
Chapitre 6

La dynamique des électrons en
présence d’un potentiel
périodique.
Le modèle semi-classique

6.1 Les équations de la dynamique électronique

6.1.1 Introduction

Dans le modèle de Sommerfeld (voir chap. 4) un électron est décrit par
un paquet d’onde formé par la superposition d’ondes planes.

ψ(r, t) =
∑
k′

g(k′) exp

[
i

(
k′ · r −

E0
k′

~
t

)]
(6.1)

où l’extension ∆k de la distribution d’amplitudes g
(
k′
)

est telle que

∆k � kF −→ ∆x� rs

Dans le cas où les champs extérieurs appliqués varient peu sur les dimen-
sions du paquet d’ondes, les équations de la dynamique des électrons de
Sommerfeld s’écrivent entre les collisions

~k̇ = −e [E (r, t) + v ∧B (r, t)]

v = ṙ =
~k
m

(6.2)
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Dans ce modèle on tient compte de l’effet du réseau en introduisant un
temps de relaxation τ , lié aux interactions des électrons avec les phonons et
les défauts du cristal.

Le modèle semi-classique est une extension du modèle de Sommerfeld
au cas d’électrons de Bloch se ”déplaçant” dans le potentiel périodique du
réseau. Il décrit le mouvement de paquets d’onde de Bloch, lorsqu’il n’est pas
nécessaire de préciser la position de l’électron sur des dimensions de l’ordre
de grandeur du paramètre du réseau. Un paquet d’onde associé à une bande
n s’écrit dans ce cas,

ψn (r, t) =
∑
k′

g
(
k′
)
ψnk′ (r) exp

[
− i
~
En
(
k′
)
t

]
(6.3)

où l’extension ∆k de g
(
k′
)

est telle que

∆k � G −→ ∆x� 1

G
∼ a

où G est un vecteur réciproque primitif et a est la longueur d’un vecteur
primitif du réseau direct. Ainsi un paquet d’onde d’électrons de Bloch ayant
un vecteur d’onde bien défini à l’échelle de la zone de Brillouin doit être
étendu dans l’espace réel sur plusieurs cellules primitives.

Le modèle semi-classique décrit la réponse des électrons de conduction à
des champs extérieurs (électriques et magnétiques) dont la longueur d’onde
est supérieure aux dimensions du paquet d’onde et par conséquent nettement
plus grande que les dimensions d’une cellule primitive.

Dans le modèle semi-classique, les champs extérieurs donnent lieu à des
forces extérieures classiques qui apparaissent dans l’équation du mouvement
qui décrit l’évolution de la position et du vecteur d’onde moyen du paquet
d’ondes. Sa subtilité est liée au fait que le potentiel périodique du réseau,
qui varie sur des distances faibles par rapport à la largeur du paquet d’onde,
ne peut pas être traité classiquement. Son effet apparâıt de façon indirecte
dans la dépendance de l’énergie En en fonction de k.

Il est important de remarquer que les fonctions de Bloch ψnk(r), solu-
tions de l’équation de Schrödinger indépendante du temps, ont une vitesse
moyenne en général non nulle, elle est donnée par (voir Ashcroft-Mermin,
annexe E)

vn (k) =
1

~
∇En (k) (6.4)

Comme les fonctions d’onde de Bloch sont des solutions stationnaires de
l’équation de Schrödinger en présence du potentiel des ions, le fait qu’un
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état de Bloch ait une vitesse moyenne non nulle implique que cette vitesse
persiste indéfiniment.

Un paquet d’onde de Bloch peut se propager dans un cristal périodique
sans atténuation, la résistivité d’un cristal périodique parfait est nulle, la
résistivité finie des métaux est due aux imperfections du réseau et aux vibra-
tions thermiques qui détruisent la symétrie de translation du réseau parfait.
On en tient compte en introduisant, comme dans le modèle de Sommerfeld,
un temps de relaxation τ , qui dans le cas général dépend de r et de k :
τn = τn (rn (t′) ,kn (t′)) .

