Chapitre 6

La dynamique des électrons en
présence d’un potentiel
périodique.

Le modele semi-classique

6.1 Les équations de la dynamique électronique

6.1.1 Introduction

Dans le modeéle de Sommerfeld (voir chap. 4) un électron est décrit par
un paquet d’onde formé par la superposition d’ondes planes.

0
Y(rt) =" g(k)exp [1 (k:’ P — Eg t)] (6.1)

k/

ou l'extension Ak de la distribution d’amplitudes ¢ (k:’ ) est telle que
Ak < kr — Az >y

Dans le cas ou les champs extérieurs appliqués varient peu sur les dimen-
sions du paquet d’ondes, les équations de la dynamique des électrons de
Sommerfeld s’écrivent entre les collisions

hk = —e|E (r,t) +v A B(r,t)]
{ . @ (6.2)

v=rT
m
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Dans ce modele on tient compte de l'effet du réseau en introduisant un
temps de relaxation 7, lié aux interactions des électrons avec les phonons et
les défauts du cristal.

Le modéle semi-classique est une extension du modele de Sommerfeld
au cas d’électrons de Bloch se "déplagant” dans le potentiel périodique du
réseau. Il décrit le mouvement de paquets d’onde de Bloch, lorsqu’il n’est pas
nécessaire de préciser la position de I’électron sur des dimensions de ’ordre
de grandeur du parametre du réseau. Un paquet d’onde associé a une bande
n s’écrit dans ce cas,

Gnlrt) =Y o () v W esp |1, (K)o (63)

k/

ou I'extension Ak de g (k') est telle que

Ak G — Az> % ~a
ou (G est un vecteur réciproque primitif et a est la longueur d’un vecteur
primitif du réseau direct. Ainsi un paquet d’onde d’électrons de Bloch ayant
un vecteur d’onde bien défini a I’échelle de la zone de Brillouin doit étre
étendu dans ’espace réel sur plusieurs cellules primitives.

Le modele semi-classique décrit la réponse des électrons de conduction a
des champs extérieurs (électriques et magnétiques) dont la longueur d’onde
est supérieure aux dimensions du paquet d’onde et par conséquent nettement
plus grande que les dimensions d’une cellule primitive.

Dans le modele semi-classique, les champs extérieurs donnent lieu & des
forces extérieures classiques qui apparaissent dans 1’équation du mouvement
qui décrit I’évolution de la position et du vecteur d’onde moyen du paquet
d’ondes. Sa subtilité est liée au fait que le potentiel périodique du réseau,
qui varie sur des distances faibles par rapport a la largeur du paquet d’onde,
ne peut pas étre traité classiquement. Son effet apparait de facon indirecte
dans la dépendance de I’énergie F,, en fonction de k.

11 est important de remarquer que les fonctions de Bloch 1, (7), solu-
tions de I’équation de Schrodinger indépendante du temps, ont une vitesse
moyenne en général non nulle, elle est donnée par (voir Ashcroft-Mermin,
annexe E)

on (k) = £ VI, (k) (6.4)

Comme les fonctions d’onde de Bloch sont des solutions stationnaires de
I’équation de Schrodinger en présence du potentiel des ions, le fait qu'un



6.1. LES EQUATIONS DE LA DYNAMIQUE ELECTRONIQUE 3

état de Bloch ait une vitesse moyenne non nulle implique que cette vitesse
persiste indéfiniment.

Un paquet d’onde de Bloch peut se propager dans un cristal périodique
sans atténuation, la résistivité d’un cristal périodique parfait est nulle, la
résistivité finie des métaux est due aux imperfections du réseau et aux vibra-
tions thermiques qui détruisent la symétrie de translation du réseau parfait.
On en tient compte en introduisant, comme dans le modele de Sommerfeld,
un temps de relaxation 7, qui dans le cas général dépend de r et de k :

Tn = Tn (rn (V') kn ().

