
Chapitre 7

Les semiconducteurs

7.1 Propriétés générales des semiconducteurs

7.1.1 Semiconducteurs et isolants

Comme nous l’avons vu au § 5.5, la structure de bande d’un solide en-
semble avec son remplissage (nombre d’électrons par maille) permet de faire
la différence entre un isolant et un métal. Dans l’état fondamental d’un iso-
lant les bandes sont ou complètement remplies ou complètement vides, par
contre dans un métal au moins l’une des bandes est partiellement remplie.
Cette distinction est représentée schématiquement dans la Fig. 7.1, où les
zones hâchurées représentent les états occupés.
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Figure 7.1 – Densité d’état g(E) pour un isolant (a) et un métal (b). Dans un isolant

il existe une bande interdite, de largeur Eg, qui sépare les états occupés (zone hâchurée)

des états vides à T = 0. Dans un métal l’énergie de Fermi, EF, se trouve dans une bande

d’énergie permise.
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2 CHAPITRE 7. LES SEMICONDUCTEURS

A température finie, dans un isolant il existe une probabilité non nulle
qu’une fraction des électrons soit excitée thermiquement, à travers la bande
interdite, dans les états inoccupés de la bande d’énergie supérieure, en faisant
apparâıtre des trous dans la bande d’énergie inférieure. Dans ces conditions
l’isolant peut avoir une conductivité σ non nulle, c’est la raison pour laquelle
la bande d’énergie supérieure, initialement vide, est dite bande de conduction
et la bande d’énergie inférieure est dite bande de valence. La valeur de σ
dépend de kBT et de la largeur Eg de la bande interdite (Eg = ”energy gap”).
Nous montrerons plus loin que la fraction d’électrons excités est de l’ordre
de

exp

(
− Eg

2 kB T

)
(7.1)

Nous reportons dans le tableau ci-dessous la fraction d’électrons excités à
température ambiante en fonction de Eg

Eg fraction e− excités type de solide

4 eV

2 eV

0.25 eV

10-35

10-17

10-2

isolant

limite

semiconducteur

Pour Eg = 4 eV, la fraction d’électrons excités est si faible que pratique-
ment la conductivité est nulle, c’est le comportement d’un isolant. Par contre
pour Eg = 0.25 eV, une fraction appréciable des électrons est excitée, le so-
lide dont la conductivité était nulle à T = 0 acquiert une conductivité qui
crôıt avec la température car le nombre de porteurs de charge augmente.
C’est le comportement typique d’un semiconducteur. La distinction entre
semiconducteurs et isolants n’est pas absolument nette, on considère qu’un
solide est un semiconducteur si Eg ≤ 2 eV.

Les semiconducteurs peuvent être des éléments comme Ge ou Si, mais ils
peuvent aussi être des composés tels que SiC, Cu2O, GaAs. Leurs propriétés
sont profondément modifiées par la présence d’impuretés, de défauts, ou
d’écarts par rapport à leur composition exacte. Les propriétés d’un cristal
parfait ou d’un composé dont la composition est exacte sont dites propriétés
intrinsèques. L’effet d’impuretés ajoutées au semiconducteur, ou de défauts,
donne lieu à des propriétés extrinsèques.

La conductivité d’un semiconducteur est essentiellement due aux por-
teurs de charge (électrons) dans la bande de conduction et aux trous créés
dans la bande de valence sous l’effet des impuretés ou par excitation des
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électrons dans la bande de conduction. Elle s’écrit

σ =
ne2τ e
me

+
pe2τh
mh

(7.2)

où n est la densité d’électrons dans la bande de conduction, τ e le temps de
relaxation des électrons dans cette bande et me leur masse effective. p, τh,
mh représentent les grandeurs correspondantes pour les trous dans la bande
de valence.

Pour un semiconducteur, la valeur de la conductivité en fonction de T
est dominée par le comportement de n (T ) et p (T ) (n = p pour un semicon-
ducteur intrinsèque), car le temps de relaxation varie plus faiblement avec
la température que les deux densités. Ce comportement est très différent
de celui d’un métal pour lequel la densité électronique n est constante, l’ef-
fet de la température σ dépendant entièrement de la variation du temps de
relaxation.

Expérimentalement, la conductivité d’un semiconducteur varie comme
indiqué dans la Fig. 7.2. A haute température le comportement est dominé
par les effets intrinsèques, la pente de la variation linéaire de lnσ en fonction
de 1/T permet de déterminer la largeur de la bande interdite

lnσ ∝ lnni ∝ −
Eg

2kBT
(7.3)

Le comportement à plus basse température est profondément influencé par
les impuretés (voir explication plus loin).

1/T (K -1)

Figure 7.2 – Comportement typique de la conductibilité électrique σ d’un semiconduc-

teur en fonction de T . La variation linéaire de lnσ(1/T ) à haute température est du aux

effets intrinsèques. L’augmentation à température intermédiaire et la deuxième diminution

lorsque T décrôıt sont dus aux impuretés (effet extrinsèque).
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7.1.2 La bande interdite, propriétés optiques

La conductivité intrinsèque et de nombreuses propriétés des semicon-
ducteurs dépendent fortement de la largeur de leur bande interdite. Nous
donnons dans la Table 7.1 la valeur de Eg pour plusieurs semiconducteurs
et quelques isolants.

Crystal Gap Eg, eV

0 K 300 K

Crystal Gap Eg, eV

0 K 300 K

Diamond

Si

Ge

αSn

InSb

InAs

InP

GaP

GaAs

GaSb

AlSb

SiC(hex)

Te

ZnSb

i

i

i

d

d

d

d

i

d

d

i

i

d

5.4

1.17

0.744

0.00

0.23

0.43

1.42

2.32

1.52

0.81

1.65

3.0

0.33

0.56

1.11

0.66

0.00

0.17

0.36

1.27

2.25

1.43

0.68

1.6

—–

—–

0.56

HgTea)

PbS

PbSe

PbTe

CdS

CdSe

CdTe

ZnO

ZnS

SnTe

ACl

AgI

Cu2O

TiO2

d

d

i

i

d

d

d

d

d

-0.30

0.286

0.165

0.190

2.582

1.840

1.607

3.436

3.91

0.03

—–

—–

2.172

3.03

0.34-0.37

0.27

0.29

2.42

1.74

1.44

3.2

3.6

0.18

3.2

2.8

—–

—–

Table 7.1 – Nature et largeur de la bande interdite. i correspond à un ”gap” indirect
et d à un ”gap” direct. a)HgTe est un semi-métal, les bandes de valence et de conduction
de recouvrent.

Les semiconducteurs simples proviennent de la colonne IV du tableau
périodique, Si, Ge étant les deux éléments les plus importants. Le carbone,
sous forme diamant, est un isolant. Une classe importante de semiconduc-
teurs sont les composés formés d’un élément de la colonne III et d’un élément
de la colonne V, les III–V, le plus important du point de vue technologique
étant le GaAs. D’autres semiconducteurs sont dits II–VI, car formés d’élé-
ments de la colonne II et VI : CdS, ZnO, etc.

On distingue les semiconducteurs qui ont un ”gap direct” (notés d dans
la Table 7.1) et ceux qui on un ”gap indirect” (notés i). Leur structure de
bande est représentée schématiquement dans la Fig. 7.3

La largeur de la bande interdite peut être mesurée de diverses façons,
on peut en particulier utiliser les mesures d’absorption optique. A basse
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Figure 7.3 – Structure de bande schématique d’un semiconducteur à gap direct (a) et

à gap indirect (b). Lors d’une transition optique via un photon, en (a) le seuil d’absorption

optique est égal à ω = Eg/~, en (b) il est donné par Eg/~ ± ω(q), car il faut tenir compte

du phonon de vecteur d’onde q et d’énergie ~ω(q) pour assurer la conservation de la

quantité de mouvement du cristal.

température il y a très peu de porteurs de charges dans un semiconducteur
intrinsèque, les semiconducteurs sont transparents au rayonnement IR. Ils ne
deviennent absorbants que lorsque des transitions interbandes sont excitées,
soit lorque l’énergie du photon est suffisante pour faire passer un électron
de la bande de valence à la bande de conduction. On s’attend donc à obser-
ver un seuil d’absorption, qui permet de déterminer la largeur de la bande
interdite. Dans le cas d’un semiconducteur à gap direct, l’énergie du photon
est directement reliée à la largeur de la bande interdite,

~ω = Eg

Dans le Si, le Ge où le gap est indirect, il faut satisfaire la conservation de
l’énergie et du ”crystal momentum” k (voir Fig. 7.3 (b)). Ceci n’est possible
que si un phonon d’énergie ~ω(q) et de vecteur d’onde q participe à la
transition en fournissant le ”crystal momentum” qui manque.

A basse température, où il y a peu de phonons dans le cristal, la transition
n’est possible que si l’énergie du photon est suffisante pour exciter un électron
dans la bande de conduction et créer un phonon

~ω = Eg + ~ω (q)

Le seuil d’absorption apparâıt donc pour une fréquence

ω =
Eg
~

+ ω (q)

La transition est cependant peu intense (processus à 3 corps : photon, élec-
tron, phonon) jusqu’à ce qu’une transition verticale (q = 0) soit possible.
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A plus haute température un phonon du cristal peut participer à la
transition, le seuil d’absorption est alors donné par

ω =
Eg
~
± ω (q) (7.4)

où le signe – correspond au cas où un phonon du cristal est annihilé lors de
la transition.

