Chapitre 2

La dynamique du réseau.
La notion de phonon

La possibilité qu’ont les ions d’un métal ou d’un isolant de se déplacer
autour de leur position d’équilibre est un élément qui doit étre pris en compte
dans la description des propriétés d’un solide. De facon générale on peut dire
que :

— les vibrations des ions sont essentielles dans la détermination des pro-
priétés d'un solide qui ne sont pas dominées par la contribution des
électrons (chaleur spécifique a des températures 7' > 10 K, dilatation
thermique des solides, fusion)

— les vibrations du réseau participent au transport de 1'énergie dans
un solide (conductivité thermique des isolants, propagation des ondes
acoustiques)

— les vibrations permettent de comprendre la variation du temps de
relaxation 7, des électrons introduit en relation avec les phénomenes
de transport dans les métaux, en fonction de la température

— leffet des vibrations du réseau sur l'interaction effective entre deux
électrons d’un métal est a la base de la compréhension de la supra-
conductivité

— les vibrations du réseau jouent un role dans la réponse du solide en
présence d’une radiation (rayons X, lumiere visible, neutrons).

Nous étudierons les notions de base de la dynamique du réseau au chapitre

2 et examinerons son influence sur les propriétés thermiques (en particulier
chaleur spécifique) au chapitre 3.
Pour plus de détails le lecteur peut consulter les chapitres 22, 23, 24 et
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25 de Ashcroft-Mermin et les chapitres 4 et 5 du livre de Kittel.

2.1 Les hypotheses fondamentales

Un cristal parfait, sans vibrations, est décrit en donnant son réseau de
Bravais, ainsi que la description de 'arrangement des atomes (la base) dans
une cellule primitive. Rappelons qu'un réseau de Bravais est formé de tous
les points décrits par les vecteurs R tel que

R = nia; + ngds + N3as (21)

ol aj, as, ag sont les vecteurs primitifs et n; € Z.
La position r; d'un atome j de la base dans la cellule primitive spécifiée
par R est donnée, sans vibrations, par

r;(R)=R+d, (2.2)

En présence des vibrations nous ferons I’hypothese que la position d’équilibre
moyenne d'un ion est encore donnée par (2.2). On pourra donc écrire

r;(R)=R+d; +u,(R) (2.3)

ou u,; (R) représente le déplacement de l'atome j par rapport a la position
d’équilibre.

Nous ferons d’autre part I’hypothese que I'amplitude de déplacement
u (R) est faible, ceci permettra de faire I’approximation harmonique (voir
ci-dessous). Il faut cependant remarquer qu’une telle description ne permet
pas de décrire la diffusion d'un ion dans un cristal ou le comportement des
solides a des températures proches de leur point de fusion. Aussi la dilata-
tion thermique et la conductibilité thermique ne peuvent s’expliquer qu’en
introduisant des termes anharmoniques.

Pour étre concret, et pour simplifier I’écriture, prenons le cas d’un cristal
avec une base monoatomique, dans lequel on peut décrire ’énergie po-
tentielle d’interaction entre les ions comme une somme d’interactions de
paires. Notons ¢ (x) le potentiel d’interaction entre 2 ions séparés par le vec-
teur x, ce qui implique que le potentiel ne dépend que de la position relative
des ions. En tenant compte des vibrations,

x=R-R' 4+u(R)—-u(R)
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FIGURE 2.1 — Réseau de Bravais et vecteur déplacement u(R) pour une base
monoatomique.

L’énergie potentielle totale s’écrit,

:% 3" 6[R—R'+u(R)—u(R)] (2.4)
RIR

Dans I'hypothese ou les déplacements u (R) sont faibles, on peut développer
¢ (x) autour de (R — R/'), on obtient avec «, = z,y, 2

> {¢<R—R’>+Z[ua< o (R 52

RR’
RAR/

R-R/

¢
O0x,0xp

453 e (R) — i (RY)] [ (R) — s (R)] b (29)

a?ﬁ

R-R/

Le 1°" terme de (2.5) correspond au potentiel sans tenir compte des vibrations
(réseau statique),

Ustat. = = Z ¢(R—R') = Z¢ (2.6)

