
Chapitre 2

La dynamique du réseau.
La notion de phonon

La possibilité qu’ont les ions d’un métal ou d’un isolant de se déplacer
autour de leur position d’équilibre est un élément qui doit être pris en compte
dans la description des propriétés d’un solide. De façon générale on peut dire
que :

— les vibrations des ions sont essentielles dans la détermination des pro-
priétés d’un solide qui ne sont pas dominées par la contribution des
électrons (chaleur spécifique à des températures T ≥ 10 K, dilatation
thermique des solides, fusion)

— les vibrations du réseau participent au transport de l’énergie dans
un solide (conductivité thermique des isolants, propagation des ondes
acoustiques)

— les vibrations permettent de comprendre la variation du temps de
relaxation τ , des électrons introduit en relation avec les phénomènes
de transport dans les métaux, en fonction de la température

— l’effet des vibrations du réseau sur l’interaction effective entre deux
électrons d’un métal est à la base de la compréhension de la supra-
conductivité

— les vibrations du réseau jouent un rôle dans la réponse du solide en
présence d’une radiation (rayons X, lumière visible, neutrons).

Nous étudierons les notions de base de la dynamique du réseau au chapitre
2 et examinerons son influence sur les propriétés thermiques (en particulier
chaleur spécifique) au chapitre 3.

Pour plus de détails le lecteur peut consulter les chapitres 22, 23, 24 et
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2 CHAPITRE 2. DYNAMIQUE DU RÉSEAU – PHONONS

25 de Ashcroft-Mermin et les chapitres 4 et 5 du livre de Kittel.

2.1 Les hypothèses fondamentales

Un cristal parfait, sans vibrations, est décrit en donnant son réseau de
Bravais, ainsi que la description de l’arrangement des atomes (la base) dans
une cellule primitive. Rappelons qu’un réseau de Bravais est formé de tous
les points décrits par les vecteurs R tel que

R = n1a1 + n2a2 + n3a3 (2.1)

où a1, a2, a3 sont les vecteurs primitifs et ni ∈ Z.
La position rj d’un atome j de la base dans la cellule primitive spécifiée

par R est donnée, sans vibrations, par

rj (R) = R + dj (2.2)

En présence des vibrations nous ferons l’hypothèse que la position d’équilibre
moyenne d’un ion est encore donnée par (2.2). On pourra donc écrire

rj (R) = R + dj + uj (R) (2.3)

où uj (R) représente le déplacement de l’atome j par rapport à la position
d’équilibre.

Nous ferons d’autre part l’hypothèse que l’amplitude de déplacement
u (R) est faible, ceci permettra de faire l’approximation harmonique (voir
ci-dessous). Il faut cependant remarquer qu’une telle description ne permet
pas de décrire la diffusion d’un ion dans un cristal ou le comportement des
solides à des températures proches de leur point de fusion. Aussi la dilata-
tion thermique et la conductibilité thermique ne peuvent s’expliquer qu’en
introduisant des termes anharmoniques.

Pour être concret, et pour simplifier l’écriture, prenons le cas d’un cristal
avec une base monoatomique, dans lequel on peut décrire l’énergie po-
tentielle d’interaction entre les ions comme une somme d’interactions de
paires. Notons φ (x) le potentiel d’interaction entre 2 ions séparés par le vec-
teur x, ce qui implique que le potentiel ne dépend que de la position relative
des ions. En tenant compte des vibrations,

x = R−R′ + u (R)− u (R′)
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Figure 2.1 – Réseau de Bravais et vecteur déplacement u (R) pour une base
monoatomique.

L’énergie potentielle totale s’écrit,

U =
1

2

∑
R,R′

R6=R′

φ [R−R′ + u (R)− u (R′)] (2.4)

Dans l’hypothèse où les déplacements u (R) sont faibles, on peut développer
φ (x) autour de (R−R′), on obtient avec α, β = x, y, z

U =
1

2

∑
R,R′

R6=R′

{
φ (R−R′) +

∑
α

[uα (R)− uα (R′)]
∂φ

∂xα

∣∣∣∣∣
R−R′

+
1

2

∑
α,β

[uα (R)− uα (R′)] [uβ (R)− uβ (R′)]
∂2φ

∂xα∂xβ

∣∣∣∣
R−R′

+ · · ·

 (2.5)

Le 1er terme de (2.5) correspond au potentiel sans tenir compte des vibrations
(réseau statique),

Ustat. =
1

2

∑
R,R′

R6=R′

φ (R−R′) =
N

2

∑
R6=0

φ (R) (2.6)
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Le terme linéaire de (2.5) s’annule car le coefficient de uα (R) correspond au
signe près à la somme des forces qui s’exercent sur le ion R à l’équilibre, il
est donné par

1

2

∑
R′

∂φ

∂xα

∣∣∣∣
R−R′

=
∂Ustat.
∂Rα

= 0 (2.7)

L’approximation harmonique revient à négliger dans le développement
(2.5) tous les termes d’ordre supérieur à deux, on a donc

U = Ustat. + Uharm. (2.8)

avec

Uharm. =
1

4

∑
R,R′

R6=R′

∑
α,β

[uα (R)− uα (R′)]φαβ (R−R′) [uβ (R)− uβ (R′)]

(2.9)
où

φαβ (x) =
∂2φ

∂xα∂xβ

Le potentiel harmonique peut s’écrire

Uharm. =
1

2

∑
R,R′

∑
α,β

uα (R)Dαβ (R−R′)uβ (R′) (2.10)

On peut vérifier que (2.9) s’exprime sous la forme générale (2.10) si

Dαβ (R−R′) = δR,R′

∑
R′′

φαβ (R−R′′)− φαβ (R−R′) (2.11)

Dans le cas général, et en particulier dans le cas des métaux, le potentiel ne
peut pas être représenté comme une somme d’interaction de paires, et il faut
partir de la forme générale (2.10).