A titre d’exemple nous donnons dans la Fig. 7.4 la partie imaginaire de
la constante diélectrique du Ge. En-dessous de 0.7 eV, le Ge est transparent
(ε2 ≈ 0), une absorption interbande apparâıt proche de 0.7 eV, mais elle
reste faible jusqu’à ce qu’une transition ”verticale” (q = 0) soit possible vers
1.5 eV.
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Figure 7.4 – Partie imaginaire de la constante diélectrique du Ge.

7.2 La structure de bande de Si, Ge, GaAs

Les propriétés électroniques des semiconducteurs sont déterminées par le
petit nombre d’électrons excités dans la bande de conduction et par les trous
ainsi créés dans la bande de valence. Les électrons excités se trouvent dans
les niveaux électroniques situés au bas de la bande de conduction, les trous
étant dans les niveaux électroniques situés en haut de la bande de valence.
Ceci permet d’approximer l’énergie des bandes par une forme quadratique

Ec(k) = Ec + ~2

(
k2

1

2me1
+

k2
2

2me2
+

k2
3

2me3

)
(7.5)

Ev(k) = Ev − ~2

(
k2

1

2mh1
+

k2
2

2mh2
+

k2
3

2mh3

)
(7.6)
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où les axes 1, 2, 3 correspondent aux directions principales de l’inverse du
tenseur de masse effective, introduit au chapitre 6. Ec(k) est l’énergie de la
bande de conduction, Ec étant l’énergie minimum de la bande. De même
Ev(k) est l’énergie au sommet de la bande de valence, Ev étant l’énergie
maximum de cette bande. Les relations (7.5) et (7.6) impliquent que les
surfaces d’énergie constante sont des ellipsöıdes.

7.2.1 Structure de bande du Ge et du Si

La structure de bande des éléments de la colonne IV du tableau pério-
dique (C, Si, Ge) est étroitement liée au fait que ces atomes ont des orbitales
de valence à moitié remplies et à leur structure cristalline (voir Chap. 1).
Les atomes de C, Si et Ge ont, respectivement, la structure électronique 1s2

2s2 2p2, [Ne] 3s2 3p2 et [Ar] 3d10 4s2 4p2, ils possèdent donc 4 électrons de
valence et forment des liaisons covalentes. Leur structure cristalline est celle
du diamant, chaque atome est relié à 4 voisins situés sur les sommets d’un
tétraèdre entourant l’atome central (voir Chap. 1). Ceci suggère de former
à partir des fonctions d’onde atomiques 2s, 2px, 2py, 2pz (cas du carbone)
4 nouvelles fonctions d’onde obtenues par combinaison linéaire des orbitales
atomiques 2s et 2p. Ces nouvelles orbitales hybrides sp3 pointent vers les 4
sommets d’un tetraèdre et permettent de maximiser le recouvrement entre
les orbitales atomiques de 2 atomes voisins. Dans l’esprit de l’approximation
des liaisons fortes, on peut se représenter la formation des bandes pour les
éléments de la colonne IV selon le schéma donné à la Fig. 7.5.
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Figure 7.5 – Comportement schématique des bandes d’énergie en fonction de la dis-

tance interatomique pour un semiconducteur ou isolant à liaison tétraédrique tel que C, Si,

Ge. A la distance d’équilibre apparâıt une bande interdite séparant les 4 bandes occupées

(liantes de type sp3) et les 4 bandes vides (antiliantes de type sp3).
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A grande distance où les atomes n’interagissent pas, le niveau s est dé-
généré 2N fois (N atomes et 2 états de spin), le niveau p est dégénéré 6N
fois (N atomes, 3 orbitales atomiques px, py, pz dégénérées, 2 états de spin
par orbitale). Lorsque les atomes se rapprochent, apparaissent des bandes
d’énergie construites à partir d’orbitales atomiques sp3, qui forment des fonc-
tions d’onde de types liant et antiliant. Il existe 4N fonctions d’onde de type
liant (spin inclus) et 4N de type antiliant. A la distance d’équilibre elles sont
séparées par une bande interdite de largeur Eg.

En tenant compte du fait que la cellule primitive dans la structure dia-
mant contient 2 atomes, le nombre de cellules et par conséquent le nombre de
valeurs k par bande est égal à N/2, ce qui correspond à N états électroniques
par bande (spin inclus). Les 4N états liants correspondent donc à 4 bandes
d’énergie. Elles sont entièrement remplies par les 4N (N atomes comportent
chacun 4 électrons de valence) électrons disponibles. La structure de bande
ainsi décrite correspond bien à un isolant (ou semiconducteur) formé de 4
bandes liantes entièrement remplies séparées de 4 bandes antiliantes vides
par une bande interdite. Notons en passant que la présence d’une bande
interdite séparant les états liants et antiliants n’est pas due à la structure
périodique du réseau, mais plutôt à la structure locale du réseau. De ce point
de vue un corps amorphe, tel que le Si amorphe, peut aussi présenter une
bande interdite.

Nous donnons dans la Fig. 7.6 la structure de bande calculée du Ge le
long des directions [111] (de Γ à L) et [100] (de Γ à X). On remarque les 4
bandes de conduction vides à T = 0 et les 4 bandes de valence entièrement
remplies à T = 0. Le gap est indirect, l’énergie minimum de la bande de
conduction est située au point L en k = 2π

a (1/2, 1/2, 1/2) et le maximum
de la bande de valence au point Γ en k = (0, 0, 0). La structure fine appa-
raissant en k = (0, 0, 0) pour la bande de valence est typique de plusieurs
semiconducteurs formés à partir d’orbitales atomiques sp, on retrouve une
situation équivalente pour le Si et le GaAs. Elle est schématisée dans la
Fig. 7.7, où nous avons représenté la situation pour un semi-conducteur à
gap indirect tel que le sommet de la bande de valence soit situé au point Γ,
soit en k = (0, 0, 0) et le bas de la bande de conduction en un autre point
de la zone de Brillouin.

Dans le cas du Ge où le minimum de la bande de conduction est situé
en bord de zone le long de [111], les surfaces d’énergie constante pour la
bande de conduction sont des demi-ellipsöıdes de révolution orientés selon
les 8 directions de symétrie dérivées de [111]. Elles sont représentées dans la
Fig. 7.8.

Les mesures de résonance cyclotronique permettent de déterminer les
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Figure 7.6 – Structure de bande calculée de Ge. La structure fine de la bande de

valence en k = 0 est due au couplage spin-orbite. Le gap est indirect, la valeur minimum

Ec de l’énergie de la bande de conduction est située en 2π
a

(1/2, 1/2, 1/2).

masses effectives pour les bandes de valence et de conduction. Dans le cas de
la bande de valence dont le minimum est en Γ, chacune des trois bandes (voir
Fig. 7.7) est caractérisée par une seule masse effective. Par contre la bande
de conduction est caractérisée par deux masses effectives, la masse effective
le long de l’axe de l’ellipsöıde (notée ml) et la masse effective perpendiculaire
à l’axe (notée mt). Les valeurs mesurées pour le Si, le Ge et le GaAs sont
données dans la Table 7.2.
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Figure 7.7 – Schéma simplifié de la structure de bande pour un semiconducteur à gap

indirect, tel que le Si, Ge. Dans le cas d’un semiconducteur à gap direct, tel que le GaAs,

la bande électronique autour de k =(0,0,0) serait plus basse en énergie que la bande en

k 6= (0,0,0).

Figure 7.8 – Surface d’énergie constante proches du minimum de la bande de conduc-

tion dans un cristal de germanium. Il y a 8 demi-ellipsöıdes de révolution, de directions

axiales orientées selon [111] et les directions équivalentes par symétrie.
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cristal électron

ml/m mt/m
trou lourd trou léger trou détaché

GaAs

Ge

Si

0.066

1.6

0.92

0.08

0.19

0.5

0.34

0.52

0.082

0.043

0.16

0.17

—–

—–

Table 7.2 – Valeurs approximatives des masses effectives pour les bandes de conduction

et de valence de GaAs (gap direct), Ge (gap indirect dans dir. [111]), Si (gap indirect dans

dir. [100]).

La structure de bande calculée du Si est donnée dans la Fig. 7.9. Elle
est assez proche de celle du Ge, mais le minimum de la bande de conduction
est situé le long de la direction [100] (le long de ΓX) à environ 80% du bord
de zone. Les surfaces d’énergie constante pour la bande de conduction sont
des ellipsöıdes, par symétrie ils sont de révolution et orientés le long des six
directions équivalentes à [100].

L X K
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E
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Figure 7.9 – Structure de bande calculée du Si. La bande de valence de plus haute

énergie est 2 fois dégénérée dans cette approximation.