6.1.2 Les équations du mouvement

Les équations dynamiques du modele semi-classique décrivent, entre les
collisions, le mouvement des électrons en présence d’un potentiel périodique.
Elles s’écrivent, par analogie avec (6.2),

r=wv, (k)= %VEn (k) (6.5)

hke = —e[E (r,t) + v, (k) A B (r,1)]

et sont valables & condition que les champs varient lentement par rapport
aux dimensions du paquet d’onde associé a 1’électron et par conséquent par
rapport au parametre du réseau a.

L’indice de bande n est une constante du mouvement. Ces équations
expriment que chaque bande, caractérisée par E, (k), a sa propre dyna-
mique, qui n’est pas couplée aux autres bandes. Aucune transition inter-
bande n’est possible d’apres le schéma ci-dessus. Pour de forts champs il
est clair qu’il pourrait y avoir des transitions interbandes, on montre (voir
Ashcroft-Mermin, annexe J) que cela peut arriver lorsque les conditions ci-
dessous ne sont plus satisfaites en tout point k,

[Egap (k)]

Er
[Egap (k)]
Er

e|Ela <
(6.6)
hwe <

ol Eyqp (k) est la différence entre E,, (k) et I'énergie la plus proche E,/ (k),
et w, est la fréquence cyclotronique égale & e|B|/m. La 1°"¢ condition, qui
ne peut étre violée que dans les isolants et les semi-conducteurs homogenes,
correspond a ce que 'on appelle “claquage électrique” (“electric breakdown”),
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la seconde condition qui peut étre violée avec des champs magnétiques in-
tenses, correspond a un “claquage magnétique” ("magnetic breakthrough”).
Aux conditions (6.6) il faut encore ajouter la condition

hw < Egap (6.7)

ol Eyqp est la largeur minimum de la bande interdite, car, si (6.7) n’est pas
satisfaite, un photon pourrait fournir a un électron 1’énergie nécessaire pour
faire une transition interbande.

6.1.3 Discussion des équations de mouvement

La relation (6.5 a) n’est pas difficile & comprendre. Elle affirme simple-
ment que la vitesse d’un électron dans le modele semi-classique est la vitesse
de groupe du paquet d’onde de Bloch associé a I’électron. En effet

_aw_ﬂE(k)_l
Y=ok~ ok h 5 kPR

La relation (6.5 b) est beaucoup plus difficile & comprendre, car pour un élec-
tron de Bloch Ak n’est pas égal a la quantité de mouvement p de 1’électron.
En réalité on aurait que
% = Fext + Frésezzu

ou F., correspond au second membre de (6.5 b) et F¢seqq correspond a la
force exercée par le potentiel cristallin du réseau sur 1’électron. Il faudrait
montrer que la variation temporelle hk du "moment cristallin” n’est associée
qu’aux forces extérieures F'o, ;. Le lecteur intéressé pourra consulter le chap.
8 dans Kittel, qui donne une démonstration simple (voir aussi Ashcroft-
Mermin, annexe H).

Dans le cas ou la force extérieure est uniquement due a un champ élec-
trique, la relation (6.5 b) peut étre déduite de la conservation de 1’énergie.
Si ¢ est le potentiel associé a E tel que E = —V ¢, on s’attend a ce que le
paquet d’onde se déplace de telle sorte que 'énergie

En [k (t)] — e
reste constante. La dérivée temporelle de 1’énergie s’écrit

d dé  OE, . .
% n—ea—akk—eVd)r—O
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que 'on peut écrire avec I’équation (6.5 a)
v, (k) - [hk - eV¢] ~0

qui s’annule si

hk =eVp=—cE

Cependant cette équation est encore vérifiée si 'on ajoute a —eF un terme
perpendiculaire & v,, (k). Reste encore & montrer que le seul terme addition-
nel est celui associé au champ magnétique.

6.2 La conduction électrique dans le modele semi-classique

Dans ce qui suit nous omettons 'indice de bande, car nous admettons
qu’il n’y a pas de claquage. Nous admettons d’autre part que T'= 0, ce qui
ne modifie pas significativement les propriétés que nous discutons.