6.1.2 Les équations du mouvement

Les équations dynamiques du modèle semi-classique décrivent, entre les
collisions, le mouvement des électrons en présence d’un potentiel périodique.
Elles s’écrivent, par analogie avec (6.2), ṙ = vn (k) =

1

~
∇En (k)

~k̇ = −e [E (r, t) + vn (k) ∧B (r, t)]

(6.5)

et sont valables à condition que les champs varient lentement par rapport
aux dimensions du paquet d’onde associé à l’électron et par conséquent par
rapport au paramètre du réseau a.

L’indice de bande n est une constante du mouvement. Ces équations
expriment que chaque bande, caractérisée par En (k), a sa propre dyna-
mique, qui n’est pas couplée aux autres bandes. Aucune transition inter-
bande n’est possible d’après le schéma ci-dessus. Pour de forts champs il
est clair qu’il pourrait y avoir des transitions interbandes, on montre (voir
Ashcroft-Mermin, annexe J) que cela peut arriver lorsque les conditions ci-
dessous ne sont plus satisfaites en tout point k,

e|E|a� [Egap (k)]

EF

2

~ωc �
[Egap (k)]

EF

2
(6.6)

où Egap (k) est la différence entre En (k) et l’énergie la plus proche En′ (k),
et ωc est la fréquence cyclotronique égale à e|B|/m. La 1ère condition, qui
ne peut être violée que dans les isolants et les semi-conducteurs homogènes,
correspond à ce que l’on appelle“claquage électrique”(“electric breakdown”),
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la seconde condition qui peut être violée avec des champs magnétiques in-
tenses, correspond à un “claquage magnétique” (”magnetic breakthrough”).
Aux conditions (6.6) il faut encore ajouter la condition

~ω < Egap (6.7)

où Egap est la largeur minimum de la bande interdite, car, si (6.7) n’est pas
satisfaite, un photon pourrait fournir à un électron l’énergie nécessaire pour
faire une transition interbande.

6.1.3 Discussion des équations de mouvement

La relation (6.5 a) n’est pas difficile à comprendre. Elle affirme simple-
ment que la vitesse d’un électron dans le modèle semi-classique est la vitesse
de groupe du paquet d’onde de Bloch associé à l’électron. En effet

vg =
∂ω

∂k
=

∂

∂k

E (k)

~
=

1

~
∇kE (k)

La relation (6.5 b) est beaucoup plus difficile à comprendre, car pour un élec-
tron de Bloch ~k n’est pas égal à la quantité de mouvement p de l’électron.
En réalité on aurait que

dp

dt
= F ext + F réseau

où F ext correspond au second membre de (6.5 b) et F réseau correspond à la
force exercée par le potentiel cristallin du réseau sur l’électron. Il faudrait
montrer que la variation temporelle ~k̇ du ”moment cristallin” n’est associée
qu’aux forces extérieures F ext. Le lecteur intéressé pourra consulter le chap.
8 dans Kittel, qui donne une démonstration simple (voir aussi Ashcroft-
Mermin, annexe H).

Dans le cas où la force extérieure est uniquement due à un champ élec-
trique, la relation (6.5 b) peut être déduite de la conservation de l’énergie.
Si φ est le potentiel associé à E tel que E = −∇φ, on s’attend à ce que le
paquet d’onde se déplace de telle sorte que l’énergie

En [k (t)]− eφ

reste constante. La dérivée temporelle de l’énergie s’écrit

d

dt
En − e

dφ

dt
=
∂En
∂k

k̇ − e∇φ · ṙ = 0
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que l’on peut écrire avec l’équation (6.5 a)

vn (k) ·
[
~k̇ − e∇φ

]
= 0

qui s’annule si
~k̇ = e∇φ = −eE

Cependant cette équation est encore vérifiée si l’on ajoute à −eE un terme
perpendiculaire à vn (k). Reste encore à montrer que le seul terme addition-
nel est celui associé au champ magnétique.

6.2 La conduction électrique dans le modèle semi-classique

Dans ce qui suit nous omettons l’indice de bande, car nous admettons
qu’il n’y a pas de claquage. Nous admettons d’autre part que T = 0, ce qui
ne modifie pas significativement les propriétés que nous discutons.