12 CHAPITRE 7. LES SEMICONDUCTEURS

7.2.2 Structure de bande du GaAs

Le GaAs est un semiconducteur III–V, qui comprend aussi 8 électrons de
valence s− p par cellule unité (3 provenant du Ga et 5 de As). Sa structure
a un nombre égal de Ga et As distribués sur un réseau de type diamant.
Il possède donc, comme le Si et le Ge, 8 bandes dérivées des orbitales sp3,
dont 4 sont entièrement remplies. Sa structure de bande est donnée dans la
Fig. 7.10. On remarque que dans ce cas le minimum de la bande de conduc-
tion est situé au centre de la zone de Brillouin. C’est un semiconducteur à
gap direct situé au point Γ.

-12
L X K

-6

6

E
(e

V
)

k

0

Figure 7.10 – Structure de bande du GaAs.

7.3 Niveaux électroniques d’impureté dans un semicon-
ducteur

Les semiconducteurs extrinsèques sont des semiconducteurs qui ont été
”dopés”, c’est-à-dire que l’on a introduit des impuretés qui ont une valence
différente de celle des atomes dans le semiconducteur à l’état pur. On dis-
tingue les impuretés de type donneur, qui peuvent fournir des électrons
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supplémentaires à la bande de valence, et les impuretés de type accepteur
qui peuvent capturer des électrons de la bande de valence ou en d’autres
termes fournir des trous à la bande de valence.

L’introduction d’impuretés peut considérablement modifier la conducti-
bilité électrique d’un semiconducteur. Ainsi l’addition d’un atome de bore
au Si dans la proportion de 1 à 105 augmente la conductibilité du Si par un
facteur de 103 à température ambiante.

7.3.1 Les ”donneurs”

Nous prendrons pour exemple le cas d’une impureté de substitution dans
un semiconducteur du groupe IV, par exemple le Ge. Dans le Ge pur (et de
façon analogue pour le Si et le C) les 4 électrons de valence (2s et 2p) forment
avec les atomes voisins 4 liaisons sp3 covalentes, chaque liaison étant due à
2 électrons dans le même état orbital mais de spin opposé. Introduisons un
atome de la colonne V, par exemple As, qui prend la place d’un atome de
Ge. L’arsenic possède 5 électrons de valence, 4 électrons vont former des
liaisons covalentes avec les 4 atomes de Ge voisins (voir Fig. 7.11), l’électron
supplémentaire n’est pas engagé dans une liaison covalente faite avec le reste
du cristal, il est faiblement lié à un atome As qui porte une charge résiduelle
positive, et que l’on peut considérer comme un ion As+. Sous l’effet de
la température l’électron supplémentaire peut se détacher du ion As+ et
participer à la conduction électronique. L’atome d’As est dit donneur car
ionisé il donne un électron qui peut participer à la conduction.

charge +
en excès

électron provenant
de l'atome As

Figure 7.11 – Charges associées à un atome As dans le Ge. L’arsenic possède 5 élec-

trons de valence, le Ge en a 4. Ainsi 4 électrons de l’As forment des liaisons covalentes

tétrahédriques avec les atomes de Ge voisins, le 5ème est à disposition pour augmenter la

conduction électrique.
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On peut calculer l’énergie de liaison de l’électron supplémentaire autour
du ion As+ en remarquant que l’électron se déplace dans le potentiel Cou-
lombien du ion As+, on a donc un problème analogue à celui de l’atome
d’hydrogène. Cependant il faut tenir compte de 2 éléments.

— La fonction d’onde électronique de l’électron supplémentaire est con-
struite à partir des états de Bloch de la bande de conduction proches
du minimum d’énergie. Il faut donc associer à l’électron supplémen-
taire une masse effective m∗, en général nettement inférieure à la
masse m d’un électron libre.

— Le champ électrique de la charge représentant l’ion As+ doit être ré-
duit par la constante diélectrique statique εr du semiconducteur (voir
cours de physique générale). La constante diélectrique des semicon-
ducteurs est en général grande (εr ≈ 16 dans le Ge), ceci est relié à la
relativement faible largeur de la bande interdite. Dans un métal, de
largeur de bande interdite nulle, il est facile de modifier une fonction
d’onde électronique (un champ crée un courant), ce qui se traduit
par une constante diélectrique infinie. Dans un semiconducteur, plus
la largeur de la bande interdite est faible, plus εr est grand. Nous
donnons dans la Table 7.3 les constantes diélectriques statiques de
quelques semiconducteurs.

Cristal εr Cristal εr
Diamant

Si

Ge

InSb

InAs

InP

5.5

11.7

15.8

17.88

14.55

12.37

GaSb

GaAs

AlAs

AlSb

SiC

Cu2O

15.69

13.13

10.1

10.3

10.2

7.1

Table 7.3 – Constante diélectrique relative εr de quelques semiconducteurs.

Ainsi on peut se représenter l’électron supplémentaire lié à As+ comme
une charge −e, de masse m∗ se déplaçant dans le champ d’une charge e/εr.
Il faut donc remplacer dans les relations obtenues pour l’atome d’H, e2 par
e2/εr.

Le rayon de Bohr devient

r0 = 4πε0
~2

m∗e2/εr
=

εr
m∗/m

a0 (7.7)
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et l’énergie de liaison

EAs =
1

2

e2/εr
4πε0r0

=
m∗/m

ε2
r

EH (7.8)

où EH est l’énergie de l’atome d’H dans son état fondamental, égale à
13,6 eV.

Le rayon r0 pour des valeurs typiques de m∗/m et εr est de l’ordre de
100 Å. C’est une valeur supérieure à celle des distances interatomiques, ce
qui permet d’utiliser le modèle semiclassique décrit au chapitre 6 et implici-
tement utilisé ici. Il faut aussi remarquer que la valeur élevée de r0 permet
a posteriori de justifier l’introduction d’une constante diélectrique, qui per-
drait son sens pour un électron très localisé.

L’énergie EAs est beaucoup plus faible que EH , typiquement 1’000 fois
plus faible, de l’ordre de 10 meV. Nous donnons à titre d’exemple dans
la table 7.4 les énergies d’ionisation des électrons mesurées pour un atome
donneur de la colonne V dans le Si et le Ge. Dans la même table nous donnons
aussi les énergies d’ionisation des trous pour quelques atomes accepteurs de
la colonne III dans le Si et le Ge.

P As Sb B Al Ga In

Si

Ge

45

12

49

13

39

10

45

10

57

10

65

11

16

11

Table 7.4 – Energie d’ionisation d’impuretés pentavalentes (P, A, Sb) et d’impuretés

trivalentes (B, Al, Ga, In) dans le Si et le Ge. Les énergies sont données en meV.

Comme l’énergie de liaison est mesurée par rapport à l’énergie Ec au
bas de la bande de conduction (Ec est l’énergie des états de Bloch dont
la superposition donne la fonction d’onde de l’électron lié), les impuretés
donneurs introduisent un niveau d’énergie supplémentaire, à l’énergie Ed,
qui se trouve dans la bande interdite (voir Fig. 7.12).

L’énergie de liaison, égale à Ec −Ed, est en général faible par rapport à
Eg qui est de l’ordre de 1 eV. Par la suite nous admettrons que

Ec − Ed � Eg (7.9)

Si la concentration n’est pas trop faible, les fonctions d’onde des états
liés se recouvrent (r0 est grand) et le niveau Ed a tendance à s’élargir en
une bande étroite, dite bande d’impuretés, qui peut aussi participer à la
conduction électronique.
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Eg

Ev

niveau donneur

niveau accepteur

E

Ec
Ed

Ea

g (E)

Figure 7.12 – Densité d’états pour un semiconducteur contenant des impuretés don-

neur (à l’énergie Ed) et accepteur (à l’énergie Ea).

Pour un cristal contenant Nd impuretés donneur par unité de volume, on
peut schématiquement représenter la situation à température nulle et tem-
pérature non-nulle où une partie des impuretés est ionisée, selon la Fig. 7.13.

E

Ec
Ed

Ev

e–

(a)
E

(b)

Ec
Ed

Ev

e–

Figure 7.13 – A température nulle (cas a) l’électron supplémentaire apporté par l’im-
pureté est faiblement lié, les niveaux donneurs ˙̂ sont tous occupés. A température non
nulle (cas b), une partie des ”atomes” As+–e− est ionisée, l’électron supplémentaire est
délocalisé sur l’ensemble du cristal et participe à la conduction, les niveaux donneurs
correspondant ^ sont vides.
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7.3.2 Les ”accepteurs”

Pour créer une impureté accepteur, il faut introduire dans le réseau d’un
semiconducteur un atome étranger ayant un électron de valence de moins
que les atomes du semiconducteur. Par exemple un atome de la colonne III
(B, Al, In, Ga) dans un semiconducteur de la colonne IV.

charge –
en excès

trou positif

Figure 7.14 – Charges associées à un atome Ga dans le Si. Le Ga possède 3 électrons

de valence, il complète sa liaison tétrahédrique en captant un électron de la bande de

valence, créant ainsi un trou dans la bande de valence.