Dans le cas des cristaux covalents et dans le cas des métaux il faut ex-
plicitement tenir compte de l’effet des électrons de valence sur le potentiel
d’interaction entre les ions.

Pour déterminer leur effet on fait l’approximation adiabatique. Elle
repose sur le fait que les vitesses électroniques sont de l’ordre de la vitesse de
Fermi (vF ∼ 108 cm/sec) et que la vitesse thermique (quadratique moyenne)
des ions est plus faible



2.2. MODES NORMAUX DE LA CHAÎNE 5

vion

√
3kBT

M
∼= 105cm/sec

On peut alors admettre que les électrons suivent instantanément le mouve-
ment des ions. Ceci est équivalent à dire que les électrons se trouvent toujours
dans l’état fondamental correspondant à la configuration ionique considérée.

2.2 Modes normaux d’un réseau de Bravais

monoatomique à une dimension

Nous verrons au chapitre 3 que pour expliquer la variation de la chaleur
spécifique en fonction de la température, il est essentiel de décrire quanti-
quement les vibrations du réseau. Cependant, les résultats obtenus dans le
cadre d’une description classique, en particulier la décomposition en modes
normaux des vibrations, pourra être transposée sans difficulté au cas quan-
tique. C’est la raison pour laquelle nous nous attachons dans ce § et les 2 §
suivants, à décrire classiquement les vibrations du réseau.

Nous choisissons d’autre part, pour illustrer les idées de base, le cas simple
d’une châıne linéaire d’atomes, tous identiques, équidistants à l’équi-
libre. Ce cas correspond aussi à la description des variations (longitudinales
ou transverses) associées à une onde élastique se propageant selon l’une des
directions principales [100], [110] ou [111] d’un cristal cubique, car dans ces
cas des plans entiers d’atomes se déplacent en phase.

2.2.1 Energie potentielle de la châıne linéaire

Soit donc un ensemble d’ions, de masse M , séparés à l’équilibre par une
distance a, de telle sorte que le vecteur R du réseau de Bravais est donné par
R = na.

Dans ce cas le potentiel de paire donné par (2.9) s’écrit, en notant u (na) =
un

Uharm. =
1

4

∑
n,n′

(un − un′)2 φxx (na− n′a) (2.12)

En introduisant la notation,

Cn,n′ = φxx (na− n′a)
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Figure 2.2 – Châıne linéaire, • correspond à la position des ions à l’équilibre , ◦
à leur position en tenant compte des vibrations.

on peut récrire (2.12)

Uharm. =
1

4

∑
n,n′

Cn,n′ (un − un′)2 (2.13)

A cause de la symétrie d’inversion du réseau de Bravais, notons que

Cn,n′ = φxx (na− n′a) = φxx (n′a− na) = Cn′,n

Dans le cas particulier où l’on ne tient compte que des interactions entre
plus proches voisins, les seuls coefficients non nuls sont tels que n− n′ =
±1, et l’on note

Cn,n+1 = Cn,n−1 = C (2.14)

Lorsque le nombre d’atomes N de la châıne est fini, il faut préciser les condi-
tions aux limites. La nécessité de définir les conditions de bord vient de
la symétrie de l’espace. L’extrémité gauche de la châıne doit avoir les mêmes
propriétés que l’extrémité droite. On a deux choix. Soit on impose que les
vibrations cessent au bord de la châıne (ou sur les faces du cristal en 3D), ou
on suppose des conditions de bord périodiques. Le premier choix ne permets
pas de décrire la conduction de chaleur car les extrémités de la châıne (ou du
cristal en 3D) ne bougent pas donc il n’est pas possible de coupler la chaleur
au cristal. Nous choisissons les conditions aux limites périodiques de
Born von Karman. Pour les vibrations de la châıne linéaire cela revient
à admettre que les atomes n = 1 et n = N de la châıne sont reliés par un
ressort de constante C via une barre rigide de masse nulle

Dans ce cas on interprète uN+1, comme

uN+1 = u1 (2.15)
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1 2  – 1  

Figure 2.3 – Les conditions de bord de Born von Karman représentées par une
barre, on peut également s’imaginer fermeture circulaire de la châıne.

Avec les relations (2.14) et (2.15), l’énergie potentielle s’écrit dans ce cas,

Uharm. =
1

2

N∑
n=1

C (un+1 − un)2 (2.16)

Dans le cas général, le potentiel harmonique de la châıne linéaire est donné
par (2.10), il s’écrit

Uharm. =
1

2

∑
n,n′

unDn,n′un′ ; n, n′ = 1, 2, . . . , N (2.17)

ou sous forme matricielle (voir appendice A) en introduisant les vecteurs u
∼

et u
∼
t (transposé de u

∼
)

u
∼

=



u1

u2

·
·
·
·
·
·
uN


u
∼
∈ RN (2.18)

U(u)
∼

=
1

2
u
∼
tD
≈
u
∼

(2.19)

Dans le cas de l’interaction aux plus proches voisins la matrice D
≈

prend une

forme simple donnée dans l’appendice A (relation A.7).
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2.2.2 Les modes propres de la châıne linéaire

Pour déterminer l’évolution en fonction du temps des déplacements un (t)
de chaque atome, il faut résoudre les équations de mouvement de la châıne.
Soit dans l’approximation aux proches voisins,

H
(
p
∼
, u
∼

)
=

N∑
n=1

p2
n

2m
+
C

2

N∑
n=1

(un+1 − un)2 (2.20)

Les équations de Hamilton s’écrivent
u̇n =

∂H
∂pn

=
pn
m

ṗn = − ∂H
∂un

= −C [(un − un−1)− (un+1 − un)]

= −C (−un−1 + 2un − un+1)

(2.21)

L’équation de mouvement de la châıne est donnée par (2.22) où n = 1, . . . , N .