6.2.1 Une bande pleine ne ”conduit” pas

En présence d’un champ électrique E, l’équation de mouvement (6.5)
s’écrit

~k̇ = −eE

soit si l’on admet qu’il n’y a pas de collision pendant le temps t

k (t) = k (0)− eE

~
t (6.8)

De façon générale, sous l’effet d’un champ extérieur les électrons évoluent
dans ”l’espace de phase” à six dimensions (rx, ry, rz, kx, ky, kz). On peut mon-
trer (voir Ashcroft-Mermin, annexe H), par analogie avec le théorème de
Liouville, en suivant les électrons dans leur mouvement, que le volume de
l’espace de phase associé à un nombre donné d’électrons reste constant. Ceci
implique que pour une bande pleine, la densité électronique dans l’espace
de phase, égale à 1/(4π3) en tout point, n’est pas modifiée par un champ
extérieur.

Pour une bande d’énergie remplie, la densité de courant électronique
s’écrit

j = −e
∫

zone Brillouin

d3k

4π3
v = −e1

~

∫
zone Brillouin

d3k

4π3

∂E

∂k
(6.9)

La relation (6.9) implique que j = 0. Soit en effet une fonction périodique
f (k) ayant la périodicité du réseau réciproque, telle que f (k + G) = f (k).
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Comme l’intégrale est prise sur une cellule primitive,

I (g) =

∫
cellule

primitive

d3kf(k + g)

est indépendant de g. Ainsi en particulier

∂I (g)

∂g
=

∫
cellule

primitive

d3k
∂f(k + g)

∂g
=

∫
cellule

primitive

d3k
∂f(k + g)

∂k
= 0

En évaluant l’intégrale en g = 0, on démontre que toute fonction périodique
f (k) satisfait ∫

cellule
primitive

d3k
∂f (k)

∂k
= 0

Ainsi l’intégrale du gradient d’une fonction périodique sur une cellule unité
est nulle. Comme E (k) est périodique de période G, il en résulte que j = 0.
Ou en d’autres termes : les bandes pleines sont inertes du point de vue de
la dynamique électronique.

La conduction électronique est ainsi uniquement due aux bandes par-
tiellement remplies, ce qui justifie le fait que l’on ne tient compte que des
électrons de valence pour décrire la conductibilité des solides. Il faut aussi
noter, comme nous l’avons brièvement décrit, que cette remarque est à la
base de la classification des solides en isolants, conducteurs, etc.

6.2.2 Une autre approche pour les bandes pleines

Il est surprenant de remarquer que, sous l’effet d’un champ électrique,
le vecteur k évolue en fonction du temps selon (6.8), et que néanmoins le
courant résultant soit nul. Dans le modèle de Sommerfeld des électrons libres,
on aurait la situation représentée dans la Fig. 6.1

Sous l’effet du champ électrique E, l’ensemble des vecteurs k évoluent
pendant le temps ∆t de ∆k = −eE∆t/~, il en résulte une densité de courant
non nulle donnée par

j = −en~∆k

m

Pour comprendre ce qui se passe dans le cas des électrons de Bloch il faut
remarquer que le courant porté par un électron est proportionnel à sa vi-
tesse, qui n’est pas égale à ~k/m. La vitesse est une fonction périodique
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k1 (t0) k1 (t0+∆t)
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kk

∆k
∆k

EF

E

Figure 6.1 – Evolution des états occupés dans le modèle de Sommerfeld sous l’effet de
l’enclenchement d’un champ E. La courbe en traits pleins correspond aux états occupés
et la courbe en traits interrompus aux états vides.

dans l’espace réciproque, de même que l’énergie E (k) et l’on a la situation
représentée dans la Fig. 6.2.

–– ––– –

E

k k

E

k1 (t0) k1 (t0+∆t)

Figure 6.2 – Bande pleine. Évolution des états occupés, dans le modèle semi-classique,
sous l’effet de l’enclenchement d’un champ E de t0 à t0 + ∆t. La courbe en traits pleins
correspond aux états occupés, la courbe en traits interrompus aux états vides.

La Fig. 6.2 montre clairement que sous l’effet du champ E le remplissage
des états par les électrons n’est pas modifié, car deux états électroniques de
la même bande qui diffèrent d’un vecteur du réseau réciproque doivent être
considérés comme le même état (5.26).