Pour assurer une liaison tétrahédrique avec les atomes de Si voisins,
favorable du point de vue énergétique, il manque un électron de valence au
Ga. Ainsi l’impureté de Ga capte un électron de la bande de valence afin
de pouvoir compléter la liaison. Le trou ainsi créé dans la bande de valence
évolue dans le champ coulombien associé au Ga et sa liaison tétrahédrique,
que l’on a symbolisé par le ion Ga− dans la Fig. 7.14. A basse température,
le trou est lié dans le champ de la charge négative de l’ion Ga−, son énergie
de liaison peut se calculer de la même manière que celle de l’électron dans
le champ As+, elle est faible pour les mêmes raisons (voir Table 7.4). Sous
l’effet de la température l’ ”atome Ga− −e+” peut être ionisé, le trou est
délocalisé sur l’ensemble du cristal et peut ainsi participer à la conduction
électrique.

Du point de vue des électrons, un trou lié correspond à un niveau d’éner-
gie supplémentaire Ea, vide, (voir Fig. 7.15) se trouvant légèrement au-
dessus du sommet Ev de la bande de valence. Cette remarque tient compte
du fait que l’énergie associée à un trou est de signe opposé à celle de l’élec-
tron manquant. L’énergie de liaison est égale à Ea−Ev. Comme dans le cas
du niveau donneur nous admettrons que

Ea − Ev � Eg (7.10)
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Pour un cristal contenant Na impuretés accepteur par unité de volume,
nous représentons schématiquement la situation selon la Fig. 7.15. Il faut
réaliser dans cette figure que l’énergie de la bande de valence correspond à
la situation

_◦ est plus basse que celle correspondant à la situation _, cela
est lié au fait que pour délocaliser un trou il faut fournir de l’énergie aux
électrons de la bande de valence. C’est la raison pour laquelle nous avons
représenté le _ tourné vers le bas : l’énergie augmente lorsque le trou passe
de haut en bas.

E

Ec

Ea
Ev

e+

(a)
E

(b)

e+

Ec

Ea
Ev

Figure 7.15 – A température nulle (cas a) le trou est faiblement lié, les niveaux ac-

cepteurs
_
◦ sont tous occupés. A température non nulle (cas b), une partie des ”atomes”

Ga−–e+ est ionisée, le trou est délocalisé sur l’ensemble du cristal et participe à la conduc-

tion. Les niveaux accepteurs correspondants _ ne contiennent plus de trous.

Les relations (7.9) et (7.10) impliquent qu’il est beaucoup plus facile d’ex-
citer un électron dans la bande de conduction à partir d’un niveau donneur
(ou un trou dans la bande de valence à partir d’un niveau accepteur) que
d’exciter un électron de la bande de valence à la bande de conduction. C’est
la raison pour laquelle les impuretés introduites dans un semiconducteur ont
une telle influence sur leur conductivité.
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7.4 Calcul de l’occupation des niveaux dans un semicon-
ducteur intrinsèque

La conductibilité d’un semiconducteur est directement reliée à la densité
n d’électrons dans la bande de conduction et à la densité p de trous dans
la bande de valence. Les densités n et p dépendent de la température, mais
aussi de la concentration d’impuretés donneur et accepteur. On peut cepen-
dant établir des relations générales et ultérieurement examiner l’influence
des impuretés.

7.4.1 Relations générales entre n(T ) et p(T )

De façon générale les densités d’électrons et de trous dans les bandes de
conduction et de valence sont données par,

n (T ) =

∞∫
Ec

dEgc (E)
1

exp [β (E − µ)] + 1

p (T ) =

Ev∫
−∞

dEgv (E)

[
1− 1

exp [β (E − µ)] + 1

]
(7.11)

soit

p (T ) =

Ev∫
−∞

dEgv (E)
1

exp [β (µ− E)] + 1
(7.12)

où gc(E) et gv(E) sont respectivement les densités d’états électroniques dans
les bandes de conduction et de valence. L’effet des impuretés est implicite-
ment contenu dans la valeur du potentiel chimique µ.

Faisons, pour poursuivre les calculs, l’hypothèse que µ satisfait les condi-
tions

Ec − µ� kBT

µ− Ev � kBT

(7.13)

On dit qu’un semiconducteur qui satisfait les relations (7.13) est non dégé-
néré. Ces conditions sont valables dans la plupart des cas, même si Eg ne
vaut que quelques dixièmes d’électron volts.

Ces conditions permettent d’écrire

n (T ) ∼= N (T ) exp [−β (Ec − µ)]

p (T ) ∼= P (T ) exp [−β (µ− Ev)]

(7.14)
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avec

N (T ) =

∞∫
Ec

dEgc (E) exp [−β (E − Ec)]

P (T ) =

Ev∫
−∞

dEgv (E) exp [−β (Ev − E)]

(7.15)

N(T ) et P (T ) varient lentement avec la température si on les compare avec
les facteurs exponentiels dans n(T ) et p(T ). On peut s’en convaincre en
remplaçant gc(E) et gv(E) par leur contribution pour une bande quadratique
en k. Dans ce cas, par analogie avec le cas de l’électron libre (voir Chapitre
4, équation 4.23),

gc,v (E) =
1

2π2

(
2mc,v

~2

)3/2

|E − Ec,v|1/2 (7.16)

où mc,v sont les masses effectives pour les bandes de conduction (de valence).
Le calcul explicite donne dans ce cas,

N (T ) =
1

4

(
2mckBT

π~2

)3/2

= 2.5
(mc

m

)3/2
(

T

300 K

)3/2

1019/cm3

P (T ) =
1

4

(
2mvkBT

π~2

)3/2

= 2.5
(mv

m

)3/2
(

T

300 K

)3/2

1019/cm3

(7.17)

Ces relations indiquent que la concentration maximum de porteurs de charge
dans un semiconducteur non dégénéré est de l’ordre de 1019 porteurs/cm3.

En multipliant l’une par l’autre les deux relations (7.14) on obtient un
résultat indépendant de µ, soit

n (T ) p (T ) = N (T )P (T ) exp

(
− Eg

kBT

)
(7.18)

où l’on a posé Ec − Ev = Eg. La relation (7.18) est connue sous le nom de
loi d’action de masse. Connaissant la concentration d’un type de porteur,
on peut par (7.18) déterminer l’autre.

On peut, dans le cas intrinsèque, retrouver cette relation par un simple
argument cinétique (voir Kittel, Chap. 8).

7.4.2 Semiconducteur intrinsèque

Dans ce cas le nombre de trous est égal au nombre d’électrons dans
la bande de conduction, car les électrons dans la bande de conduction ne
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peuvent provenir que de l’excitation des électrons de la bande de valence.
On a donc

n (T ) = p (T ) = ni (T )

où l’indice i signifie intrinsèque. De la loi d’action de masse, on en déduit,

ni (T ) = [N (T )P (T )]1/2 exp

(
− Eg

2kBT

)
(7.19)

et dans le cas particulier de (7.17)

ni (T ) = 2.5
(mc

m

)3/4 (mv

m

)3/4
(

T

300 K

)3/2

exp

[
− Eg

2kBT

]
1019/cm3

On peut aussi dans ce cas déterminer le potentiel chimique µ en divisant
l’une par l’autre les deux relations (7.14), ce qui donne

µ = µi = Ev +
1

2
Eg +

1

2
kBT `n

(
P

N

)
(7.20)

et dans le cas explicite de bandes quadratiques (par 7.17),

µi = Ev +
1

2
Eg +

3

4
kBT `n

(
mv

mc

)
(7.21)

Lorsque T → 0 le potentiel chimique intrinsèque est exactement au milieu
de la bande interdite. Il s’en écarte peu (quelques kBT ) à température non
nulle, ce qui justifie à postériori les hypothèses (7.13).

La situation est décrite dans la Fig. 7.16, où l’on remarque que c’est
uniquement la queue de la distribution de Fermi-Dirac qui intervient dans
le calcul de la densité électronique n(T ) dans la bande de conduction, en
accord avec les expressions (7.14) où l’on a remplacé

1

exp [β (E − µ)] + 1
par exp [−β (E − µ)] (7.22)

Ceci revient à dire que, si les conditions (7.13) sont vérifiées, on peut rem-
placer la distribution de Fermi-Dirac par une distribution de Boltzmann, qui
est la distribution appropriée à un gaz classique. Ceci implique en particu-
lier que la théorie du transport dans un semiconducteur non dégénéré est
semblable à la théorie du transport dans un gaz classique formé de plusieurs
espèces de particules chargées.

C’est l’évolution de ni(T ) qui est responsable du comportement de lnσ
en −Eg/2kBT à haute température reporté dans la Fig. 7.2.
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E

niveau de
Fermi

f (E)

Ec

Ev

E

Figure 7.16 – Ordres de grandeur du point de vue énergétique de la fonction de

distribution de Fermi-Dirac et de la largeur Eg de la bande interdite, dans le cas où

kBT � Eg.

7.5 Occupation des niveaux dans un semiconducteur dopé

Nous examinons dans ce § l’effet des impuretés sur les densités n et p de
porteurs dans les bandes de conduction et de valence. Notons tout d’abord
que dans le cas du Ge pur, à 300 K, la densité intrinsèque ni de porteurs,
donnée par 7.19, est de l’ordre de 5 × 1013 électrons/cm3. Le Ge contient
4.4 × 1022 atomes/cm3, on a donc env. 10−9 porteurs par atome. Si l’on
ajoute 1 ppm d’impuretés d’As dans le Ge et si l’on admet que seul 1 % des
impuretés sont ionisées, le nombre de porteurs de charge dû aux impuretés
est encore 10 fois plus grand que le nombre intrinsèque de porteurs. Cette
estimation indique clairement l’effet dominant des impuretés, même en faible
concentration, sur le nombre de porteurs de charge.