ün = −C
m

(−un−1 + 2un − un+1) (2.22)

Ce sont les équations que l’on obtiendrait en admettant que chaque ion est
relié à ses voisins par un ressort de constante C.

Dans le cas général à une dimension où H(p
∼
, u
∼

) est donné par

H(p
∼
, u
∼

) =
1

2m
p
∼

t · p
∼

+
1

2
u
∼
tD
≈
u
∼

(2.23)

les équations de Hamilton conduisent à l’équation du mouvement (voir A.15)

mü
∼

= −D
≈
u
∼

(2.24)

Il s’agit, pour résoudre le problème dynamique, de rechercher les solutions
non triviales de (2.22) ou (2.24). Le problème se ramène à la résolution d’un
système de N équations différentielles linéaires à coefficients constants. Ces
équations ne sont pas indépendantes, physiquement elles correspondent à un
ensemble d’oscillateurs harmoniques couplés les uns aux autres. Pour simpli-
fier formellement le problème nous cherchons une transformation qui modifie
les N équations couplées (2.24) en N équations à variables séparées du type
oscillateur harmonique.
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Nous montrons dans l’appendice A qu’une telle transformation est pos-
sible et que le déplacement un (t) d’un atome s’écrit (voir A.29)

un (t) =
1√
N

N−1∑
ν=0

aν exp [i (kνna− ωνt)] + c.c. (2.25)

où

kν =
2πν

aN
; ν = 0, 1, . . . , N − 1. (2.26)

Si l’on exclut le mode ν = 0, qui correspond à un déplacement global de
l’ensemble de la châıne, chacun des termes de un (t) est un mode propre
de vibration de la châıne : le déplacement un (t) d’un atome autour de
sa position d’équilibre peut être décomposé en la somme de (N − 1) modes
propres collectifs s’étendant à l’ensemble du cristal.

La décomposition en modes propres et la forme de la dépendance spa-
tiale des un (t) sont une conséquence directe de la symétrie de translation de
la châıne linéaire, c’est un point essentiel clairement mis en évidence dans
l’appendice A. Nous montrons aussi dans cet appendice que la fréquence
propre ων est donnée par

ων =
√
dν/m (2.27)

où dν est une valeur propre de la matrice D
≈

(voir A.17). Ceci permet, dans le

cas d’interactions entre plus proches voisins, de calculer également ων (voir
app. A, § 3).

Dans ce qui suit nous suivons une démarche plus simple : en admettant la
décomposition (2.25) de un (t), nous déterminons ων en remplaçant les modes
propres un (t) dans l’équation de mouvement (2.22). Il vient, pour un mode
propre ν,

ω2
ν = 2

C

m
(1− cos kνa) =

4C

m
sin2 kνa

2

soit

ων = ±2

√
C

m
sin

kνa

2

On remarque que si on ajoute ou soustrait 2π/a aux kν donnés en (2.26)
le déplacement un (t) n’est pas modifié. Nous choisirons dans ce qui suit les
N valeurs de kν comprises entre −π/a et π/a, qui correspondent pour une
châıne linéaire aux valeurs de k comprises dans la 1ère zone de Brillouin.
D’autre part, la solution pour ων (kν) avec le signe + est équivalente à la
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solution avec le signe – et la valeur kν opposée. On admet donc que kν peut
prendre les valeurs positives et négatives comprises entre −π/a et π/a et que
ων est toujours positif, sans diminuer le nombre de solutions.

En résumé, il y a N valeurs kν inéquivalentes, chacune avec une fréquence
unique donnée par

ων = 2

√
C

m

∣∣∣∣sin kνa2
∣∣∣∣

 ( ) 

/a + /a 

2

Figure 2.4 – Courbe de dispersion pour une châıne linéaire en tenant compte
uniquement d’interactions entre plus proches voisins. La ligne en trait interrompus
correspondrait à un milieu continu (a −→ 0).

Notons que dans un schéma de zone étendu, on aurait des valeurs de k
hors de la 1ère zone de Brillouin. Elles se ramènent à des valeurs dans la
1ère zone de Brillouin en leur soustrayant un nombre entier de 2π/a, sans
modification de la fréquence car ω (k) = ω (k ± n2π/a). De façon générale on
peut toujours se ramener à la 1ère zone de Brillouin en translatant le vecteur
d’onde k d’un vecteur G du réseau réciproque, sans modifier la fréquence.

Pour compléter la description de la décomposition en modes propres, no-
tons (voir appendice A, § 4) que l’hamiltonien (2.23) se décompose en une
somme d’hamiltoniens type oscillateur harmonique de fréquence ων .

H =
∑
ν

Hν (pν , uν) =
∑
ν

(
p2
ν

2m
+
m

2
ω2
νu

2
ν

)
(2.28)
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Cette décomposition forme la base du passage d’une description de type
classique à une description de type quantique.