Il est aussi intéressant de remarquer l’évolution de la vitesse en fonction
de k (voir Fig. 6.3).

La vitesse crôıt linéairement avec k ou avec le temps selon (6.8) pour k
faible, elle passe par un maximum, puis décrôıt en s’approchant de la limite
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de zone. Ce comportement est une conséquence des forces exercées par le
potentiel cristallin sur l’électron. Lorsqu’un électron s’approche d’un plan de
Bragg sous l’effet du champ électrique, il tend à être réfléchi dans la direction
opposée. Si l’électron pouvait passer la limite de zone, il apparâıtrait un cou-
rant alternatif ! Ceci n’est cependant pas possible car la variation de k entre
deux collisions est très faible

(
∆k ∼ 10−1cm−1comparé à 1/a ∼ 108cm−1

)

limite de
zone

limite de
zone

k

0

E (k)

E, v

Figure 6.3 – E (k) et v (k) en fonction de k (ou en fonction du temps par (6.8)) dans
une direction parallèle à un vecteur du réseau réciproque.

6.2.3 Conduction d’une bande partiellement remplie

Lorsqu’une bande est partiellement remplie, on a la situation donnée
dans la Fig. 6.4.

Dans ce cas la densité de courant électrique est donnée par

j = −e
∫

états
occupés

d3k

4π3
v (k) (6.10)

où l’intégrale est prise sur tous les états occupés de la bande. Dans le cas où
E = 0, j s’annule en tenant compte de la symétrie d’inversion de la zone
de Brillouin, soit En (k) = En (−k) ce qui implique d’une part que si l’état
k est occupé, l’état −k l’est aussi, et d’autre part que vn (k) = −vn (−k).
En présence d’un champ E le remplissage des états électroniques s’écarte
de la situation d’équilibre et il apparâıt une densité de courant non nulle.
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t = t0

E

k k

E

EF EF

–– ––– – t = t0 + ∆t

Figure 6.4 – Bande partiellement remplie. Évolution des états occupés, dans le modèle
semi-classique, sous l’effet de l’enclenchement d’un champ E de t0 à t0 + ∆t. La courbe
en trait plein correspond aux états occupés, la courbe en trait interrompu aux états vides.

Il faut en réalité tenir compte de l’effet des collisions qui tendent à ”rame-
ner” les électrons dans une situation proche de la distribution électronique
à l’équilibre. Le courant total est donné par (6.10) où l’intégrale est prise
sur les états occupés dans cet équilibre dynamique, différent de l’équilibre
en champ nul.

6.3 Le concept de trou et la notion de masse effective

Pour certains métaux (le Bi par exemple) le coefficient de Hall est positif,
ce qui laisse sous-entendre que les porteurs de charge sont positifs. Un tel
comportement, qui ne peut pas s’expliquer dans un modèle d’électrons libres,
trouve une explication dans le modèle semi-classique.

6.3.1 La notion de trou

La relation (6.10) permet de calculer la densité de courant des électrons
situés dans une bande d’énergie donnée en faisant une somme sur tous les
niveaux électroniques occupés dans cette bande. On peut écrire cette relation
différemment en remarquant qu’une bande remplie ne conduit pas, soit

0 =

∫
zone

Brillouin

d3k

4π3
v (k) =

∫
états
occupés

d3k

4π3
v (k) +

∫
états
vides

d3k

4π3
v (k)
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ce qui permet d’écrire (6.10) sous la forme

j = (+e)

∫
états
vides

d3k

4π3
v (k) (6.11)

Donc il est équivalent de considérer que le courant relatif à une bande, ayant
un certain nombre d’états occupés, est produit par :

— les électrons qui se trouvent dans des états occupés
ou

— des porteurs de charge (+e) occupant les niveaux électroniques de la
zone de Brillouin non occupés par les électrons.

Les particules imaginaires de charge +e introduites ci-dessus sont ap-
pelées trous. Ainsi, bien que les porteurs de charge soient les électrons, on
peut dans certaines situations simplifier la description en considérant que
les porteurs de charge sont les trous. Mais ces deux descriptions sont com-
plémentaires et ne peuvent pas être utilisées simultanément pour une même
bande.