R,R/ R;AO
RAR/
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Le terme linéaire de (2.5) s’annule car le coefficient de u,, (R) correspond au
signe pres a la somme des forces qui s’exercent sur le ion R a I’équilibre, il

est donné par
9 Z 8%

L’approximation harmomque revient a négliger dans le développement
(2.5) tous les termes d’ordre supérieur a deux, on a donc

aUstat.
R—R/ aRO‘

~0 (2.7)

U= Ustat. + Uhm‘m. (28)

avec
1
Unarm >0 fta (R) = ua (R)] ¢pg (R = R/) [ug (R) — us (R')]
nzr
(2.9)

ou 56

Pap (X) = Or.0zs

Le potentiel harmonique peut s’écrire

Unarm. = = Zzua Dos (R —R)ug (R') (2.10)

RR’

On peut vérifier que (2.9) s’exprime sous la forme générale (2.10) si

Dap(R=R)) = 6w Y dos (R —R") — g5 (R —R) (2.11)

RH

Dans le cas général, et en particulier dans le cas des métaux, le potentiel ne
peut pas étre représenté comme une somme d’interaction de paires, et il faut
partir de la forme générale (2.10).

Dans le cas des cristaux covalents et dans le cas des métaux il faut ex-
plicitement tenir compte de 'effet des électrons de valence sur le potentiel
d’interaction entre les ions.

Pour déterminer leur effet on fait Papproximation adiabatique. Elle
repose sur le fait que les vitesses électroniques sont de 'ordre de la vitesse de
Fermi (vp ~ 10% cm/sec) et que la vitesse thermique (quadratique moyenne)
des ions est plus faible
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On peut alors admettre que les électrons suivent instantanément le mouve-

ment des ions. Ceci est équivalent a dire que les électrons se trouvent toujours
dans I’état fondamental correspondant a la configuration ionique considérée.

=~ 10°cm/sec

2.2 Modes normaux d’un réseau de Bravais
monoatomique a une dimension

Nous verrons au chapitre 3 que pour expliquer la variation de la chaleur
spécifique en fonction de la température, il est essentiel de décrire quanti-
quement les vibrations du réseau. Cependant, les résultats obtenus dans le
cadre d’'une description classique, en particulier la décomposition en modes
normaux des vibrations, pourra étre transposée sans difficulté au cas quan-
tique. C’est la raison pour laquelle nous nous attachons dans ce § et les 2 §
suivants, a décrire classiquement les vibrations du réseau.

Nous choisissons d’autre part, pour illustrer les idées de base, le cas simple
d’une chaine linéaire d’atomes, tous identiques, équidistants a 1’équi-
libre. Ce cas correspond aussi a la description des variations (longitudinales
ou transverses) associées a une onde élastique se propageant selon 'une des
directions principales [100], [110] ou [111] d’un cristal cubique, car dans ces
cas des plans entiers d’atomes se déplacent en phase.

2.2.1 Energie potentielle de la chaine linéaire

Soit donc un ensemble d’ions, de masse M, séparés a I’équilibre par une
distance a, de telle sorte que le vecteur R du réseau de Bravais est donné par
R = na.

Dans ce cas le potentiel de paire donné par (2.9) s’écrit, en notant u (na) =
/U/TL

Ubarm. = i Z (uy — un/)2 by (na —n'a) (2.12)

n,n’

En introduisant la notation,

Cn,n’ = ¢:p:v (TLCL - n,a)
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FIGURE 2.2 — Chaine linéaire, e correspond a la position des ions & ’équilibre , o
a leur position en tenant compte des vibrations.

on peut récrire (2.12)
1
Uharm. = Z Z Cn,n/ (un - un’)2 (213)

A cause de la symétrie d’inversion du réseau de Bravais, notons que

Cn,n’ = qba:a: (na - n'a) - ¢xac (n,a - na’) - Cn’:"

Dans le cas particulier ou 'on ne tient compte que des interactions entre
plus proches voisins, les seuls coefficients non nuls sont tels que n —n' =
41, et 'on note

Cn,n—H = Cn,n—l =C (214)