6.2.1 Une bande pleine ne ”conduit” pas

En présence d'un champ électrique E, I’équation de mouvement (6.5)
s’écrit
hk = —eE
soit si 'on admet qu’il n’y a pas de collision pendant le temps ¢

k(1) = k (0) — %t (6.8)
De fagon générale, sous l'effet d’'un champ extérieur les électrons évoluent
dans "’espace de phase” a six dimensions (14, ry, 72, kz, ky, k»). On peut mon-
trer (voir Ashcroft-Mermin, annexe H), par analogie avec le théoreme de
Liouville, en suivant les électrons dans leur mouvement, que le volume de
I’espace de phase associé a un nombre donné d’électrons reste constant. Ceci
implique que pour une bande pleine, la densité électronique dans 'espace
de phase, égale & 1/(473) en tout point, n’est pas modifiée par un champ
extérieur.
Pour une bande d’énergie remplie, la densité de courant électronique

s’écrit 5 31
d°k 1 d’k OF
L _ L GgrRos 6.9
J © / Y ¢ / 473 Ok (6.9)
zone Brillouin zone Brillouin

La relation (6.9) implique que 5 = 0. Soit en effet une fonction périodique
f (k) ayant la périodicité du réseau réciproque, telle que f (k+ G) = f (k).
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Comme ’intégrale est prise sur une cellule primitive,

o) = [ @kflk+g)

cellule
primitive

est indépendant de g. Ainsi en particulier

ol of(k af(k
(9) _ / Bl k+g) _ / 20l k+g) _
0g dg ok
cellule cellule
primitive primitive
En évaluant 'intégrale en g = 0, on démontre que toute fonction périodique
f (k) satisfait

of (k
ok
cellule
primitive
Ainsi I'intégrale du gradient d’une fonction périodique sur une cellule unité
est nulle. Comme F (k) est périodique de période G, il en résulte que 5 = 0.
Ou en d’autres termes : les bandes pleines sont inertes du point de vue de
la dynamique électronique.

La conduction électronique est ainsi uniquement due aux bandes par-
tiellement remplies, ce qui justifie le fait que 'on ne tient compte que des
électrons de valence pour décrire la conductibilité des solides. 1l faut aussi
noter, comme nous l'avons brievement décrit, que cette remarque est a la

base de la classification des solides en isolants, conducteurs, etc.

6.2.2 Une autre approche pour les bandes pleines

Il est surprenant de remarquer que, sous l'effet d’'un champ électrique,
le vecteur k évolue en fonction du temps selon (6.8), et que néanmoins le
courant résultant soit nul. Dans le modele de Sommerfeld des électrons libres,
on aurait la situation représentée dans la Fig. 6.1

Sous l'effet du champ électrique E, I’ensemble des vecteurs k évoluent
pendant le temps At de Ak = —eEAt/h, il en résulte une densité de courant
non nulle donnée par

J=—en

Pour comprendre ce qui se passe dans le cas des électrons de Bloch il faut
remarquer que le courant porté par un électron est proportionnel a sa vi-
tesse, qui n’est pas égale & hk/m. La vitesse est une fonction périodique
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E E Ak

Er .

K, (t) k K, (t,+Ab) K

FIGURE 6.1 — Evolution des états occupés dans le modeéle de Sommerfeld sous 1'effet de

I’enclenchement d’un champ E. La courbe en traits pleins correspond aux états occupés
et la courbe en traits interrompus aux états vides.

dans lespace réciproque, de méme que énergie E (k) et 'on a la situation
représentée dans la Fig. 6.2.

E E
Ak Ak
\\ “‘
T : /4 T : T
> Ky (to) 7 k - K, (ty+AL) - k

FIGURE 6.2 — Bande pleine. Evolution des états occupés, dans le modele semi-classique,
sous l'effet de ’enclenchement d’un champ E de to & to + At. La courbe en traits pleins
correspond aux états occupés, la courbe en traits interrompus aux états vides.