Pour compléter la description il faut encore connâıtre la façon dont les
états inoccupés évoluent sous l’effet des champs extérieurs. La réponse est
simple :

Les états inoccupés évoluent en fonction du temps sous l’effet des champs
extérieurs comme s’ils étaient occupés par des électrons de charge −e.

Ceci est lié au fait que si l’on connâıt les valeurs de k et r en t = 0,
les équations semi-classiques du mouvement (6 équations de 1er ordre avec
6 variables) déterminent de façon unique k (t) et r (t). Dans l’espace k, r, t
tout point d’une orbite donnée est suffisant pour caractériser toute l’orbite.
Deux orbites distinctes ne peuvent ainsi pas avoir deux points en commun.
On peut donc séparer les orbites entre orbites occupées et inoccupées, selon
qu’elles contiennent ou non des électrons au temps t = 0. Pour tout temps t
ultérieur, les états inoccupés se trouveront sur des orbites inoccupées et les
états occupés sur des orbites occupées. Ainsi l’évolution des états occupés
et inoccupés est entièrement déterminée par la structure des orbites, qui
dépend uniquement de la forme des équations du mouvement, et pas du fait
que l’orbite est occupée ou non. Ainsi les vecteurs k des états inoccupés
évoluent aussi selon la relation (6.5), soit (noter le signe –)

~k̇ = (−e) (E + v ∧B) (6.12)

On peut s’en convaincre aisément dans un exemple simple, voir Fig. 6.5,
où l’on a représenté l’évolution en fonction du temps des vecteurs k associés
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aux états occupés et vides d’une bande d’énergie typique d’un semiconduc-
teur. On peut imaginer ici que le trou a été produit par éjection d’un électron
de la bande de valence à la bande de conduction (voir Chap. 7).

(b)(a) (c)

Ex

kx

E

kx

E

kx

ExE

kx

Figure 6.5 – a) Au temps t = 0 tous les états sont occupés, sauf l’état F au sommet
de la bande b) Un champ électrique est appliqué dans la direction +x, une force sur les
électrons apparâıt dans la direction −kx, ce qui correspond à un déplacement du trou de
F en E. c) Après un temps supplémentaire le trou se trouve en D.

6.3.2 La notion de masse effective

Pour savoir si une orbite électronique (dans l’espace direct) se comporte
comme celle d’une particule libre de charge négative ou non, il faut étudier
la relation qui existe entre l’accélération a = v̇ et k̇. Pour une particule libre
v̇ est parallèle à k̇ :

ṙ = v =
1

~
∂

∂k

~2k2

2m
=

~k
m

soit

r̈ = a =
~
m
k̇ (6.13)

La situation est très différente pour un niveau électronique qui se trouve
proche du sommet d’une bande. Dans un cas isotrope l’énergie peut s’écrire

E (k) = E (k0)−A (k − k0)2 (6.14)

où k0 correspond au sommet de la bande et A est une constante positive.
Une telle relation décrit l’énergie des niveaux électroniques au sommet de
la bande représentée dans la Fig. 6.5. Plus généralement elle correspond
souvent aux états vides dans une bande presque entièrement remplie. C’est
par exemple le cas des états vides apparaissant dans la seconde zone de
Brillouin de la Fig. 5.21, où l’énergie passe par un maximum au centre de la
zone.
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On définit une grandeur m∗ positive ayant la dimension d’une masse par
la relation

A =
~2

2m∗
m∗ > 0 (6.15)

Ainsi au voisinage de k0 :

v (k) =
1

~
∂E

∂k
∼= −

~
m∗

(k − k0)

soit

a = v̇ = − ~
m∗

k̇ (6.16)

qui est une accélération opposée à k̇. En remplaçant dans l’équation de
mouvement (6.12) on obtient

−m∗a = ~k̇ = (−e) [E + v ∧B] (6.17)

On peut donc interpréter cette relation en disant que, pour autant que la
relation (6.16) soit satisfaite, un électron (de charge négative) répond à un
champ électrique comme s’il avait une masse négative −m∗. En changeant
le signe des 2 membres de (6.17), on peut aussi interpréter cette équation en
disant qu’elle décrit le mouvement d’une particule de charge positive et de
masse m∗ positive.