7.5.1 Semiconducteur de type p et n

En présence d’impuretés n et p ne sont pas nécessairement égaux comme
c’est le cas pour un semiconducteur intrinsèque.

n− p = ∆n 6= 0
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En tenant compte de la loi d’action de masse (7.18), qui est aussi valable en
présence d’impuretés, on obtient

n · p = n2
i (7.23)

où ni(T ) = ni est la densité de porteurs dans les bandes de conduction ou
de valence pour un semiconducteur intrinsèque. On en déduit

n =
1

2

√
(∆n)2 + 4n2

i +
1

2
∆n

p =
1

2

√
(∆n)2 + 4n2

i −
1

2
∆n

(7.24)

On peut d’autre part montrer, en tenant compte de (7.14) que,

∆n

ni
= 2 sinh [β (µ− µi)] (7.25)

où µi est donné par (7.21).
Dans le cas où ∆n est grand par rapport à ni, on obtient par exemple

dans le cas ∆n > 0,

n ∼= ∆n p ∼= ∆n
( ni

∆n

)2
� n (7.26)

L’un des types de porteur de charge est nettement dominant. On dit qu’un
semiconducteur est de type n si les porteurs de charge dominants sont les
électrons. Il est de type p si les trous sont les porteurs de charge dominants.

Afin de mieux comprendre la distinction entre un semiconducteur de
type n et de type p, considérons un semiconducteur dopé avec Nd impuretés
donneurs et Na impuretés accepteurs par unité de volume.

La situation dans le cas où Nd > Na est représentée dans la Fig. 7.17
pour le cas où Nd = 5 et Na = 2.

Il est très favorable du point de vue énergétique que l’électron fourni par
l’atome donneur complète la liaison manquante dans le voisinage d’un atome
accepteur. Dans ce processus apparâıt dans le cristal un atome donneur
(par ex. As) avec ses liaisons tétrahédriques saturées, que l’on peut assimiler
à un ion As+ ainsi qu’un atome accepteur (par ex. Ga) avec ses liaisons
tétrahédriques saturées, que l’on peut assimiler à un ion Ga−.

Tout se passe, en 1ère approximation, comme si l’on avait (Nd−Na) don-
neurs dans le cristal. Toutefois à T ≈ 0, le potentiel chimique, qui marque la
limite entre les états remplis et vides, se trouve à l’énergie Ed. D’autre part,
pour des températures suffisamment élevées, on peut avoir des transitions
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Ea

Ed

E

(a)

E

(b)

Ec
Ed

Ea
Ev

Figure 7.17 – Occupation des niveaux donneurs et accepteurs à T ≈ 0 dans le cas

Nd > Na. Le cas (a) correspond à la situation où l’on ”isole” les accepteurs des donneurs,

on a Nd électrons liés dans le niveau donneur Ed et Na trous liés dans le niveau accepteur

Ea. Le cas (b) correspond à la situation réelle où il est favorable du point de vue énergétique

que l’électron fourni par l’atome donneur complète la liaison manquante dans le voisinage

d’un atome accepteur.

de la bande de valence dans les états donneurs liés. Un semiconducteur tel
que Nd > Na est de type n.

Dans le cas où Nd < Na, tout se passe en 1ère approximation comme si
l’on avait (Na −Nd) impuretés accepteur dans le cristal, le semiconducteur
est de type p.

7.5.2 Occupation des niveaux pour un semiconducteur de type n
(aspect qualitatif )

L’évolution qualitative en fonction de la température est représentée dans
la Fig. 7.18.

A T ≈ 0 (cas a) les donneurs qui n’ont pas transféré leurs électrons aux
accepteurs sont neutres (non ionisés), le potentiel chimique µ ≈ Ed, comme
mentionné au § 7.5.1.

Lorsque la température augmente, une partie des donneurs sont ionisés
et transfèrent leur électron à la bande de conduction, le potentiel chimique
est compris entre Ed et Ec. Dans le cas où Na = 0, on montre sans difficulté,
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(a) (b) (c)

(d)

Ec

Ea
Ev

E

Ed

Figure 7.18 – Occupation des niveaux électroniques dans le cas où l’on a Nd donneurs

et Na accepteurs avec Nd > Na. La température augmente progressivement depuis le cas

(a) où T ≈ 0 jusqu’au cas (d) où elle est suffisante pour créer un nombre significatif de

paires électron-trou de la bande de valence à la bande de conduction et ainsi tendre vers

un comportement intrinsèque.

par analogie avec le cas intrinsèque que 1

µ =
1

2
(Ec + Ed)− kBT ln

√
2− 1

2
kBT ln

N (T )

Nd
(7.28)

où N(T ) a été défini en (7.15).

1. La dérivation de la formule 7.28 peut se faire de la manière suivante. Par analogie à
ce qui a été fait dans le cas intrinsèque on se place dans le cas où on peut considérer que

n(T ) = Nd − nd (7.27)

c’est-à-dire que le nombre d’électrons dans la bande de conduction est égal au nombre de
donneurs ionisés (ceci est raisonnable à basse température où la contribution intrinsèque
peut être négligée).

D’après (7.34) on peut écrire

nd =
Nd

1 + 1
2

exp [β (Ed − µ)]
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A plus haute température, pratiquement tous les donneurs sont ionisés,
la densité n d’électrons dans la bande de conduction est égale à Nd−Na. Le
potentiel chimique µ est inférieur à Ed. C’est une situation qui peut exister
sur une large gamme de température, soit dans le domaine où

kBT < Ed − µ et kBT <
Eg
2

Elle est réalisée pour de nombreux semiconducteurs à température ambiante,
nous admettrons que n ∼ Nd −Na en traitant la jonction p− n au § 7.6.

Lorsque la température est suffisamment élevée pour que ni > Nd, le
comportement est dominé par le passage des électrons de la bande de va-
lence à la bande de conduction. On retrouve le comportement intrinsèque,
le potentiel chimique est donné par la relation (7.20).

Nous donnons dans la Fig. 7.19 l’évolution du potentiel chimique en
fonction de T pour un semiconducteur de type n ou p et dans la Fig. 7.20
l’évolution de la densité n d’électrons de conduction en fonction de 1/T . Les
zones notées I à IV dans les 2 figures se correspondent.

A titre d’illustration, nous donnons dans la Fig. 7.21 la densité n des
électrons de conduction dans un semiconducteur de Ge de type n avec des
concentrations d’impuretés comprises entre 1013 et 1018 cm−3. Les valeurs
de n ont été déterminées par une mesure du coefficient de Hall. Le compor-
tement qualitatif donné dans la Fig. 7.20 est facilement reconnaissable.

7.5.3 Occupation des niveaux, formulation du problème général

Nous avons déjà donné, dans le cas général, les expressions qui per-
mettent de déterminer les densités de porteurs de charge négatifs n(T ) et

on peut facilement en conclure que

Nd − nd =
Nd

1 + 2 exp(−β(Ed − µ))

≈ Nd
2

exp(−β(µ− Ed))

en utilisant le fait que µ− Ed � kBT .
L’équation 7.27 implique que

n(T )

Nd − nd
= 1 =

N(T ) exp(−β(Ec − µ))

Nd
1
2

exp(−β(µ− Ed))

= 2
N(T )

Nd
exp(−β(Ec − µ− µ+ Ed))

En multipliant les deux membres de l’égalité par 1/2Nd/N(T ) et en prenant le logarithme,
on obtient (7.28) en arrangeant les termes (et en utilisant la définition de β).
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Ec + Ev
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2

Figure 7.19 – Evolution du potentiel chimique en fonction de T dans un semiconduc-

teur dopé n (courbe supérieure) et dopé p (courbe inférieure). Les domaines notés I à IV

se retrouvent dans la Fig. 7.20.

kBT1

ln n

log (Nd – Na)

pente
– Eg /2

I

IIIII

IV

– (Ec – Ed)/2
– (Ec – Ed)

Figure 7.20 – Evolution de la densité n d’électrons dans la bande de conduction pour
un semiconducteur dopé n en fonction de 1/kBT . Les domaines notés I à IV se retrouvent
dans la Fig. 7.19. La zone IV correspond au comportement intrinsèque, la zone III est dite
de saturation. Les zones I, II, et III sont dominées par le comportement extrinsèque.
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1014Nd ~ 1013 cm-3

Nd ~ 1018 cm-3
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Figure 7.21 – Densité n des électrons dans la bande de conduction pour un semi-

conducteur de Ge, dopé n. La concentration d’impuretés varie de 1013 à 1018 cm−3. La

dépendance en fonction de la température dans la région intrinsèque est indiquée par la

droite en traits interrompus.

positifs p(T ). Dans le cas général elles s’écrivent

n (T ) =

∞∫
Ec

dEgc (E)
1

1 + exp [β (E − µ)]
(7.29)

p (T ) =

Ev∫
−∞

dEgv (E)
1

1 + exp [β (µ− E)]
(7.30)

et peuvent être calculées pour autant que l’on connaisse le potentiel chimique
µ(T ), qui dépend de la concentration d’impuretés donneurs Nd et accepteurs
Na.