2.2.3 Discussion des solutions

La relation ω = ω (k) porte le nom de courbe de dispersion. Lorsque
k est faible par rapport à π/a (soit lorsque λ� 2a), ω est linéaire en k

ω = a

√
C

m
|k| (2.29)

C’est le comportement que nous avons rencontré pour une onde élastique
se propageant dans un milieu continu. La vitesse de phase et la vitesse de
groupe sont égales. L’une des caractéristiques des ondes se propageant dans
un milieu discret est que la relation linéaire entre ω et k disparâıt lorsque λ
s’approche de 2a. La courbe de dispersion devient de plus en plus plate et
la vitesse de groupe vg = dω/dk diminue lorsque k augmente. A la limite de
la 1ère zone de Brillouin elle s’annule, l’onde ne se propage plus. Dans ce cas
un (t) devient,

un (t) = u exp (−iωt) exp (inπ)︸ ︷︷ ︸
(−1)n

+ c.c. (2.30)

qui correspond à une onde stationnaire. Des atomes successifs vibrent dans
des directions opposées

Figure 2.5 – Vibration un des atomes dans le cas où k = ±π/a.

Dans le cas où l’on tient compte des interactions au-delà des proches
voisins, le comportement général de ω (k) ne change pas : ω (k) varie linéai-
rement pour de faibles valeurs de k par rapport à π/a, ∂ω/∂k s’annule en
k = ±π/a.
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2.3 Modes normaux d’un réseau de Bravais

monoatomique à 3 dimensions

Nous considérons maintenant un potentiel harmonique général, à 3 di-
mensions, du type (2.10) soit

Uharm =
1

2

∑
R,R′

∑
α,β

uα (R)Dαβ (R−R′)uβ (R′) ; α, β = x, y, z

que l’on peut écrire sous forme matricielle (matrice 3×3),

Uharm =
1

2

∑
R,R′

u (R)D (R−R′) u (R′) (2.31)

On montre (voir par ex. A-M, chap. 22) que les matrices D (R−R′) obéissent
à des propriétés de symétrie, soit :

Dαβ (R−R′) = Dβα (R′ −R) (2.32)

Dαβ (R−R′) = Dαβ (R′ −R) (2.33)

∑
R

Dαβ (R) = 0 (2.34)

2.3.1 Recherche des modes normaux

Il s’agit donc de résoudre 3N équations du mouvement (une équation
pour chacune des 3 composantes des déplacements par rapport à la position
d’équilibre uα (R) de l’ion R des N ions formant le réseau)

m
··
uα (R) = − ∂Uharm

∂uα (R)
= −

∑
R′,β

Dαβ (R−R′)uβ (R′) (2.35)

Comme dans le cas à une dimension, nous choisissons des conditions de bord
périodiques de Born von Karman, soit

u (R +Niai) = u (R) (2.36)
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pour chacun des vecteurs primitifs ai du réseau de Bravais, où Ni est
le nombre d’atomes dans la direction ai, le nombre total N étant égal à
N1 ·N2 ·N3.

Comme dans le cas à une dimension nous écrivons que les déplacements
uα (R) peuvent être décomposés en une somme de modes normaux

uα (R) ∼
∑
ν

aν (0) εα (kν) exp [ikν ·R− iω (kν) t] + c.c. (2.37)

où ε est un vecteur, qu’il faut déterminer, et qui indique la direction dans
laquelle les ions se déplacent.

La condition (2.36) implique que

exp (ikν ·Niai) = 1 ; i = 1, 2, 3 (2.38)

soit que kν est de la forme

kν =
3∑
i=1

νi
Ni

bi ; νi = 0, 1, . . . , Ni − 1 (2.39)

avec bi le vecteurs primitifs du réseau réciproque. Comme dans le cas à 1
dimension, il y a N = N1 · N2 · N3 valeurs kν distinctes et l’on choisit de
représenter les courbes de dispersion ω (kν) dans la 1ère zone de Brillouin.

En substituant un terme de (2.37) dans les équations de mouvement (2.35)
on trouve une équation aux valeurs propres

mω2 (k) εα (k) =
∑
β

Dαβ (k) εβ (k) (2.40)

ou sous forme matricielle,

mω2 (k) ε
∼

(k) = D
≈

(k) ε
∼

(k) (2.41)

où la matrice dynamique Dαβ (k) est définie par

Dαβ (k) =
∑
R

Dαβ (R) exp (−ik ·R) (2.42)

En utilisant les relations de symétrie (2.33) et (2.34) on montre que

Dαβ (k) = −2
∑
R

Dαβ (R) sin2

(
1

2
k ·R

)
(2.43)
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ce qui démontre que D (k) est une matrice réelle et paire en k. Ceci implique
que l’équation (2.41) possède 3 vecteurs propres εs (k) (s = 1, 2, 3) orthogo-
naux que l’on peut normaliser,

εs (k) · εs′ (k) = δs,s′

A chaque vecteur propre εs (kν) correspond une fréquence propre ωs (kν). On
a donc finalement,

uα (R) =
1√
3N

∑
ν

3∑
s=1

aν,sεα,s (kν) exp [ikν ·R− iωs (kν) t] + c.c. (2.44)

On en conclut que dans un réseau de Bravais monoatomique il existe 3N
modes propres donnés par (2.44). En effet, il existe pour chacune des N
valeurs kν dans une cellule primitive, 3 directions εs de polarisation.

2.3.2 Discussion des solutions, résultats expérimentaux

Nous avons montré dans le cas à une dimension que, pour de faibles
valeurs de k, la fréquence ω (k) varie linéairement avec k. Ce comportement
subsiste à 3 dimensions, il est relié au fait que pour k faible la matrice Dαβ (k)
donnée en (2.43) est proportionnelle à (k ·R)2.