En particulier un trou, correspondant à une particule fictive dans un
état électronique vide, se comporte au voisinage du sommet d’une bande
comme une particule de charge +e et de masse m∗. Ainsi, à tous les points
de vue, soit du point de vue de l’équation du mouvement et de la conduction
électrique, les trous se comportent comme des particules de charge positive.

6.3.3 Généralisation, deux remarques

— La condition pour que les niveaux inoccupés se trouvent suffisamment
proches d’un maximum de bande et que a et k̇ soient de sens opposé
(voir 6.16) peut être généralisée sous la forme

k̇ · a < 0 =⇒
∑
i,j

k̇i
∂2E

∂ki∂kj
k̇j < 0 ∀ dk

— La notion de masse effective peut être généralisée, en introduisant un
tenseur de masse effective[

m−1 (k)
]
ij

= ± 1

~2

∂2E (k)

∂ki∂kj
= ±1

~
∂vi
∂kj

(6.18)
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où le signe + ou − correspond aux situations où k est proche d’un mini-
mum de bande (électron) ou d’un maximum (trou). Dans ce cas l’équation
d’évolution s’écrit ∑

j

m∗ijaj = ∓e [E + v ∧B]i (6.19)

6.4 Mouvement semi-classique dans un champ magné-
tique statique uniforme

6.4.1 Orbite électronique dans l’espace k

Dans un champ magnétique B constant, les équations du mouvement
semi-classique s’écrivent,

ṙ = v (k) =
1

~
∂E

∂k
(6.20)

~k̇ = (−e)v (k) ∧B (6.21)

Si le champ B est parallèle à l’axe z, on déduit de (6.21)

k̇z = 0 =⇒ kz = cte

Et en multipliant (6.21) par v,

0 = ~k̇ · v =
∂E

∂k
· k̇ =

dE

dt

Ainsi dans l’espace réciproque les trajectoires électroniques sont situées à
l’intersection d’une surface d’énergie constante et d’un plan perpendiculaire
à B.

Le sens de parcours dépend du sens de v (k) par rapport à la normale
à la surface E (k) = cte. Dans le cas de la Fig. 6.6, où le gradient de E (k)
pointe vers l’extérieur, la relation (6.21) fixe le sens de k̇, donc le parcours
de l’électron. Une telle trajectoire est dite de type électronique (“electron
orbit”). Par contre, lorsque ∇E (k) pointe vers l’intérieur de la surface, le
sens de parcours de l’électron est inversé, on parle de trajectoire de type
trou (“hole orbit”).

De nombreuses techniques expérimentales, et en particulier l’effet de
Haas-van Alphen permettent d’étudier le mouvement des électrons au ni-
veau de Fermi en présence d’un champ B. La surface d’énergie constante
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, 

Figure 6.6 – Intersection d’une surface d’énergie constante avec un plan perpendiculaire
au champ magnétique. La flèche indique la direction de mouvement le long de l’orbite dans
le cas où l’énergie des niveaux intérieurs à la surface est inférieure à celle des niveaux à
l’extérieur.

est dans ce cas la surface de Fermi, les états d’énergie supérieure sont inoc-
cupés. La connaissance de la surface de Fermi permet ainsi de déterminer
les trajectoires des électrons dans l’espace réciproque. Réciproquement la
détermination des caractéristiques des trajectoires électroniques renseigne
sur la forme de la surface de Fermi.