Il reste encore à obtenir explicitement la densité Nd d’électrons associés
aux impuretés donneurs non ionisés et la densité pa de trous associés aux
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impuretés accepteurs non ionisés. Nous ferons ici le calcul explicite pour
Nd, le raisonnement est semblable pour le calcul de pa. Dans ce calcul nous
ferons l’hypothèse que l’on peut négliger les interactions entre les impuretés,
ce qui permet de calculer le nombre d’occupation moyen 〈 d 〉 pour une seule
impureté ; d’où l’on en déduit Nd par

Nd = Nd〈 d 〉 (7.31)

Le calcul pourrait être fait en utilisant la statistique de Fermi Dirac, elle
donnerait

Nd = NdfFD (Ed) =
Nd

1 + exp [β (Ed − µ)]
(7.32)

Cependant, en faisant cela, on occulte un effet subtil lié à la répulsion
électron-électron dont on ne tient pas compte dans un modèle d’électrons
indépendants sur lequel est basé la statistique de Fermi-Dirac. Pour le faire
apparâıtre notons que de façon générale, on peut écrire dans un ensemble
grand canonique,

〈 d 〉 =

∑
j

Nj exp [−β (Ej − µNj)]∑
j

exp [−β (Ej − µNj)]
(7.33)

où la somme est prise sur tous les états du système considéré, Ej est l’énergie
totale de l’état j mesurée à partir du bas de la bande de conduction, et Nj le
nombre d’électrons dans l’état j. Dans le cas où le système est formé d’une
seule impureté, les états possibles sont les suivants :

— niveau Ed non occupé, ce qui correspond au cas où l’impureté est
ionisée, l’électron se trouve dans la bande de conduction. On a donc
Nj = 0, Ej = 0.

— niveau Ed occupé une fois, l’électron est lié au ion As+. On a donc
Nj = 1, Ej = Ed. Ce cas apparâıt cependant 2 fois, car on peut mettre
dans le niveau accepteur un électron de spin up ou un électron de spin
down.

— niveau Ed occupé par deux électrons de spin opposé. Cependant ce
cas est à exclure car la répulsion coulombienne de deux électrons
opposés augmente l’énergie de telle sorte que cette configuration est
pratiquement exclue.

On a donc :

〈 d 〉 =
2 exp [−β (Ed − µ)]

1 + 2 exp [−β (Ed − µ)]
=

1

1 + 1
2 exp [β (Ed − µ)]
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d’où

Nd =
Nd

1 + 1
2 exp [β (Ed − µ)]

(7.34)

Le lecteur pourra vérifier que la description qualitative que nous avons don-
née en relation avec la Fig. 7.18 est compatible avec l’expression (7.34) de
Nd. En particulier dans le cas c) où (Ed−µ)/kT � 1, (7.34) donne Nd � Nd

qui est compatible avec la représentation graphique.

Par un raisonnement semblable, on montre que la densité pa d’accepteurs
non ionisés est égale à

pa =
Na

1 + 1
2 exp [β (µ− Ea)]

(7.35)

où Na est le nombre de niveaux accepteurs par unité de volume. Les ex-
pressions (7.10), (7.30), (7.34) et (7.35) permettent en principe de calculer
la population des niveaux électroniques, pour autant que µ soit connu. La
valeur µ(T ) peut être déterminée implicitement en ajoutant l’équation qui
assure la neutralité du semiconducteur, elle s’écrit

Nd −Nd + p = Na − pa + n (7.36)

où le membre de gauche correspond aux charges positives (Nd − Nd don-
neurs ionisés + p trous dans la bande de valence) et celui de droite aux
charges négatives (Na − pa accepteurs ionisés + n électrons dans la bande
de conduction).

Pour illuster ces relations, nous analysons ici uniquement le cas impor-
tant où µ est situé entre les niveaux accepteur et donneur et les inégalités
(7.37) sont vérifiées, soit

Ed − µ� kBT

µ− Ea � kBT

(7.37)

Il faut noter qu’elles sont légèrement plus restrictives que les conditions
(7.13) valables pour un semiconducteur non dégénéré, cependant (Ec −Ed)
et (Ea − Ev) sont en général faibles par rapport à (Ec − Ev).

La condition (7.37) et les expressions (7.34) et (7.35) pour Nd et pa
impliquent que l’excitation thermique ”ionise” complètement les impuretés
en ne laissant qu’une fraction négligeable d’électrons ou de trous liés. On
peut donc écrire en tenant compte de Nd � Nd et pa � Na et de la relation
(7.36)

∆n = n− p ∼= Nd −Na (7.38)
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Ceci permet de déterminer n et p à l’aide de la relation générale (7.24)

n =
1

2

√
(Nd −Na)

2 + 4n2
i +

1

2
(Nd −Na)

p =
1

2

√
(Nd −Na)

2 + 4n2
i −

1

2
(Nd −Na)

(7.39)

et le potentiel chimique µ par la relation (7.25),

Nd −Na

ni
= 2 sinh [β (µ− µi)] (7.40)

On remarque que, sauf dans le cas où (Nd−Na)/ni est très grand, la relation
(7.40) implique que µ et µi diffèrent de quelques kBT , ce qui permet de satis-
faire la condition (7.37) dans les cas où Eg � kBT . Ainsi les relations (7.39)
permettent de décrire la situation lorsqu’on passe d’un comportement intrin-
sèque (ni � |Nd −Na|) à un comportement extrinsèque (|Nd −Na| � ni).
En particulier dans le cas extrinsèque, c’est-à-dire lorsque le nombre d’élec-
trons passant directement de la bande de valence à la bande de conduction
est négligeable, on a,

Nd > Na


n ∼= Nd −Na

p ∼=
n2
i

Nd −Na
∼ 0

(7.41)

Na > Nd


p ∼= Na −Nd

n ∼=
n2
i

Na −Nd
∼ 0

(7.42)

On constate que si Nd > Na, l’excès d’électrons Nd − Na introduit par les
impuretés est presque entièrement donné à la bande de conduction et que la
densité de trous est très faible. Ce n’est pas très étonnant, car les électrons
non donnés à la bande de conduction remplissent les trous de la bande de
valence, ce qui est très favorable du point de vue énergétique. Inversément si
Na > Nd, pratiquement tous les électrons à disposition remplissent les trous
de la bande de valence et ne sont plus disponibles pour la conduction.

Une conséquence importante des relations (7.41) et (7.42) est que dans
le cas où un matériau contient des impuretés de type donneur et accepteur,
tout se passe en première approximation comme si le matériau ne contenait
que des impuretés donneur de densité Nd −Na (cas Nd > Na) ou accepteur
de densité Na −Nd (cas Na > Nd). Nous utiliserons cette remarque dans le
§ suivant.
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Cristal Electrons Trous Cristal Electrons Trous

Diamond

Si

Ge

InSb

InAs

InP

AlAs

AlSb

1800

1350

3600

800

30000

4500

280

900

1200

480

1800

450

450

100

——

400

GaAs

GaSb

PbS

PbSe

PbTe

AgCl

KBr(100K)

SiC

8000

5000

550

1020

2500

50

100

100

300

1000

600

930

1000

——

——

10-20

Table 7.5 – Mobilité des porteurs de charge à 300 K en cm2/V · s.

7.5.4 Conductivité électrique en présence d’impureté

Pour déterminer la conductivité d’un semiconducteur, il est important
d’introduire la mobilité, qui correspond à l’amplitude de la vitesse moyenne
des électrons ou des trous par unité de champ électrique

ν =
|〈v 〉|
E

(7.43)

Elle est par définition positive pour les électrons et les trous, bien que leurs
vitesses de déplacement soient opposées. En introduisant les mobilités νe et
νh pour respectivement les électrons et les trous, la conductibilité σ s’écrit

σ = neνe + peνh (7.44)

où dans un modèle simple νe et νh sont donnés par (voir par exemple la
relation 7.2)

νe =
eτ e
me

et νh =
eτh
mh

(7.45)

Les mobilités dépendent de la température, car le temps de relaxation est
donné par les collisions avec le réseau, qui sont principalement dues aux
phonons et à l’effet des impuretés chargées (ionisées) des semiconducteurs.
On peut montrer en particulier que l’effet des phonons introduit une contri-
bution ν ∼ T−3/2 et les défauts une contribution ν ∼ T 3/2 (voir par ex.
Ibach et Lüth, § 12.5).

La table 7.5 donne quelques valeurs expérimentales de la mobilité à tem-
pérature ambiante.
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On remarque que la mobilité des trous est en moyenne plus faible que
celle des électrons. Il y a d’autre part une tendance, pour les semiconduc-
teurs ayant un gap direct de faible valeur, à avoir des mobilités élevées. En
particulier la mobilité élevée du GaAs est l’une des raisons qui expliquent
son intérêt du point de vue technologique.

A haute température où le comportement intrinsèque domine, soit n ∼
p ∼ ni, la variation en température de ν est faible par rapport à la variation
exponentielle de ni, et σ ∼ exp(−Eg/2kBT ). Par contre dans le domaine de
température où n est constant (domaine III de la Fig. 7.20), l’augmentation
de ν lorsque T diminue (effet prédominant des phonons) est responsable de
la croissance de σ lorsque T décrôıt (voir Fig. 7.2).