Dans le cas à 3 dimensions il est important d’examiner non seulement le
comportement des fréquences ωs (k) mais aussi l’orientation du vecteur pola-
risation εs (k). Dans un milieu isotrope on peut toujours choisir les directions
de polarisation, pour une valeur k donnée, de telle sorte qu’une direction
(mode longitudinal) soit parallèle à k, et deux directions (modes transverses)
soient perpendiculaires à k. Dans un cristal anisotrope la situation peut être
plus complexe, cependant la situation se simplifie si k est orienté selon l’un
des axes de symétrie du cristal. Si par exemple k est situé selon un axe de
symétrie de rotation d’ordre 3, 4 ou 6, la situation est équivalente à celle du
milieu isotrope.

Nous donnons dans la Fig. 2.6 les courbes de dispersion déterminées pour
l’aluminium et pour des valeurs de k orientées selon les axes [111] et [200].
On remarque que, comme dans le cas à une dimension, la vitesse de groupe
est nulle aux bords de la 1ère zone de Brillouin. On remarque aussi que les 2
modes transversaux sont dégénérés.
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Figure 2.6 – Courbes de dispersion de Al pour des valeurs k selon [111] et [200].
Les modes longitudinaux s’appellent L, les deux modes transversaux T1 et T2 sont
dégénérés pour les deux directions choisies et appelés simplement T.

2.4 Modes normaux d’un réseau à une di-

mension avec une base

Les relations de dispersion sont qualitativement différentes dans les cris-
taux qui possèdent deux ou plusieurs atomes dans une cellule primitive. C’est
par exemple le cas de cristaux ioniques tels que NaCl, dont la base est formée
de deux atomes différents, ou de cristaux tels que le diamant ou le germa-
nium dont la base est formée de deux atomes identiques. Pour introduire
cette nouvelle situation, nous prenons le cas d’un réseau de Bravais à une
dimension, formé d’atomes identiques, mais ayant deux atomes par cellule
primitive.

Pour simplifier les notations, nous supposons que chaque atome n’interagit
qu’avec ses plus proches voisins et nous notonsK etG les constantes de rappel
correspondant respectivement aux interactions entre les 2 atomes d’une même
cellule (séparés par la distance d) et de 2 cellules voisines (séparés par a−d).

Comme dans le cas d’une base monoatomique, on choisit des conditions
de bord périodiques, correspondant à une châıne fermée sur elle-même.
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(  – 1)  (  + 1)  

Figure 2.7 – Châıne linéaire à l’équilibre formée de 2 atomes par cellule primitive.
Le paramètre du réseau de Bravais est a. d est la distance entre les 2 atomes de la
base. Nous supposons d ≤ a/2.

L’énergie potentielle harmonique s’écrit dans ce cas

Uharm. =
K

2

N∑
n=1

(un − vn)2 +
G

2

N∑
n=1

(un − vn−1)2 (2.45)

où nous avons noté respectivement un et vn les déplacements des ions
qui oscillent autour du site na et (na+ d), en accord avec l’hypothèse d ≤
a/2, K ≥ G. Dans le cas où les deux atomes sont égaux, les équations de
mouvement s’écrivent,

mün = −∂Uharm
∂un

= −K (un − vn)−G (un − vn−1) (2.46)

mv̈n = −∂Uharm
∂vn

= K (un − vn) +G (un+1 − vn)

Nous cherchons à nouveau des solutions du type

un =
N−1∑
ν=0

aν exp (ikνna− iωνt) + c.c. (2.47)

vn =
N−1∑
ν=0

bν exp (ikνna− iωνt) + c.c.
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où aν et bν sont des constantes qui déterminent les amplitudes relatives de
déplacement des 2 atomes de la base.

Les conditions de bord périodiques imposent que exp (ikνNa) = 1, soit
que

kν =
2π

a

ν

N
ν = 0, 1, . . . , N − 1 (2.48)

Comme dans le cas d’une base monoatomique, on choisit les valeurs de kν
comprises dans la 1ère zone de Brillouin.

En remplaçant les expressions (2.47) dans les équations de mouvement
(2.46), on obtient le système d’équations linéaires[

mω2
ν − (K +G)

]
aν + [K +G exp (−ikνa)] bν = 0 (2.49)

[K +G exp (ikνa)] aν +
[
mω2

ν − (K +G)
]
bν = 0

Les solutions non triviales correspondent aux fréquences propres ων (k) qui
annulent le déterminant,

ω2
ν =

K +G

m
± 1

m

√
(K +G)2 − 4KG sin2 kνa

2
(2.50)

avec
aν
bν

= ∓ K +G exp (ikνa)

|K +G exp (ikνa)|
(2.51)

Ainsi pour chacune des N valeurs de kν il y a 2 solutions, ce qui correspond
à 2N modes normaux de vibration, en accord avec ce problème où l’on a 2
ions dans chacune des N cellules primitives.

Les 2 solutions ων (k) de (2.50) sont les 2 branches de la relation de
dispersion, elles sont représentées dans la Fig. 2.8.

La branche inférieure, dite acoustique, a la même structure que celle
obtenue dans le cas d’une base monoatomique. La relation entre ω et k est
linéaire pour des faibles valeurs de k, sa vitesse de groupe s’annule en bord
de zone. La branche supérieure est dite optique car les modes optiques dans
les cristaux ioniques peuvent interagir avec les ondes électromagnétiques, ce
qui détermine le comportement optique de ces cristaux.

Pour comprendre le comportement différent des modes optique et acous-
tique, étudions séparément les cas où k ∼ 0 et k ∼ π/a.