La Fig. 6.2 montre clairement que sous 'effet du champ E le remplissage
des états par les électrons n’est pas modifié, car deux états électroniques de
la méme bande qui different d’un vecteur du réseau réciproque doivent étre
considérés comme le méme état (5.26).

Il est aussi intéressant de remarquer 1’évolution de la vitesse en fonction
de k (voir Fig. 6.3).

La vitesse croit linéairement avec k ou avec le temps selon (6.8) pour k
faible, elle passe par un maximum, puis décroit en s’approchant de la limite
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de zone. Ce comportement est une conséquence des forces exercées par le
potentiel cristallin sur 1’électron. Lorsqu’un électron s’approche d’un plan de
Bragg sous l'effet du champ électrique, il tend & étre réfléchi dans la direction
opposée. Si I’électron pouvait passer la limite de zone, il apparailtrait un cou-
rant alternatif! Ceci n’est cependant pas possible car la variation de k entre
deux collisions est tres faible (Ak: ~ 10~tem~!comparé & 1/a ~ 1080m_1)

E,v
v (k)
A E (k) ™~
k
0
limite de limite de
zone zone

FIGURE 6.3 — E (k) et v (k) en fonction de k (ou en fonction du temps par (6.8)) dans
une direction paralléle a un vecteur du réseau réciproque.

6.2.3 Conduction d’une bande partiellement remplie

Lorsqu’une bande est partiellement remplie, on a la situation donnée
dans la Fig. 6.4.
Dans ce cas la densité de courant électrique est donnée par

3
j=—e / %v(k:) (6.10)

états
occupés

ou l'intégrale est prise sur tous les états occupés de la bande. Dans le cas ou
E = 0, 3 s’annule en tenant compte de la symétrie d’inversion de la zone
de Brillouin, soit E, (k) = E, (—k) ce qui implique d’une part que si ’état
k est occupé, l'état —k 'est aussi, et d’autre part que v, (k) = —v,, (—k).
En présence d’un champ FE le remplissage des états électroniques s’écarte
de la situation d’équilibre et il apparait une densité de courant non nulle.



6.3. LE CONCEPT DE TROU ET LA NOTION DE MASSE EFFECTIVE 9

E E
Ak
\“‘ ',, \“ Ak ,"
‘\\ EF I' \\ EF
T T T T
~a t=t, a K g t=tgrAt a K

FIGURE 6.4 — Bande partiellement remplie. Evolution des états occupés, dans le modele
semi-classique, sous 'effet de I’enclenchement d’un champ FE de to a to + At. La courbe
en trait plein correspond aux états occupés, la courbe en trait interrompu aux états vides.

Il faut en réalité tenir compte de 'effet des collisions qui tendent a "rame-
ner” les électrons dans une situation proche de la distribution électronique
a Iéquilibre. Le courant total est donné par (6.10) ou l'intégrale est prise
sur les états occupés dans cet équilibre dynamique, différent de 1’équilibre
en champ nul.

6.3 Le concept de trou et la notion de masse effective

Pour certains métaux (le Bi par exemple) le coefficient de Hall est positif,
ce qui laisse sous-entendre que les porteurs de charge sont positifs. Un tel
comportement, qui ne peut pas s’expliquer dans un modele d’électrons libres,
trouve une explication dans le modele semi-classique.

6.3.1 La notion de trou

La relation (6.10) permet de calculer la densité de courant des électrons
situés dans une bande d’énergie donnée en faisant une somme sur tous les
niveaux électroniques occupés dans cette bande. On peut écrire cette relation
différemment en remarquant qu’une bande remplie ne conduit pas, soit

0= / f:;v(k): / fr];v(k)—i—/iljr];v(k)

zone états états
Brillouin occupés vides
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ce qui permet d’écrire (6.10) sous la forme

. d3k

i=o [ o) (6.11)
états
vides

Donc il est équivalent de considérer que le courant relatif a une bande, ayant
un certain nombre d’états occupés, est produit par :

— les électrons qui se trouvent dans des états occupés
ou

— des porteurs de charge (+e) occupant les niveaux électroniques de la

zone de Brillouin non occupés par les électrons.