A titre d’illustration, nous donnons dans la Fig. 7.22 la variation de σ en
fonction de la température pour un échantillon de Ge dopé n avec diverses
concentrations d’impuretés donneurs.

Température (K)

1/T (K -1)

Nd ~ 10
18 cm-3

Nd ~ 10
13 cm-3

0 0.02 0.04 0.06 0.08 0.1

300 78 33.3 20.4 14.3 10

(1)

(2)

(4)

(5)

(6)

n – Ge

1000

100

10

1

0.1

0.01

0.001

(3)

Figure 7.22 – Conductivité σ, mesurée sur un échantillon de Ge, dopé n avec diverses

concentrations d’impuretés, en fonction de la température. L’échantillon mesuré ici est le

même que celui décrit dans la Fig. 7.21.
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7.6 La jonction p− n

La plupart des dispositifs semiconducteurs sont basés sur les phénomènes
reliés aux inhomogénéités dans les matériaux semi-conducteurs. Les inho-
mogénéités dans la concentration des impuretés donneur et accepteur in-
fluencent en particulier les phénomènes de conduction, ce qui permet de
construire des composants électroniques. Nous ne discuterons ici que des
propriétés de diode d’une jonction p− n.

Une jonction p− n est un cristal semiconducteur dans lequel la concen-
tration en impuretés varie le long d’une direction (notée x) dans une région
de faible dimension située autour de x = 0. Pour x < 0 le cristal a un excès
d’impuretés accepteur (il est de type p) et pour x > 0 un excès d’impuretés
donneur (type n). Dans le cas idéal la transition autour de x = 0 aurait
l’allure représentée dans la Fig. 7.23, dans la pratique il suffit que la largeur
de la zone de transition soit faible par rapport à la largeur de la zone dans
laquelle la densité des porteurs de charge varie (zone de déplétion de largeur
comprise entre 102 et 104 Å).

densité des
impuretés

x
x = 0

Na
Nd

Figure 7.23 – Densité des impuretés dans une jonction p − n. Dans les cas réels, le

modèle ci-dessus garde son sens pour autant que la largeur de la zone de transition soit

faible par rapport à la largeur de la zone de déplétion (ou d’appauvrissement) qui est

comprise entre 100 Å et 10’000 Å.

Expérimentalement on peut ”doper”un cristal en utilisant des techniques
différentes. Par exemple des impuretés accepteur peuvent être introduites
par diffusion dans une région et des impuretés donneur dans une autre. On
peut aussi introduire les impuretés par implantation ionique, en envoyant
des ions d’énergie cinétique élevée dans un cristal semiconducteur.

Dans ce qui suit nous aurons à l’esprit le cas du Si dopé dans sa région
p avec des impuretés de la colonne III (B, Al, Ga) et dans la région n avec
des impuretés de la colonne V (P, As, Sb).
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7.6.1 La jonction p− n à l’équilibre thermique

Imaginons tout d’abord que les moitiés p et n du cristal sont isolées
l’une par rapport à l’autre (Fig. 7.24 a) de telle sorte que les potentiels
chimiques µ dans les deux régions ne soient pas situés à la même énergie. En
réalité il s’agit du même cristal et le potentiel chimique doit être le même
dans les deux moitiés du cristal, lorsqu’on est à l’équilibre thermique. Il doit
donc apparâıtre dans la zone de transition entre n et p une courbure de
bande (”band bending”), telle qu’elle apparâıt dans la Fig. 7.24 b. On lui
associe une différence de potentiel ∆φ entre la zone p et la zone n. Plus
généralement une section x de la jonction est soumise à un potentiel φ(x) et
l’on a ∆φ = φ(∞)− φ(−∞).

Il faut remarquer que le modèle semi-classique traite les électrons de la
bande n comme des particules classiques (paquet d’onde), dont l’hamiltonien
en présence d’un potentiel électrostatique φ(x) est donné par

Hn = En (k)− eφ (x) (7.46)

Une telle approximation n’est possible que si φ(x) varie lentement, en par-
ticulier il est nécessaire que la variation de eφ(x) sur une distance interato-
mique soit faible par rapport à Eg. Dans le cas où le champ électrique est
très intense, la possibilité existe d’un transfert d’électron par effet tunnel
entre les bandes de valence et de conduction. Un tel effet n’est pas inclus
dans une description semi-classique.

A la différence de potentiel φ(x) il faut associer par l’équation de Poisson
une charge d’espace de densité ρ(x)

∇2φ =
∂2φ

∂x2
= −ρ (x)

ε0εr
(7.47)

où l’on a introduit la constante diélectrique εr du semiconducteur.
On peut comprendre l’apparition de φ(x) et ρ(x) par le raisonnement

simple suivant. Imaginons que l’on parte d’un semiconducteur dont les zones
p et n sont découplées (voir Fig. 7.24 a) et dont la densité de charge est nulle
en tout point. Lorsqu’on met les deux moitiés du semiconducteur en contact,
une telle situation ne peut être maintenue car les électrons de la bande de
conduction vont diffuser de la partie n, où leur densité est élevée, à la partie
p où elle est faible. De même les trous vont diffuser de la partie p à la partie
n. Ce transfert de charge va créer une double couche de charge + et − et par
conséquent un champ électrique qui s’oppose aux courants de diffusion. A
l’équilibre thermique l’effet du champ électrique sur les porteurs de charge
compense exactement l’effet de la diffusion.
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Ev

Ec
Ed

Ev

zone p zone n

0
x

a)

b)

E

E

Ec

Ea

Figure 7.24 – Représentation schématique d’une jonction p−n à l’équilibre. a) schéma

de bande pour les zones n et p d’un semiconducteur en imaginant que les zones sont

découplées. b) schéma de bande lorsque les deux côtés sont à l’équilibre thermique. Le

potentiel chimique µ (niveau de Fermi) est constant en fonction de x, une différence de

potentiel ∆φ apparâıt entre les zones n et p.

La situation est résumée dans la Fig. 7.25 où nous avons représenté la
densité des porteurs de charge, la densité de charge et le potentiel φ(x)
résultant.

A droite de la zone de transition (voir Fig. 7.24 a, b) la densité de charge
ρ(x) est donnée par

ρ (x) = e [(Nd −Nd)− n (x) + p (x)] x > 0 (7.48)

où (Nd −Nd)e représente la charge des donneurs ionisés. Nous admettrons
dans cette analyse que les conditions décrites à la fin du § 7.5 sont réalisées
et que pratiquement tous les donneurs sont ionisés, soit Nd ≈ 0. De même, à
gauche de la jonction, nous admettons que tous les accepteurs sont ionisés,
soit pa ≈ 0.

Loin de la zone de transition, où la densité de charge est nulle, la densité
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φ (∞)

dn

– dp

dn– dp

e Nd

dn

Nd

"depletion layer"
x

(a)

x

(b)

x
(c)

p n

n

p

Na

– dp

– e Na

ρ (x)

φ (x)

φ (– ∞)

Figure 7.25 – (a) Densité des porteurs de charge ,(b) densité de charge et (c) potentiel

φ(x) reportés en fonction de x pour une jonction p−n. Nous avons représenté une situation

où pratiquement tous les donneurs ou trous sont ionisés.

n(x) de porteurs majoritaires (les électrons) est ainsi telle que,

n (x = +∞) ∼= Nd (7.49)

La densité p(x) de porteurs minoritaires (les trous) est faible, en accord
avec la loi d’action de masse p(x) · n(x) = n2

i , où ni � Nd. Physiquement,
elle résulte d’un équilibre dynamique entre la création de paire électron-trou
par excitation thermique et leur annihilation par recombinaison interbande
(bande de valence - bande de conduction). p(x), bien qu’il soit faible, joue
un rôle essentiel dans les propriétés de conduction de la diode.

Dans la zone de transition, pour un semiconducteur non dégénéré, n(x)
est obtenu à partir de son expression (7.14) dans laquelle on remplace, en
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accord avec le modèle semiclassique, l’énergie E par E−eφ(x), il vient donc

n (x) = N (T ) exp [−β (Ec − eφ (x)− µ)] (7.50)

Dans cette zone la densité électronique diminue et ne compense plus la
charge positive des donneurs ionisés. Notons que la variation rapide de n(x)
et p(x) représentée sur la Fig. 7.25 a, b est due au fait que si eφ(x) s’écarte
de quelques kBT de eφ(∞), la valeur de n(x) donnée par (7.50) décrôıt très
rapidement. Ainsi dans une zone de transition étroite on passe pour n(x) de
la valeur Nd à une valeur voisine de zéro (Nd ∼ ni).

Une analyse semblable peut être faite à gauche de la zone de transition,
ou l’on a les expressions équivalentes

ρ (x) = e [− (Na − pa) + p (x)− n (x)] x < 0 (7.51)

p (−∞) ∼= Na (7.52)

p (x) = P (T ) exp [−β (µ− Ev + eφ (x))] (7.53)

Il faut noter que pour x < 0, ce sont les trous qui correspondent aux porteurs
majoritaires et les électrons aux porteurs minoritaires.