Cas où k � π/a
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Figure 2.8 – Relation de dispersion pour une châıne linéaire diatomique. La
branche inférieure est dite acoustique, la branche supérieure optique.

Dans ce cas les solutions (2.50) sont données par

ω+
∼=
√

2 (K +G)

m
−O (ka)2 (2.52)

ω− ∼=

√
K ·G

2m (K +G)
(ka)

La solution ω− correspond au mode acoustique, elle est telle que aν = +bν , ce
qui signifie que les 2 ions d’une même cellule sont en phase. La solution ω+,
qui correspond au mode optique, est telle que aν = −bν . Ainsi pour le mode
optique les deux ions d’une même cellule vibrent en opposition de phase, ce
mouvement est schématisé ci-dessous.

Figure 2.9 – Mode optique de grande longueur d’onde dans une châıne linéaire
de base diatomique.
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Cas où k = π/a
Dans ce cas les fréquences ω sont données par

ω+ =

√
2K

m
ω− =

√
2G

m
(2.53)

correspondant respectivement à aν = −bν et aν = +bν . Dans le cas où
k = π/a les mouvements dans 2 cellules voisines sont en opposition de phase
[exp (ikνa) = (−1)n], et les mouvements des atomes correspondants sont dé-
crits dans la Fig. 2.10.

b)

a)

Figure 2.10 – Mode optique (a) et acoustique (b) avec k = π/a pour une châıne
linéaire de base diatomique.

Dans chaque cas, seul un type de distance (d ou a− d) est modifié, ce qui
explique que les fréquences dépendent uniquement de K ou G.

Pour résumer on peut dire que : dans le cas acoustique les ions d’une
cellule primitive se déplacent essentiellement en phase, la dynamique est do-
minée par l’interaction entre les cellules ; dans le cas optique les ions d’une
même cellule vibrent l’un par rapport à l’autre, la fréquence de vibration
est élargie en une bande de fréquence par l’interaction entre les cellules. Il
est aussi intéressant de remarquer qu’il existe une bande de fréquence, pour
laquelle il n’y a aucun mode vibratoire, située entre les branches acoustique
et optique.

Dans le cas à 3 dimensions, pour une cellule primitive avec une base de
p atomes, il apparâıt 3N modes acoustiques et (3p− 3)N modes optiques
de vibration. Le comportement qualitatif est le même que celui calculé dans
le cas à une dimension. A titre d’exemple nous donnons dans la Fig. 2.11 la
relation de dispersion déterminée dans le cas d’un cristal de germanium.
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Figure 2.11 – Relation de dispersion dans la direction [111] d’un cristal de
germanuim à 80 K. Les 2 branches acoustiques transversales (TA) sont dégénérées,
de même que les 2 branches optiques transversales (TO).

2.5 Quantification des ondes élastiques

Dans un modèle classique la chaleur spécifique d’un solide est une constante,
l’expérience montre cependant qu’elle décrôıt à basse température. Ce com-
portement ne peut être compris que si l’on introduit la quantification des
vibrations se propageant dans un solide. Ce problème est très proche de ce-
lui de la quantification des niveaux d’énergie et des amplitudes de vibration
d’un oscillateur harmonique. Nous rappelons quelques notions sur l’oscilla-
teur harmonique dans le § ci-dessous, puis nous indiquerons que l’on peut
aussi du point de vue quantique décomposer les vibrations d’un solide en une
somme de modes propres, chaque mode étant régi par une équation de type
oscillateur harmonique.



2.5. QUANTIFICATION DES ONDES ÉLASTIQUES 21

2.5.1 Rappel sur l’oscillateur harmonique

L’exemple le plus simple d’un oscillateur est celui d’une particule de masse
m se déplaçant dans un potentiel

V (x) =
1

2
Cx2

Mais l’oscillateur harmonique intervient également dans l’étude du champ
électromagnétique, qui est formellement équivalent à un ensemble d’oscilla-
teurs indépendants. La quantification du champ est obtenue en quantifiant
les oscillateurs associés aux divers modes propres de la cavité.

En mécanique classique l’énergie de la particule est donnée par

E =
p2

2m
+

1

2
mω2x2

où ω =
√
C/m est la fréquence propre d’oscillation. E est une constante

du mouvement, qui peut prendre toutes les valeurs comprises entre 0, et en
principe l’infini.

En mécanique quantique les grandeurs classiques x et p sont rempla-
cées par les observables x et p, qui vérifient la relation de commutation

[x, p] = i~

L’opérateur hamiltonien H du système s’écrit

H =
p2

2m
+

1

2
mω2x2 (2.54)

et les fonctions propres de l’équation de Schrödinger stationnaire sont
solution de [

− ~2

2m

d2

dx2
+

1

2
mω2x2

]
ψ (x) = Eψ (x) (2.55)

L’équation aux valeurs propres (2.55) se résout de façon élégante en intro-
duisant les opérateurs de création et d’annihilation. Le calcul montre que les
valeurs propres sont de la forme

En =

(
n+

1

2

)
~ω (2.56)
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où n = 0, 1, 2, . . . En mécanique quantique les états d’énergie de l’oscillateur
harmonique sont quantifiés et ne peuvent pas prendre n’importe quelle valeur.
Remarquons d’autre part que l’énergie la plus basse possible n’est pas nulle,
la fonction d’onde associée a aussi une certaine extension spatiale. Cette diffé-
rence entre les résultats classique et quantique a son origine dans les relations
d’incertitude, qui interdisent de minimiser simultanément l’énergie cinétique
et l’énergie potentielle. L’état fondamental correspond à un compromis dans
lequel la somme de ces deux énergies est minimum. On dit que l’énergie 1/2
~ω est l’énergie de point zéro de l’oscillateur harmonique.