Lorsque le nombre d’atomes N de la chaine est fini, il faut préciser les condi-
tions aux limites. La nécessité de définir les conditions de bord vient de
la symétrie de I'espace. L’extrémité gauche de la chaine doit avoir les mémes
propriétés que l'extrémité droite. On a deux choix. Soit on impose que les
vibrations cessent au bord de la chaine (ou sur les faces du cristal en 3D), ou
on suppose des conditions de bord périodiques. Le premier choix ne permets
pas de décrire la conduction de chaleur car les extrémités de la chaine (ou du
cristal en 3D) ne bougent pas donc il n’est pas possible de coupler la chaleur
au cristal. Nous choisissons les conditions aux limites périodiques de
Born von Karman. Pour les vibrations de la chaine linéaire cela revient
a admettre que les atomes n = 1 et n = N de la chaine sont reliés par un
ressort de constante C' via une barre rigide de masse nulle
Dans ce cas on interprete uy,1, comme

UN+1 = Uy (215)
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FIGURE 2.3 — Les conditions de bord de Born von Karman représentées par une
barre, on peut également s’imaginer fermeture circulaire de la chaine.

Avec les relations (2.14) et (2.15), I’énergie potentielle s’écrit dans ce cas,

N | —

N
Uha’/‘m. - Z C (Un+1 - un)2 (216)
n=1

Dans le cas général, le potentiel harmonique de la chaine linéaire est donné
par (2.10), il s’écrit

1
Mmm:§§;%Dmmm;7mﬂ:LZ“wN (2.17)

ou sous forme matricielle (voir appendice A) en introduisant les vecteurs u

et u' (transposé de u)

F ]
U2
U= ueRY (2.18)
- uN -
1 t
U(u) = zu'Du (2.19)

D~ o~
~

Dans le cas de l'interaction aux plus proches voisins la matrice D prend une

forme simple donnée dans I'appendice A (relation A.7).
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2.2.2 Les modes propres de la chaine linéaire

Pour déterminer ’évolution en fonction du temps des déplacements w,, (t)
de chaque atome, il faut résoudre les équations de mouvement de la chaine.
Soit dans I'approximation aux proches voisins,

N 2 C N
n 2
A o — 2.20
H(gg) n12m+2;(uﬂ Up) (2.20)
Les équations de Hamilton s’écrivent
P
" Op, m
SO T S B
Pn = 8’&” - n n—1 n+1 n
\ =-C (_un—l + 2u, — un—i—l)
L’équation de mouvement de la chaine est donnée par (2.22) oun =1,..., N.
. C
Uy = —— (—Up_1 + 2Up — Upy1) (2.22)
m

Ce sont les équations que l'on obtiendrait en admettant que chaque ion est
relié a ses voisins par un ressort de constante C'.
Dans le cas général a une dimension ou H(p, u) est donné par

1 1
H(p,u) = 5—p"-p+ Ju'Du (2.23)

les équations de Hamilton conduisent & I’équation du mouvement (voir A.15)

mii = —Du (2.24)
Il s’agit, pour résoudre le probleme dynamique, de rechercher les solutions
non triviales de (2.22) ou (2.24). Le probleme se ramene a la résolution d’un
systeme de N équations différentielles linéaires a coefficients constants. Ces
équations ne sont pas indépendantes, physiquement elles correspondent a un
ensemble d’oscillateurs harmoniques couplés les uns aux autres. Pour simpli-
fier formellement le probleme nous cherchons une transformation qui modifie
les N équations couplées (2.24) en N équations a variables séparées du type
oscillateur harmonique.
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Nous montrons dans I'appendice A qu’une telle transformation est pos-
sible et que le déplacement u, (t) d'un atome s’écrit (voir A.29)

N-1
up (t) = —= xp [i (kyna —w,t)] + c.c. (2.25)
o
ou 5
ez
g, = 2V —01,... N—1. 2.9
N v=20 (2.26)

Si 'on exclut le mode v = 0, qui correspond a un déplacement global de
I'ensemble de la chaine, chacun des termes de u, () est un mode propre
de vibration de la chaine : le déplacement wu, (t) d’'un atome autour de
sa position d’équilibre peut étre décomposé en la somme de (N — 1) modes
propres collectifs s’étendant a 1’ensemble du cristal.

La décomposition en modes propres et la forme de la dépendance spa-
tiale des w, (t) sont une conséquence directe de la symétrie de translation de
la chaine linéaire, c’est un point essentiel clairement mis en évidence dans
Iappendice A. Nous montrons aussi dans cet appendice que la fréquence

propre w, est donnée par
wy, = /d,/m (2.27)

ou d, est une valeur propre de la matrice D (voir A.17). Ceci permet, dans le

cas d’interactions entre plus proches voisins, de calculer également w, (voir
app. A, § 3).