Les particules imaginaires de charge +e introduites ci-dessus sont ap-
pelées trous. Ainsi, bien que les porteurs de charge soient les électrons, on
peut dans certaines situations simplifier la description en considérant que
les porteurs de charge sont les trous. Mais ces deux descriptions sont com-
plémentaires et ne peuvent pas étre utilisées simultanément pour une méme
bande.

Pour compléter la description il faut encore connaitre la fagon dont les
états inoccupés évoluent sous l'effet des champs extérieurs. La réponse est
simple :

Les états inoccupés évoluent en fonction du temps sous effet des champs
extérieurs comme s’ils étaient occupés par des électrons de charge —e.

Ceci est lié au fait que si 'on connait les valeurs de k et r en t = 0,
les équations semi-classiques du mouvement (6 équations de 1 ordre avec
6 variables) déterminent de fagon unique k (¢) et = (¢). Dans 'espace k,r,t
tout point d’une orbite donnée est suffisant pour caractériser toute 'orbite.
Deux orbites distinctes ne peuvent ainsi pas avoir deux points en commun.
On peut donc séparer les orbites entre orbites occupées et inoccupées, selon
qu’elles contiennent ou non des électrons au temps t = 0. Pour tout temps ¢
ultérieur, les états inoccupés se trouveront sur des orbites inoccupées et les
états occupés sur des orbites occupées. Ainsi ’évolution des états occupés
et inoccupés est entierement déterminée par la structure des orbites, qui
dépend uniquement de la forme des équations du mouvement, et pas du fait
que l'orbite est occupée ou non. Ainsi les vecteurs k des états inoccupés
évoluent aussi selon la relation (6.5), soit (noter le signe —)

hk = (—e) (E +v A B) (6.12)

On peut s’en convaincre aisément dans un exemple simple, voir Fig. 6.5,
ou l'on a représenté 1’évolution en fonction du temps des vecteurs k associés
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aux états occupés et vides d'une bande d’énergie typique d'un semiconduc-
teur. On peut imaginer ici que le trou a été produit par éjection d’un électron
de la bande de valence a la bande de conduction (voir Chap. 7).

AE \E —>FE, \E —>FE,

'T S, 'T S,

Ak - kx AP - kx
D H D H
C I c I
B J B J
a X a X

(a) (b) (c)

FIGURE 6.5 — a) Au temps t = 0 tous les états sont occupés, sauf I'état F au sommet
de la bande b) Un champ électrique est appliqué dans la direction +x, une force sur les
électrons apparait dans la direction —k,, ce qui correspond a un déplacement du trou de
F en E. ¢) Aprés un temps supplémentaire le trou se trouve en D.

6.3.2 La notion de masse effective

Pour savoir si une orbite électronique (dans I'espace direct) se comporte
comme celle d’une particule libre de charge négative ou non, il faut étudier
la relation qui existe entre 'accélération a = ¥ et k. Pour une particule libre
O est parallele & k :

Lok
" hok 2m  m
soit
.. h .
Ff=a=—k (6.13)
m

La situation est tres différente pour un niveau électronique qui se trouve
proche du sommet d’une bande. Dans un cas isotrope I’énergie peut s’écrire

E (k) =E (ko) — A(k — ko)? (6.14)

ou kg correspond au sommet de la bande et A est une constante positive.
Une telle relation décrit 1’énergie des niveaux électroniques au sommet de
la bande représentée dans la Fig. 6.5. Plus généralement elle correspond
souvent aux états vides dans une bande presque entierement remplie. C’est
par exemple le cas des états vides apparaissant dans la seconde zone de
Brillouin de la Fig. 5.21, ou I'énergie passe par un maximum au centre de la
zone.
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On définit une grandeur m* positive ayant la dimension d’une masse par
la relation

h2
A= * 1
Y m* >0 (6.15)
Ainsi au voisinage de kg :
10F h
vik)=7op = =% (k—ko)
soit
. hy
a=0=—-—k (6.16)
m

qui est une accélération opposée a k. En remplacant dans 1’équation de
mouvement (6.12) on obtient

—m*a =k = (—e) [E +v A B] (6.17)

On peut donc interpréter cette relation en disant que, pour autant que la
relation (6.16) soit satisfaite, un électron (de charge négative) répond a un
champ électrique comme s’il avait une masse négative —m*. En changeant
le signe des 2 membres de (6.17), on peut aussi interpréter cette équation en
disant qu’elle décrit le mouvement d’une particule de charge positive et de
masse m* positive.