2.5.2 Quantification des ondes élastiques. La notion de
phonons

Pour déterminer les nivaux d’énergie d’un cristal harmonique (avec une
base monoatomique) formé de N ions, il faut déterminer les valeurs propres
de l’hamiltonien quantique correspondant à l’hamiltonien classique

H =
1

2m

∑
R

p2 (R) + Uharm. (2.57)

où Uharm. est donné par (2.10). Nous avons montré dans l’appendice A pour
le cas d’une châıne linéaire, que l’hamiltonien (2.19) (qui est l’équivalent à
une dimension de 2.57), peut être exprimé comme une somme de N hamil-
toniens découplés de type oscillateur harmonique. Chaque hamiltonien est
associé à un mode propre de vibration du cristal. Le passage d’une descrip-
tion classique à la description quantique est fait dans l’appendice B. Nous
montrons pour la châıne linéaire que l’hamiltonien H a pour état propre un
état |Ω > caractérisé par l’ensemble des nombres quantiques nν où nν est un
entier positif ou nul

H |n1, . . . , nν , . . . nN−1 >= E|n1, . . . , nν , . . . nN−1 > (2.58)

où

E =
N−1∑
ν=1

~ων
(
nν +

1

2

)
(2.59)

Ce résultat se généralise à 3 dimensions et on peut écrire (2.57) sous la forme
de 3 N hamiltoniens correspondant à des oscillateurs harmoniques découplés,
les fréquences de ces oscillateurs correspondent aux 3 N modes normaux
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classiques décrits au paragraphe 2.3. La contribution à l’énergie totale d’un
mode normal particulier, de fréquence angulaire ωs (kν), ne peut prendre que
l’ensemble discret de valeurs(

nkν ,s +
1

2

)
~ωs (kν)

où nkν ,s, noté nombre d’occupation du mode normal ν, s, prend les valeurs
0, 1, 2, . . .. L’énergie totale est la somme des énergies des modes normaux

E =
∑
kν ,s

(
nkν ,s +

1

2

)
~ωs (kν) (2.60)

Nous avons décrit le résultat (2.60) en terme de nombre d’occupation des
modes normaux de vecteur d’onde kν et d’indices s, où s caractérise la po-
larisation et la branche (acoustique ou optique) du mode normal considéré.
En général le language des modes normaux est remplacé par une description
de type corpusculaire, équivalente à la terminologie utilisée dans la descrip-
tion quantique du champ électromagnétique. Dans cette théorie les énergies
des modes normaux de la radiation E.M. dans une cavité sont données par(
n+ 1

2

)
~ω où ω est la fréquence angulaire du mode. Dans ce cas on ne parle

pas du nombre d’occupation n du mode de fréquence ω, mais du nombre
n de photons de fréquence ω. De la même manière, au lieu de parler du
nombre d’occupation nkν ,s du mode normal de fréquence ωs (kν), on dit qu’il
y a nkν ,s phonons de vecteur d’onde kν et de polarisation s présents dans le
crystal. Cette terminologie est particulièrement utile lorsqu’on examine les
processus d’échange d’énergie entre modes normaux, entre un électron et les
modes normaux, ou encore entre une onde E.M. et une vibration du réseau.

Cependant, il faut bien réaliser qu’un phonon n’est pas une particule, on
parle de quasiparticule, car il n’y a pas d’observable de position. La quasi-
particule est délocalisée sur l’ensemble du cristal.

2.6 Règles de sélection pour l’interaction entre

une particule (ou rayonnement) et les pho-

nons

Le but de ce paragraphe est de montrer que lors de l’interaction d’une
particule (par exemple un neutron) avec un cristal, il existe des règles de
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sélection lors du processus d’échange d’énergie et de quantité de mouvement
entre la particule et les phonons du cristal. Pour cela nous considérons un
état initial caractérisé par une particule d’énergie E et de quantité de mouve-
ment p et un nombre nkν ,s de phonons dans le mode kν,s. L’état final, après
interaction, est caractérisé par p′,E′ et n′kν ,s.

k ,    �� � k ,  

p ,  

p, 

2.6.1 Quantité de mouvement d’un phonon

Il faut toutefois bien réaliser que les phonons d’un réseau ne portent
pas de quantité de mouvement. On peut démontrer sans difficulté ce
résultat à une dimension, on a en effet

p = m
d

dt

N∑
n=1

un (t) (2.61)

où un (t) est donné par (2.25). En ne considérant qu’un mode ν on a

un (t) ∼ aν exp [i (kνna− iωνt)] + c.c.

et

kν =
2π

a

ν

N

En remplaçant (2.25) dans (2.61), il vient

pν = −iωνmaν exp (−iωνt)
N∑
n=1

exp (ikνna) + c.c.
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La somme est une série géométrique qui s’annule pour toutes les valeurs
kν compatibles avec les conditions aux bords de la châıne linéaire. On a
ainsi démontré, dans le cas classique, que la quantité de mouvement associée
au mode normal kν , donc au phonon kν , s’annule. Dans le cas où kν = 0,
les amplitudes sont les mêmes pour tous les ions du cristal, la quantité de
mouvement résultante est non nulle. kν = 0 correspond à une translation
globale du cristal, ce n’est pas un mode propre vibrationnel. Toutefois, c’est
le déplacement en bloc du cristal qui assure la conservation de la quantité
de mouvement lors d’une interaction entre une particule (ou un rayonne-
ment) et le cristal. Ce calcul à une dimension se généralise immédiatement
à 3 dimensions, de même que lorsque les vibrations du réseau sont décrites
quantiquement.

