantation
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du Fe, Ni (cubiques) et du Co (hexagonal).
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Figure 9.17 – Anisotropie magnétocristalline observée dans Fe, Ni, Co.
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9.9.3 Les parois de Bloch

La paroi de Bloch d’un cristal est la couche de transition qui sépare deux
domaines adjacents aimantés dans des directions différentes. La variation
dans la direction du spin lorsqu’on passe d’un domaine à l’autre n’a pas
lieu de façon discontinue, mais a lieu de façon graduelle sur plusieurs plans
atomiques (voir Fig. 9.18).

N N 

N N 

N N 

N N 

N 
S 

Figure 9.18 – Structure de la paroi de Bloch séparant deux domaines. Dans le
Fe l’épaisseur de la région de transition est de 300 constantes du réseau.

Le comportement peut s’expliquer en tenant compte de l’interaction d’échange
de Heisenberg. Si deux spins forment un angle ϕ faible entre eux, on peut
écrire

Uéch. = −JSi · Sj = −JS2 cosϕ ∼= −JS2

(
1− 1

2
ϕ2

)
Ainsi la variation d’énergie d’échange vaut 1/2JS2ϕ2 par couple de spins.
Si un changement d’orientation de Π a lieu sur N spins, l’énergie d’échange
totale d’une ligne de (N + 1) atomes est

∆Uéch. =
1

2
JS2 Π2

N
(9.106)
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Ainsi l’épaisseur de la paroi serait infinie pour minimiser l’énergie d’échange.
Cependant il faut tenir compte du fait que les directions d’aimantation cor-
respondent en général à des directions faciles. Les spins de la paroi de Bloch
ont en général des orientations qui s’écartent de la direction facile. Il faut donc
introduire l’énergie d’anisotropie, qui est approximativement proportionnelle
à l’épaisseur de la paroi. Il s’agit donc de minimiser

σp = σéch. + σanisotr. (9.107)

où σ est l’énergie par unité d’aire de la paroi. La valeur de δéch. se calcule à
partir de (9.106) en remarquant qu’il y a 1/a2 lignes par unité d’aire de la
paroi

σéch. =
1

2
JS2Π2/Na2

L’énergie d’anisotropie est de l’ordre de la constante d’anisotropie K (voir §
9 b) multipliée par l’épaisseur Na de la paroi

σanisotr. = KNa

En minimisant (9.107) par rapport à N , on trouve

N =
(
Π2J2S2/2Ka3

)1/2
(9.108)

ce qui donne N ∼ 300 pour le Fe. Les applications des substances ferro,
antiferro ou ferrimagnétiques sont nombreuses. En particulier la possibilité
de créer des mémoires magnétiques permanentes est basée sur l’existence de
”bubbles” magnétiques.