6.4.2 Trajectoire dans l’espace réel

On peut déterminer la projection dans un plan perpendiculaire à B des
trajectoires électroniques dans l’espace réel, en notant que

r⊥ = r − B (B · r)

B2
=

B ∧ (r ∧B)

B2
(6.22)

et en multipliant (6.21) par B/B :

B ∧ ~k̇
B

= −eB ∧ (v ∧B)

B
= −eBv⊥ = −eBṙ⊥ (6.23)

ce qui donne en intégrant

r⊥ (t)− r⊥ (0) = − ~
eB

B

B
∧ [k (t)− k (0)] (6.24)

Ainsi, au facteur
~
eB

près, r⊥ (t)− r⊥ (0) est simplement tourné de 90o par

rapport à k (t) − k (0). Il en est de même de la projection de la trajectoire
sur le plan perpendiculaire à B.
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Dans le cas particulier d’un électron libre, où les surfaces d’énergie constante
sont des sphères, la trajectoire dans l’espace des k est un cercle, il en est
de même dans l’espace réel. On retrouve donc le résultat bien connu que les
électrons décrivent des cercles dans le plan perpendiculaire à B. La fréquence
de révolution, dite fréquence cyclotronique ωc est donnée par

ωc =
eB

m
(6.25)

Il faut remarquer que les orbites dans l’espace des k ne sont pas nécessai-
rement fermées sur elles-mêmes. L’existence d’orbites non fermées explique
par exemple que la résistivité en présence d’un champ B dépende de B,
contrairement aux prédictions faites pour un électron libre. Nous donnons
dans les Figs. 6.7 et 6.8 l’exemple d’orbites fermées et ouvertes à la surface
de Fermi d’un métal monovalent.

Trou

Figure 6.7 – Orbite électronique et orbite de trou à la surface de Fermi d’un métal,
représenté dans un schéma de zone répétée.

Figure 6.8 – Exemple d’une orbite non fermée dans un schéma de zone répétée.
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6.4.3 Le temps de révolution - fréquence cyclotronique

Il est aussi intéressant de calculer le temps de révolution d’un électron
sur une orbite, qui joue le même rôle que la période associée à la fréquence
cyclotronique ωc d’un électron libre. Considérons une orbite d’énergie E
située dans un plan perpendiculaire à B (Fig. 6.9).

 

 ( ) =  

 ( ) =  + 

( ) 

(a) (b) 

1 2 

1 

2 

x

Figure 6.9 – a) Partie de deux orbites, de même kz, se trouvant sur les surfaces d’énergie
constante E (k) = E et E (k) = E + ∆E. Le temps de parcours de k1 à k2 est donné par
(6.26). b) Une section de (a) dans un plan perpendiculaire à B et contenant les orbites.

Le temps nécessaire pour passer de k1 à k2 est donné par

t2 − t1 =

k2∫
k1

dk∣∣∣k̇∣∣∣ (6.26)

où

k̇ = − e

~2

∂E

∂k
∧B = − e

~2

∂E

∂k⊥
∧B

soit

|k̇| = eB

~2

∣∣∣∣ ∂E∂k⊥
∣∣∣∣ (6.27)

Introduisons le vecteur ∆ (k)(voir Fig. 6.9 b) qui relie les 2 surfaces d’énergie
E et E + ∆E, perpendiculaire à l’orbite d’énergie E au point k, on a

∆E =
∂E

∂k
·∆ (k) =

∣∣∣∣ ∂E∂k⊥
∣∣∣∣∆ (k) (6.28)

En tenant compte des relations (6.27) et (6.28), (6.26) peut s’écrire
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t2 − t1 =
~2

eB

1

∆E

k2∫
k1

∆ (k) dk (6.29)

L’intégrale de (6.29) représente la surface, dans le plan perpendiculaire à B,
située entre deux orbites voisines (voir Fig. 6.9 b). En prenant la limite de
(6.29) pour ∆E tendant vers zéro, il vient alors,

t2 − t1 =
~2

eB

∂A1,2 (E)

∂E
(6.30)

où A1,2 (E) est l’aire, située dans le plan perpendiculaire à B, délimitée par
la surface d’énergie E = cte et les vecteurs k1 et k2.

Dans le cas où l’orbite est fermée, on peut calculer le temps de révolution

T (E, kz) =
~2

eB

∂

∂E
A (E, kz) (6.31)

où A (E, kz) est l’aire du plan kz = cte découpée par la surface d’énergie E.

On définit souvent une masse effective cyclotronique m∗ (E, kz) par la
relation,

m∗ (E, kz) =
~2

2π

∂A (E, kz)

∂E
(6.32)

ce qui permet d’écrire le temps de révolution sous la forme

T (E, kz) =
2π

eB
m∗ (E, kz) (6.33)

soit sous la forme que l’on obtiendrait pour un électron libre (voir 6.25).