2.6.2 Règles de sélection

Lors de l’interaction entre une particule incidente dans le cristal et les
phonons, tout se passe comme si une pseudo quantité de mouvement, ~k,
que l’on notera ”crystal momentum”, était conservée à un vecteur ~G du
réseau réciproque près. Pour démontrer ce résultat, il faut tenir compte de
la symétrie de translation du réseau. Prenons par exemple l’interaction entre
un neutron (n) et les ions du réseau (i). L’hamiltonien d’interaction s’écrit,

Hn−i =
∑
R

w (r−R− u (R)) (2.62)

où r représente la position du neutron. A cause de la symétrie de translation
du réseau, cet hamiltonien ne change pas lorsque

r −→ r + R0 et u (R) −→ u (R−R0) (2.63)

où R0 est un vecteur du réseau de Bravais. En effet, on a

Hn−i −→
∑
R

w [r + R0 −R− u (R−R0)] =

∑
R

w [r− (R−R0)− u (R−R0)] = Hn−i

C’est cette invariance qui est à l’origine des règles de sélection. Nous montrons
à l’appendice B, § 4, que, dans le cas d’une châıne linéaire, l’on a,

p+
∑
ν

~kνnν = p′ +
∑
ν

~kνn′νmod
2π~
a
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Ce résultat se généralise à 3 dimensions,

p +
∑
ν,s

~kνnkν,s = p′ +
∑
ν,s

~kνn
′
kν ,s + ~G (2.64)

où G est un vecteur du réseau réciproque. Il faut noter que cette règle de
sélection est plus faible que celle que l’on obtiendrait si le cristal possédait
la symétrie de translation complète de l’espace vide. Elle est vraie à un vec-
teur du réseau réciproque près, car la symétrie de translation du cristal est
uniquement celle du réseau de Bravais.

Pour décrire l’interaction, il faut encore ajouter la conservation de l’éner-
gie, soit

E +
∑
kν ,s

~ωs (kν)nkν ,s = E ′ +
∑
kν ,s

~ωs (kν)n
′
kν ,s (2.65)

2.7 Diffraction des neutrons par un cristal

Les relations de dispersion ω (k) sont en général déterminées par la diffu-
sion inélastique de neutrons impliquant l’émission ou l’absorption de phonons.
Un neutron ”voit” le cristal essentiellement par interaction avec les noyaux
des atomes, il peut traverser le cristal sans interaction ou en excitant un
faible nombre de modes vibratoires du cristal. D’autre part les énergies et
longueurs d’onde associées au neutron ont le bon ordre de grandeur pour
sonder le cristal. On obtient pour n entier,

k = 10ncm−1 −→ λ = 6.28 · 108−nÅ

E = 2.07 · 102n−19eV −→ T =
E

k
= 2.4 · 102n−15K

Ainsi les neutrons ayant une valeur k ∼= 108cm−1, correspondant au bord de
zone, ont une longueur d’onde λ ∼= 6.28 Å qui est de l’ordre de grandeur des
distances interatomiques. La température associée correspond à T ∼= 24 K,
on parle de neutrons thermiques.

Considérons tout d’abord le cas d’une diffusion élastique, soit sans
modification de l’état vibratoire du cristal, n′kν ,s = nkν ,s (zero phonon scatte-
ring). Dans ce cas (2.64) et (2.65) deviennent en notant p = ~kn et p′ = ~k′n
(kn est le vecteur d’onde du neutron à ne pas confondre avec le vecteur d’onde
kν du mode normal)

kn = k′n et k′n = kn + G (2.66)
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Ce sont précisément les conditions de diffraction de von Laue, établies dans
le cas des rayons X. Ainsi la diffusion élastique de neutrons donne les mêmes
informations que la diffraction des rayons X. D’autre part, comme le neutron
porte un moment magnétique, qui peut interagir avec le moment magnétique
d’un atome, la diffraction de neutrons donne en plus des informations sur la
structure magnétique des cristaux.

Ce sont les neutrons qui émettent ou absorbent un phonon qui donnent
des informations sur les courbes de dispersion. On parle de diffusion à un
phonon (one-phonon scattering). Prenons pour être spécifique le cas où le
neutron absorbe un phonon, les équations (2.64) et (2.65) donnent,

E ′ = E + ~ωs (k) avec n′k,s − nk,s = −1

p′ = p + ~k + ~G
(2.67)

En tirant p′ − p de la seconde relation et en remarquant que ωs (k) =
ωs (k + G), il vient à partir de la 1ère relation

p′2

2m
=

p2

2m
+ ~ωs

(
p′ − p

~

)
(2.68)

Lors de la mesure, l’énergie et la quantité de mouvement du neutron incident
sont connues. On détermine, pour une direction de détection donnée, qui fixe
la direction de p′, l’énergie du neutron diffusé, ce qui permet de calculer ωs
et p′. Toutes les grandeurs intervenant dans (2.68) sont ainsi connues, et
l’on observe un pic de diffusion en fonction de l’énergie des neutrons diffusés
lorsque la relation (2.68) est satisfaite. Un tel spectre expérimental est donné
dans la Fig. 2.12.
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Figure 2.12 – Diffusion de neutrons sur un cristal de cuivre : le nombre de
neutrons émergeant dans une direction donnée, pour une énergie incidente donnée,
est reporté en fonction de la longueur d’onde des neutrons diffusés. La largeur des
pics est une mesure du temps de vie des phonons.