En particulier un trou, correspondant a une particule fictive dans un
état électronique vide, se comporte au voisinage du sommet d’une bande
comme une particule de charge +e et de masse m*. Ainsi, & tous les points
de vue, soit du point de vue de I’équation du mouvement et de la conduction
électrique, les trous se comportent comme des particules de charge positive.

6.3.3 Généralisation, deux remarques

— La condition pour que les niveaux inoccupés se trouvent suffisamment
proches d’un maximum de bande et que a et k soient de sens opposé
(voir 6.16) peut étre généralisée sous la forme

k-a<0 — Zkakakk <0Vdk

— La notion de masse effective peut étre généralisée, en introduisant un
tenseur de masse effective

1 L 1PPE(k) 10y
[ () =245 okdk; — hok, (6.18)
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ou le signe + ou — correspond aux situations ou k est proche d’un mini-
mum de bande (électron) ou d’un maximum (trou). Dans ce cas I’équation
d’évolution s’écrit

Zm’;jaj =TFe[E+vABj (6.19)
J

6.4 Mouvement semi-classique dans un champ magné-
tique statique uniforme

6.4.1 Orbite électronique dans 1’espace k

Dans un champ magnétique B constant, les équations du mouvement
semi-classique s’écrivent,

] 10F
7 =v( ):ﬁ% (6.20)

hk = (—e)v (k) A B (6.21)
Si le champ B est parallele a I’axe z, on déduit de (6.21)

l:z:z:0 == k, = cte

Et en multipliant (6.21) par v,

E . dE
_ 9B, _d

— b= = =
0 Y= ok dt

Ainsi dans D'espace réciproque les trajectoires électroniques sont situées a
Iintersection d’une surface d’énergie constante et d’un plan perpendiculaire
a B.

Le sens de parcours dépend du sens de v (k) par rapport a la normale
a la surface E (k) = cte. Dans le cas de la Fig. 6.6, ou le gradient de E (k)
pointe vers Pextérieur, la relation (6.21) fixe le sens de k, donc le parcours
de ’électron. Une telle trajectoire est dite de type électronique (“electron
orbit”). Par contre, lorsque VE (k) pointe vers l'intérieur de la surface, le
sens de parcours de ’électron est inversé, on parle de trajectoire de type
trou (“hole orbit”).

De nombreuses techniques expérimentales, et en particulier I’effet de
Haas-van Alphen permettent d’étudier le mouvement des électrons au ni-
veau de Fermi en présence d'un champ B. La surface d’énergie constante
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k

val

B

FIGURE 6.6 — Intersection d’une surface d’énergie constante avec un plan perpendiculaire
au champ magnétique. La fleche indique la direction de mouvement le long de I'orbite dans
le cas ou ’énergie des niveaux intérieurs a la surface est inférieure a celle des niveaux a
I'extérieur.

est dans ce cas la surface de Fermi, les états d’énergie supérieure sont inoc-
cupés. La connaissance de la surface de Fermi permet ainsi de déterminer
les trajectoires des électrons dans l'espace réciproque. Réciproquement la
détermination des caractéristiques des trajectoires électroniques renseigne
sur la forme de la surface de Fermi.