Dans ce qui suit nous suivons une démarche plus simple : en admettant la
décomposition (2.25) de u, (t), nous déterminons w, en remplagant les modes
propres u,, (t) dans I’équation de mouvement (2.22). Il vient, pour un mode

propre v,
C 4C k.

w?=2—(1—cosk,a) = — sin® ¢
m m 2

wy = 24/ C gin F@
m 2

On remarque que si on ajoute ou soustrait 2w /a aux k, donnés en (2.26)
le déplacement w, (t) n’est pas modifié. Nous choisirons dans ce qui suit les
N valeurs de k, comprises entre —m/a et 7/a, qui correspondent pour une
chaine linéaire aux valeurs de k comprises dans la 1¢"¢ zone de Brillouin.
D’autre part, la solution pour w, (k,) avec le signe + est équivalente a la

soit
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solution avec le signe — et la valeur k, opposée. On admet donc que k, peut
prendre les valeurs positives et négatives comprises entre —m/a et 7/a et que
w, est toujours positif, sans diminuer le nombre de solutions.

En résumé, il y a N valeurs k, inéquivalentes, chacune avec une fréquence
unique donnée par

Sin

k,a

w,,:2\/€
m

[\

\ KD

FIGURE 2.4 — Courbe de dispersion pour une chaine linéaire en tenant compte
uniquement d’interactions entre plus proches voisins. La ligne en trait interrompus
correspondrait & un milieu continu (a — 0).

Notons que dans un schéma de zone étendu, on aurait des valeurs de k
hors de la 1°"¢ zone de Brillouin. Elles se rameénent & des valeurs dans la,
1¢7¢ zone de Brillouin en leur soustrayant un nombre entier de 27/a, sans
modification de la fréquence car w (k) = w (k = n2x/a). De fagon générale on
peut toujours se ramener a la 1°"¢ zone de Brillouin en translatant le vecteur
d’onde k d’un vecteur G du réseau réciproque, sans modifier la fréquence.

Pour compléter la description de la décomposition en modes propres, no-
tons (voir appendice A, § 4) que 'hamiltonien (2.23) se décompose en une
somme d’hamiltoniens type oscillateur harmonique de fréquence w,,.

2 o m
H = Z H, (py,u,) = Z <2p_m + 5w12,ul2,) (2.28)

v
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Cette décomposition forme la base du passage d'une description de type
classique a une description de type quantique.

2.2.3 Discussion des solutions

La relation w = w (k) porte le nom de courbe de dispersion. Lorsque
k est faible par rapport a 7/a (soit lorsque A > 2a), w est linéaire en k

w= a\/g K| (2.29)

C’est le comportement que nous avons rencontré pour une onde élastique
se propageant dans un milieu continu. La vitesse de phase et la vitesse de
groupe sont égales. L'une des caractéristiques des ondes se propageant dans
un milieu discret est que la relation linéaire entre w et k disparait lorsque A
s’approche de 2a. La courbe de dispersion devient de plus en plus plate et
la vitesse de groupe v, = dw/dk diminue lorsque k augmente. A la limite de
la 1°"¢ zone de Brillouin elle s’annule, I'onde ne se propage plus. Dans ce cas
uy, () devient,

Uy, (t) = wexp (—iwt) exp (inm) + c.c. (2.30)
(="

qui correspond a une onde stationnaire. Des atomes successifs vibrent dans
des directions opposées

—Or <O O><O——O>—=0—

FIGURE 2.5 — Vibration u,, des atomes dans le cas ou k = +7/a.

Dans le cas ou l'on tient compte des interactions au-dela des proches
voisins, le comportement général de w (k) ne change pas : w (k) varie linéai-
rement pour de faibles valeurs de k par rapport a 7/a, Ow/0k s’annule en
k= +n/a.