La valeur de m∗, qui peut être déterminée expérimentalement dans les
expériences de résonance cyclotronique, est ainsi une mesure indirecte de la
forme des surfaces d’énergie constante.

Les mesures de résonance cyclotronique sont en particulier faites dans
les semiconducteurs. L’échantillon est placé dans un champ magnétique sta-
tique, à basse température, de telle sorte que les porteurs de charge puissent
décrire plusieurs orbites avant de subir une collision (ωcτ � 1). Les porteurs
de charges sont accélérés par un champ radiofréquence perpendiculaire à B
et une absorption résonante d’énergie a lieu lorsque la fréquence du champ
radiofréquence est égale à la fréquence cyclotronique. Dans le cas où m∗/m
= 0.1 la fréquence cyclotronique est égale à νc = 28 GHz dans un champ de
1000 Gauss (= 0.1 Tesla).
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6.5 Mouvement semi-classique dans des champs E et
B uniformes, constants et perpendiculaires. L’effet
Hall à haut champ.

Pour déterminer les orbites électroniques dans l’espace des k il faut re-
partir de l’équation de mouvement (6.21) à laquelle on a ajouté le terme
−eE, la multiplier vectoriellement par le vecteur unité B/B et intégrer, ce
qui donne (voir 6.24)

r⊥ (t)− r⊥ (0) = − ~
eB

B

B
∧ [k (t)− k (0)] + wt (6.34)

où w =
E ∧B

B2

Ainsi le mouvement perpendiculaire à B dans l’espace réel est la super-
position du mouvement qu’aurait l’électron en l’absence de champ électrique
et d’une translation uniforme de vitesse constante.

Le comportement de l’effet Hall dépend de la nature des orbites électro-
niques en présence du champ, et en particulier du fait qu’elles soient ouvertes
ou fermées. Faisons l’hypothèse que toutes les orbites occupées ou toutes les
orbites non occupées sont fermées (elles ne peuvent pas être simultanément
fermées). Nous admettons d’autre part que la période moyenne T d’un por-
teur de charge à la surface de Fermi est faible par rapport au temps de
relaxation τ . Cela implique que l’échantillon est pur, à basse température,
placé dans un champ magnétique élevé. Dans ces conditions les porteurs de
charge décrivent plusieurs révolutions entre 2 collisions successives.

La densité de courant s’écrit au temps t = 0, dans l’esprit du modèle de
Drude,

j = −nev

où v est la vitesse moyenne acquise par un électron depuis sa dernière colli-
sion. Cette vitesse doit être moyennée sur l’ensemble des états électroniques
occupés. La composante de la vitesse perpendiculaire à B est donnée par

v⊥ (0) ∼=
r⊥ (0)− r⊥ (−τ)

τ
= − ~

eB

B

B
∧ k (0)− k (−τ)

τ
+ w (6.35)

Dans le cas où toutes les orbites occupées sont fermées, k (0) − k (−τ) est
borné, la vitesse de translation w est supérieure au 1er terme de (6.35), et
l’on a

lim
τ/T−→∞

j⊥ = −new = −ne
B

E ∧ B

B
(6.36)
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Le résultat (6.36) signifie que l’effet de la force de Lorentz ”empêche” l’élec-
tron d’acquérir une vitesse moyenne de déplacement dans le sens de E, seule
la composante de j perpendiculaire à E est significative. On peut alors dé-
finir une constante de Hall RH

RH =
E

j⊥B
= − 1

ne

Dans le cas où toutes les orbites non occupées sont fermées, le résultat
correspondant est

lim
τ/T−→∞

j⊥ = +
nhe

B
E ∧ B

B

La constante de Hall est alors donnée par

RH =
1

nhe

où nh est le nombre d’états électroniques non occupés par unité de volume.
Il faut remarquer que dans les cas où il existe à la fois des orbites occu-

pées et des orbites non occupées qui sont ouvertes, le coefficient de Hall ne
s’exprime plus aussi simplement, car on ne peut plus négliger dans (6.26) le
1er terme de v⊥ (0) par rapport à w.