6.4.2 Trajectoire dans ’espace réel

On peut déterminer la projection dans un plan perpendiculaire & B des
trajectoires électroniques dans ’espace réel, en notant que

B(B-r) :B/\(r/\B)

TL=T - —ps [ (6.22)

et en multipliant (6.21) par B/B :

B ATk B B
% =—e " (Z/\ ) = —eBv| = —eDB7 (6.23)
ce qui donne en intégrant
h B

t) — =———AN[k(t)—k .24
P =L (0)= 22 A k(1) ~ k(O) (6.21)

h
Ainsi, au facteur — pres, 7 (t) —r) (0) est simplement tourné de 90° par

e
rapport a k (t) — k (0). Il en est de méme de la projection de la trajectoire
sur le plan perpendiculaire a B.
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Dans le cas particulier d’un électron libre, ot les surfaces d’énergie constante

sont des spheres, la trajectoire dans ’espace des k est un cercle, il en est
de méme dans 'espace réel. On retrouve donc le résultat bien connu que les
électrons décrivent des cercles dans le plan perpendiculaire a B. La fréquence
de révolution, dite fréquence cyclotronique w. est donnée par

eB

- (6.25)

We =

Il faut remarquer que les orbites dans I'espace des k ne sont pas nécessai-
rement fermées sur elles-mémes. L’existence d’orbites non fermées explique
par exemple que la résistivité en présence d'un champ B dépende de B,
contrairement aux prédictions faites pour un électron libre. Nous donnons
dans les Figs. 6.7 et 6.8 'exemple d’orbites fermées et ouvertes a la surface
de Fermi d’un métal monovalent.

~

FIGURE 6.7 — Orbite électronique et orbite de trou a la surface de Fermi d’un métal,
représenté dans un schéma de zone répétée.

FIGURE 6.8 — Exemple d’une orbite non fermée dans un schéma de zone répétée.
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6.4.3 Le temps de révolution - fréquence cyclotronique

Il est aussi intéressant de calculer le temps de révolution d’un électron
sur une orbite, qui joue le méme role que la période associée a la fréquence
cyclotronique w, d'un électron libre. Considérons une orbite d’énergie E
située dans un plan perpendiculaire & B (Fig. 6.9).

ko
dk

K /AW

ky

(a) (b)

FIGURE 6.9 — a) Partie de deux orbites, de méme k., se trouvant sur les surfaces d’énergie
constante E (k) = E et E (k) = E 4+ AE. Le temps de parcours de k1 & k2 est donné par
(6.26). b) Une section de (a) dans un plan perpendiculaire & B et contenant les orbites.

Le temps nécessaire pour passer de ki a ks est donné par

ko

dk
to — 1 :/_ (6.26)
2 i
ot OF OF
. e e
po_t9%,g__°c9 g
12 ok 72 ok,
soit Bl OB
e
e 6.27
=53 | | (6.27)

Introduisons le vecteur A (k)(voir Fig. 6.9 b) qui relie les 2 surfaces d’énergie
FE et E+ AF, perpendiculaire a l'orbite d’énergie F au point k, on a

0B OF

A (k) (6.28)

En tenant compte des relations (6.27) et (6.28), (6.26) peut s’écrire



6.4. MOUVEMENT DANS UN CHAMP MAGNETIQUE UNIFORME 17

R 1
to —t] = e/A (k) dk (6.29)

L’intégrale de (6.29) représente la surface, dans le plan perpendiculaire & B,
située entre deux orbites voisines (voir Fig. 6.9 b). En prenant la limite de
(6.29) pour AE tendant vers zéro, il vient alors,

ty —t] = —

B 0E (6.30)

ol A1 (E) est laire, située dans le plan perpendiculaire & B, délimitée par
la surface d’énergie E = cte et les vecteurs ki et k.
Dans le cas ou l'orbite est fermée, on peut calculer le temps de révolution
TE k) = O Ak (6.31)
y vz ) T €B aE y vz .
ou A (E, k) est I'aire du plan k, = cte découpée par la surface d’énergie E.
On définit souvent une masse effective cyclotronique m* (E, k,) par la
relation,

. h? 0A (E, k)
ce qui permet d’écrire le temps de révolution sous la forme
T(E, k) = 2m* (E, k.) (6.33)
y vz ) T eBm s vz .

soit sous la forme que I'on obtiendrait pour un électron libre (voir 6.25).