12 CHAPITRE 2. DYNAMIQUE DU RESEAU — PHONONS

2.3 Modes normaux d’un réseau de Bravais
monoatomique a 3 dimensions

Nous considérons maintenant un potentiel harmonique général, a 3 di-
mensions, du type (2.10) soit

1
UharmziRzlz;zB:ua (R>Daﬁ (R—R,)Uﬁ (Rl) ) aaB:xayaz

que 'on peut écrire sous forme matricielle (matrice 3x3),

Uparm = > u®)DR-R)u(R) (2.31)
2 R,R/

On montre (voir par ex. A-M, chap. 22) que les matrices D (R — R') obéissent
a des propriétés de symétrie, soit :

Dos (R—R') = Dg, (R’ — R) (2.32)
Dos (R —R') = D,s (R — R) (2.33)
> Das(R) =0 (2.34)

R

2.3.1 Recherche des modes normaux

I s’agit donc de résoudre 3N équations du mouvement (une équation
pour chacune des 3 composantes des déplacements par rapport a la position
d’équilibre u, (R) de I'ion R des N ions formant le réseau)

6 Uharm

mia (R) = =5 "(R)

==Y Dy (R—R)us(R) (2.35)
R’.8

Comme dans le cas a une dimension, nous choisissons des conditions de bord
périodiques de Born von Karman, soit

u(R+ N;a;) =u(R) (2.36)
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pour chacun des vecteurs primitifs a; du réseau de Bravais, ou N; est
le nombre d’atomes dans la direction a;, le nombre total N étant égal a
Ny - Ny - Nj.

Comme dans le cas a une dimension nous écrivons que les déplacements
uq (R) peuvent étre décomposés en une somme de modes normaux

ta (R) ~ > " a, (0) o (k) exp [ik, - R — iw (k,) 1] + c.c. (2.37)

ou € est un vecteur, qu’il faut déterminer, et qui indique la direction dans
laquelle les ions se déplacent.
La condition (2.36) implique que

exp (ik, - Nja;) = 1 ; i=1,2,3 (2.38)

soit que k, est de la forme
S
k,=>» —b;; vi=0,1,...,N;— 1 (2.39)

avec b; le vecteurs primitifs du réseau réciproque. Comme dans le cas a 1
dimension, il y a N = N; - Ny - N3 valeurs k, distinctes et 1'on choisit de
représenter les courbes de dispersion w (k,,) dans la 1" zone de Brillouin.

En substituant un terme de (2.37) dans les équations de mouvement (2.35)
on trouve une équation aux valeurs propres

mw® (K)o (k) = Y Dap (k) g5 (k) (2.40)
B

ou sous forme matricielle,
mw? (k) ¢ (k) =D (k) ¢ (k) (2.41)
ou la matrice dynamique D,z (k) est définie par
Dos (k) = > Dap (R)exp (—ik - R) (2.42)
R

En utilisant les relations de symétrie (2.33) et (2.34) on montre que

Dop (K) = =2 Dog (R) sin’ (%k : R) (2.43)
R



14 CHAPITRE 2. DYNAMIQUE DU RESEAU — PHONONS

ce qui démontre que D (k) est une matrice réelle et paire en k. Ceci implique
que 'équation (2.41) possede 3 vecteurs propres € (k) (s = 1,2, 3) orthogo-
naux que ’on peut normaliser,

Es (k) cEg (k) = (5575/

A chaque vecteur propre g, (k, ) correspond une fréquence propre w; (k, ). On
a donc finalement,

3
1

Uy (R) = — Ay s€a,s (k) exp ik, - R —iw, (ky) t] +cc. (2.44

()m;;,()[ (ky) 1] (2.44)

On en conclut que dans un réseau de Bravais monoatomique il existe 3N

modes propres donnés par (2.44). En effet, il existe pour chacune des N

valeurs k, dans une cellule primitive, 3 directions €, de polarisation.

2.3.2 Discussion des solutions, résultats expérimentaux

Nous avons montré dans le cas a une dimension que, pour de faibles
valeurs de k, la fréquence w (k) varie linéairement avec k. Ce comportement
subsiste a 3 dimensions, il est relié au fait que pour k faible la matrice D, (k)
donnée en (2.43) est proportionnelle a (k - R).

Dans le cas a 3 dimensions il est important d’examiner non seulement le
comportement des fréquences w; (k) mais aussi I'orientation du vecteur pola-
risation & (k). Dans un milieu isotrope on peut toujours choisir les directions
de polarisation, pour une valeur k donnée, de telle sorte qu’une direction
(mode longitudinal) soit parallele a k, et deux directions (modes transverses)
soient perpendiculaires a k. Dans un cristal anisotrope la situation peut étre
plus complexe, cependant la situation se simplifie si k est orienté selon 'un
des axes de symétrie du cristal. Si par exemple k est situé selon un axe de
symétrie de rotation d’ordre 3, 4 ou 6, la situation est équivalente a celle du
milieu isotrope.