A l’équilibre thermique, ainsi que décrit plus haut, le courant de diffusion
jdiff dû aux électrons et aux trous compense exactement le courant jE des
porteurs de charge sous l’effet du champ E créé par la double couche de
charge

jdiff + jE = 0 (7.54)

jdiff = jdiffe + jdiffh = e

(
De

∂n

∂x
−Dh

∂p

∂x

)
(7.55)

où De et Dh sont les coefficients de diffusion associés aux électrons et aux
trous

jE = jEe + jEh = e (nνe + pνh)Ex (7.56)

où l’on a introduit les mobilités νe et νh des électrons et des trous.
Il faut souligner que la relation (7.54) est non seulement vérifiée pour le

courant total, mais aussi séparément pour les courants associés aux trous et
aux électrons. Il y a un équilibre thermique dynamique entre la création de
paire électron-trou de part et d’autre de la jonction et leur recombinaison.
On peut donc écrire

e

(
De

∂n

∂x

)
= −enνeEx = enνe

∂φ

∂x
(7.57)



7.6. LA JONCTION P −N 39

où l’on a remplacé E par −gradφ. En tenant compte de (7.50), ∂n/∂x peut
s’écrire :

∂n

∂x
= βen

∂φ

∂x
(7.58)

En introduisant (7.58) et (7.57), on en déduit la relation d’Einstein :

De =
kBT

e
νe (7.59)

Il existe de même une relation équivalente pour les trous.

7.6.2 Le modèle de Schottky

Un traitement exact de la jonction p − n n’est pas simple, car il faut
résoudre de façon autocohérente l’équation de Poisson (7.47) en introduisant
ρ(x) donné par (7.48) et (7.51) avec les conditions aux limites

n (∞) ∼= Nd = N (T ) exp [−β (Ec − eφ (∞)− µ)]

p (−∞) ∼= Na = P (T ) exp [−β (µ− Ev + eφ (−∞))]
(7.60)

Dans le modèle de Schottky, on admet, en accord avec la discussion quali-
tative faite plus haut, que la densité de charge ρ(x) est telle que

ρ (x) =


0 si x > dn

eNd si 0 < x < dn

−eNa si −dp < x < 0

0 si x < −dp

(7.61)

où dn + dp mesure l’extension de la zone dans laquelle la densité de charge
est non nulle. On parle de zone d’apauvrissement car la densité des porteurs
de charge est très faible dans cette zone.

L’équation de Poisson peut alors être résolue en remplaçant ρ(x) par son
expression (7.61). On obtient :

φ (x) =



φ (∞) x > dn

φ (∞) −
(
eNd

2ε0εr

)
(x− dn)2 0 < x < dn

φ (−∞) +

(
eNa

2ε0εr

)
(x+ dp)

2 −dp < x < 0

φ (−∞) x < −dp

(7.62)
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La condition de continuité de φ′(x) en x = 0 implique que

Nd · dn = Na · dp (7.63)

C’est simplement la relation qui exprime que l’excès de charge positive du
côté n est compensé par l’excès de charge négative du côté p.

La condition de continuité de φ(x) en x = 0 s’écrit,(
e

2ε0εr

)(
Ndd

2
n +Nad

2
p

)
= φ (∞)− φ (−∞) = ∆φ (7.64)

Cette relation couplée avec la condition aux limites (7.60) qui implique que

e∆φ = Eg + kBT ln
(
Nd·Na
N ·P

)
permet de déterminer dn et dp, on obtient

dn =

(
2ε0εr∆φ

e

)1/2( Na/Nd

Na +Nd

)1/2

dp =

(
2ε0εr∆φ

e

)1/2( Nd/Na

Na +Nd

)1/2
(7.65)

Pour une valeur e∆φ ∼= Eg =1 eV, εr = 10, et des concentrations comprises
entre 1014 et 1018 impuretés/cm3 on obtient,

dn = 2.35× 104 Å− 2.35× 102 Å

Ainsi la largeur de la zone de déplétion est typiquement comprise entre 100 et
10’000 Å. Cela signifie que si l’on répète ce calcul pour une jonction réelle,
dans laquelle la variation de la nature des impuretés se fait sur une zone
≤ 100 Å, la nature qualitative des résultats ne sera pas modifiée.

7.6.3 L’effet diode d’une jonction p− n (traitement élémentaire)

Analysons maintenant le comportement d’une jonction p − n à laquelle
on applique un potentiel extérieur V . Nous supposerons que V est positif
s’il augmente le potentiel φ de la zone p par rapport à la zone n.

Lorsque V = 0 nous avons montré que la densité des porteurs de charge
est très faible dans la zone de déplétion, cela implique que cette zone possède
une résistance électrique nettement supérieure à celle des régions p et n
homogènes. En d’autres termes on peut considérer une jonction p−n comme
un circuit série où une zone de résistance élevée se trouve entre 2 zones de
faible résistance. Ainsi, lorsque le potentiel V est appliqué à un tel circuit,
la variation de potentiel se fait pratiquement uniquement dans la zone de
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déplétion. Cependant la différence de potentiel entre les 2 extrémités de la
zone a changé, elle passe de la valeur ∆φ0 (où l’indice 0 indique que c’est la
valeur ∆φ pour V = 0) à

∆φ = ∆φ0 − V

On peut associer à cette variation de ∆φ une modification de l’extension
dn +dp de la zone de déplétion. Comme selon (7.65) dn et dp varient comme
(∆φ)1/2, on a,

dn (V ) = dn (V = 0)

[
1− V

(∆φ0)

]1/2

(7.66)

A l’équilibre thermique le courant de diffusion jdiffe et le courant jEe sont
égaux et opposés, il en est de même pour les courants associés aux trous.
En présence d’un potentiel extérieur V cet équilibre est détruit. Considérons
par exemple les courants associés aux trous.

Le courant jEh des porteurs minoritaires provient de la région n, les
trous sont entrâınés à travers la zone de transition dans la région p par le
potentiel φ(x). Comme les porteurs minoritaires sont constamment générés
dans la région n par excitation thermique, on note ce courant le courant
de génération, jgenh . Si la largeur de la zone de transition est suffisamment
faible et le taux de recombinaison électron-trou suffisamment petit, tous les
trous provenant de la région n qui subissent l’effet de φ(x) seront transférés
dans la région p. Cet effet est essentiellement indépendant de la valeur du
potentiel ∆φ0 et du potentiel extérieur V .

Le courant de diffusion jdiffh des trous de la région p, où les trous sont
majoritaires, dans la région n se comporte différemment. On le note courant
de recombinaison, jrech . Dans cette direction les trous doivent surmonter la
barrière de potentiel (∆φ0−V ). La fraction de trous qui passent la barrière
de potentiel est déterminé par le facteur de Boltzman, on a donc

jrech ∼ exp [−β (e∆φ0 − eV )] (7.67)

Ce courant est donc très sensible au potentiel extérieur V , contrairement au
”generation current”. Lorsque V = 0, le courant de trous global est nul, on
a donc,

jrech (V = 0) = jgenh (7.68)

ce qui implique en tenant compte de (7.67),

jrech = jgenh exp (eV/kBT )
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Le courant total de trous est ainsi égal à,

jh = jgenh

[
exp

(
eV

kBT

)
− 1

]
(7.69)

2

On peut faire la même analyse pour le courant associé aux électrons, ce
qui donne

j = je + jh =
(
jgene + jgenh

) [
exp

(
eV

kBT

)
− 1

]
(7.70)

qui possède le comportement asymétrique caractéristique d’une diode (voir
Fig. 7.26).

p n n p 

j

V
je     + jh
gen gen

Figure 7.26 – Courant en fonction de V pour une jonction p−n. Cette caractéristique

est valable si eV est faible par rapport à Eg. Le courant pour V < 0 dépend de la

température en exp(−Eg/kBT ).

Pour dériver une valeur quantitative du courant de saturation −(jgene +
jgenh ) dans la polarité inverse, il faut faire une étude plus détaillée des cou-
rants stationnaires en présence d’un potentiel extérieur. Le lecteur intéressé
pourra consulter un livre spécialisé ou par exemple Ashcroft-Mermin (fin
du chap. 29). L’analyse détaillée indique qu’un paramètre essentiel est la
longueur de diffusion des électrons et des trous avant qu’ils se recombinent
lors d’une transition interbande, elles sont données pour les électrons et les
trous par

Le = (Deτ e)
1/2 Lh = (Dhτh)1/2 (7.71)

2. Le signe moins vient du fait que le courant de génération circule dans le sens opposé
au courant de recombinaison.
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où τ e et τh sont les temps caractéristiques de recombinaison compris entre
10−3 et 10−8 s. Pour qu’une diode fonctionne normalement il est essentiel que
Le et Lh soient supérieurs à la largeur (dn+dp) de la zone d’appauvrissement.

Le résultat final conduit à :

jgenh =

(
n2
i

Nd

)
Lh
τh

; jgene =

(
n2
i

Na

)
Le
τ e

(7.72)

La dépendance principale de jgen en fonction de la température provient du
terme en n2

i , proportionnel (voir 7.19) à exp(−Eg/kBT ).