La valeur de m*, qui peut étre déterminée expérimentalement dans les
expériences de résonance cyclotronique, est ainsi une mesure indirecte de la
forme des surfaces d’énergie constante.

Les mesures de résonance cyclotronique sont en particulier faites dans
les semiconducteurs. L’échantillon est placé dans un champ magnétique sta-
tique, a basse température, de telle sorte que les porteurs de charge puissent
décrire plusieurs orbites avant de subir une collision (w.7 > 1). Les porteurs
de charges sont accélérés par un champ radiofréquence perpendiculaire & B
et une absorption résonante d’énergie a lieu lorsque la fréquence du champ
radiofréquence est égale a la fréquence cyclotronique. Dans le cas ou m*/m
= 0.1 la fréquence cyclotronique est égale a v. = 28 GHz dans un champ de
1000 Gauss (= 0.1 Tesla).
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6.5 Mouvement semi-classique dans des champs FE et
B uniformes, constants et perpendiculaires. L’effet
Hall a haut champ.

Pour déterminer les orbites électroniques dans I'espace des k il faut re-
partir de ’équation de mouvement (6.21) a laquelle on a ajouté le terme
—eE, la multiplier vectoriellement par le vecteur unité B/B et intégrer, ce
qui donne (voir 6.24)

rL() -7 (0) = _eiBg Al (1) — k (0)] + wt (6.34)

EANB
B2

Ainsi le mouvement perpendiculaire a B dans ’espace réel est la super-
position du mouvement qu’aurait I’électron en ’absence de champ électrique
et d’une translation uniforme de vitesse constante.

Le comportement de I'effet Hall dépend de la nature des orbites électro-
niques en présence du champ, et en particulier du fait qu’elles soient ouvertes
ou fermées. Faisons 'hypothese que toutes les orbites occupées ou toutes les
orbites non occupées sont fermées (elles ne peuvent pas étre simultanément
fermées). Nous admettons d’autre part que la période moyenne 7' d’un por-
teur de charge a la surface de Fermi est faible par rapport au temps de
relaxation 7. Cela implique que I’échantillon est pur, a basse température,
placé dans un champ magnétique élevé. Dans ces conditions les porteurs de
charge décrivent plusieurs révolutions entre 2 collisions successives.

La densité de courant s’écrit au temps ¢ = 0, dans ’esprit du modele de
Drude,

ouw =

J = —nev

ol v est la vitesse moyenne acquise par un électron depuis sa derniére colli-

sion. Cette vitesse doit étre moyennée sur I’ensemble des états électroniques

occupés. La composante de la vitesse perpendiculaire a B est donnée par
r1(0) =7y (-7) h B k(0)—k(-7)

v, (0) . = SN tw  (63))

Dans le cas ou toutes les orbites occupées sont fermées, k (0) — k (—7) est
borné, la vitesse de translation w est supérieure au 1 terme de (6.35), et

I’'on a B
ne
li ), = — =——FEAN— 6.36
T/TIEOOJJ_ new B B ( )
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Le résultat (6.36) signifie que l'effet de la force de Lorentz "empéche” 1’élec-
tron d’acquérir une vitesse moyenne de déplacement dans le sens de E, seule
la composante de j perpendiculaire & E est significative. On peut alors dé-
finir une constante de Hall Ry

E 1

R = — = — —
a J1B ne

Dans le cas ou toutes les orbites non occupées sont fermées, le résultat
correspondant est

. . npe B
1 SR YNt
T/TIE)OOJJ_ + B B

La constante de Hall est alors donnée par

"
npe
ou ny, est le nombre d’états électroniques non occupés par unité de volume.
Il faut remarquer que dans les cas ou il existe a la fois des orbites occu-
pées et des orbites non occupées qui sont ouvertes, le coefficient de Hall ne
s’exprime plus aussi simplement, car on ne peut plus négliger dans (6.26) le
1°" terme de v, (0) par rapport a w.