Nous donnons dans la Fig. 2.6 les courbes de dispersion déterminées pour
I’aluminium et pour des valeurs de k orientées selon les axes [111] et [200].
On remarque que, comme dans le cas a une dimension, la vitesse de groupe
est nulle aux bords de la 1°"¢ zone de Brillouin. On remarque aussi que les 2
modes transversaux sont dégénérés.
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FIGURE 2.6 — Courbes de dispersion de Al pour des valeurs k selon [111] et [200].
Les modes longitudinaux s’appellent L, les deux modes transversaux Ty et T9 sont
dégénérés pour les deux directions choisies et appelés simplement T.

2.4 Modes normaux d’un réseau a une di-
mension avec une base

Les relations de dispersion sont qualitativement différentes dans les cris-
taux qui possedent deux ou plusieurs atomes dans une cellule primitive. C’est
par exemple le cas de cristaux ioniques tels que NaCl, dont la base est formée
de deux atomes différents, ou de cristaux tels que le diamant ou le germa-
nium dont la base est formée de deux atomes identiques. Pour introduire
cette nouvelle situation, nous prenons le cas d’'un réseau de Bravais a une
dimension, formé d’atomes identiques, mais ayant deux atomes par cellule
primitive.

Pour simplifier les notations, nous supposons que chaque atome n’interagit
qu’avec ses plus proches voisins et nous notons K et GG les constantes de rappel
correspondant respectivement aux interactions entre les 2 atomes d’'une méme
cellule (séparés par la distance d) et de 2 cellules voisines (séparés par a —d).

Comme dans le cas d'une base monoatomique, on choisit des conditions
de bord périodiques, correspondant a une chaine fermée sur elle-méme.
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d d

: : : : -
(n—1)a na (n+1)a

FIGURE 2.7 — Chaine linéaire & ’équilibre formée de 2 atomes par cellule primitive.
Le parametre du réseau de Bravais est a. d est la distance entre les 2 atomes de la
base. Nous supposons d < a/2.

K G

M TTTN W TTTT W TTTT AN TTTT

L’énergie potentielle harmonique s’écrit dans ce cas

N

N
K 2, G 2
Unarm. = 5 ; (un = )"+ 5 ) (un = 1) (2.45)

n=1

ol nous avons noté respectivement u,, et v, les déplacements des ions
qui oscillent autour du site na et (na + d), en accord avec I'hypothese d <
a/2,K > G. Dans le cas ou les deux atomes sont égaux, les équations de
mouvement s’écrivent,

mun o _aUharm — _K (Un - Un) - G (un - Un—l) (246)
ou,,
mui, = —algjm = K (up — vp) + G (Ups1 — vy)

Nous cherchons a nouveau des solutions du type

N-1
U, = a, exp (ik,na — iw,t) + c.c. (2.47)
v=0
N-1
v, = b, exp (ik,na — iw,t) + c.c.

<
Il
=)



2.4. CHAINE AVEC UNE BASE 17

ou a, et b, sont des constantes qui déterminent les amplitudes relatives de
déplacement des 2 atomes de la base.
Les conditions de bord périodiques imposent que exp (ik,Na) = 1, soit

que
B 21T v

by = a N
Comme dans le cas d’'une base monoatomique, on choisit les valeurs de k,
comprises dans la 1¢"¢ zone de Brillouin.
En remplacant les expressions (2.47) dans les équations de mouvement
(2.46), on obtient le systeme d’équations linéaires

v=0,1,....,N—1 (2.48)

[mw? — (K + G)] a, + [K + Gexp (—ik,a)] b, =0 (2.49)

[K + Gexp (ikya)] a, + [mw], — (K 4+ G)] b, =0

Les solutions non triviales correspondent aux fréquences propres w, (k) qui
annulent le déterminant,

, K+

WV:

+ l\/(K +G)? — 4K G sin’? % (2.50)
m

m

avec
ay _ - K + Gexp (z:k,,a) (251)
b, |K + G exp (ik,a)

Ainsi pour chacune des N valeurs de k, il y a 2 solutions, ce qui correspond

a 2N modes normaux de vibration, en accord avec ce probleme ou l'on a 2

ions dans chacune des N cellules primitives.

Les 2 solutions w, (k) de (2.50) sont les 2 branches de la relation de
dispersion, elles sont représentées dans la Fig. 2.8.

La branche inférieure, dite acoustique, a la méme structure que celle
obtenue dans le cas d’une base monoatomique. La relation entre w et k est
linéaire pour des faibles valeurs de k, sa vitesse de groupe s’annule en bord
de zone. La branche supérieure est dite optique car les modes optiques dans
les cristaux ioniques peuvent interagir avec les ondes électromagnétiques, ce
qui détermine le comportement optique de ces cristaux.

Pour comprendre le comportement différent des modes optique et acous-
tique, étudions séparément les cas ou k ~ 0 et k ~ 7/a.

Casou k < 7/a
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o (k)
A
| |
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[2+G) M
| Mo G
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! L 5
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FIGURE 2.8 — Relation de dispersion pour une chaine linéaire diatomique. La
branche inférieure est dite acoustique, la branche supérieure optique.

Dans ce cas les solutions (2.50) sont données par

2(K + G)

N K-G
==\ oyt

La solution w_ correspond au mode acoustique, elle est telle que a,, = +b,, ce
qui signifie que les 2 ions d’'une méme cellule sont en phase. La solution w,,
qui correspond au mode optique, est telle que a, = —b,. Ainsi pour le mode
optique les deux ions d’'une méme cellule vibrent en opposition de phase, ce
mouvement est schématisé ci-dessous.

1%

wy — O (ka)® (2.52)

e <is - <= - <= - <= -
L 2 X @ X L 2 a3 L 2 X *—

FIGURE 2.9 — Mode optique de grande longueur d’onde dans une chaine linéaire
de base diatomique.



2.4. CHAINE AVEC UNE BASE 19

Casou k=m/a
Dans ce cas les fréquences w sont données par

w+:\/% cu,:\/E (2.53)
m m

correspondant respectivement a a, = —b, et a, = +b,. Dans le cas ou
k = 7/a les mouvements dans 2 cellules voisines sont en opposition de phase
[exp (ik,a) = (—1)"], et les mouvements des atomes correspondants sont dé-
crits dans la Fig. 2.10.

- <= - > - < - - -
a) *—x *—% *—x *—x *—
- = - -« - = - -« ->
b) o—x —x —x —x y —

FIGURE 2.10 — Mode optique (a) et acoustique (b) avec k = 7/a pour une chaine
linéaire de base diatomique.

Dans chaque cas, seul un type de distance (d ou a — d) est modifié, ce qui
explique que les fréquences dépendent uniquement de K ou G.

Pour résumer on peut dire que : dans le cas acoustique les ions d’une
cellule primitive se déplacent essentiellement en phase, la dynamique est do-
minée par l'interaction entre les cellules; dans le cas optique les ions d’une
méme cellule vibrent 'un par rapport a l'autre, la fréquence de vibration
est élargie en une bande de fréquence par l'interaction entre les cellules. Il
est aussi intéressant de remarquer qu’il existe une bande de fréquence, pour
laquelle il n’y a aucun mode vibratoire, située entre les branches acoustique
et optique.

Dans le cas a 3 dimensions, pour une cellule primitive avec une base de
p atomes, il apparait 3N modes acoustiques et (3p —3) N modes optiques
de vibration. Le comportement qualitatif est le méme que celui calculé dans
le cas a une dimension. A titre d’exemple nous donnons dans la Fig. 2.11 la
relation de dispersion déterminée dans le cas d'un cristal de germanium.
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FIGURE 2.11 — Relation de dispersion dans la direction [111] d’un cristal de
germanuim a 80 K. Les 2 branches acoustiques transversales (TA) sont dégénérées,
de méme que les 2 branches optiques transversales (TO).

2.5 Quantification des ondes élastiques

Dans un modele classique la chaleur spécifique d’un solide est une constante,
I'expérience montre cependant qu’elle décroit a basse température. Ce com-
portement ne peut étre compris que si 'on introduit la quantification des
vibrations se propageant dans un solide. Ce probleme est tres proche de ce-
lui de la quantification des niveaux d’énergie et des amplitudes de vibration
d’un oscillateur harmonique. Nous rappelons quelques notions sur 1’oscilla-
teur harmonique dans le § ci-dessous, puis nous indiquerons que l'on peut
aussi du point de vue quantique décomposer les vibrations d’un solide en une
somme de modes propres, chaque mode étant régi par une équation de type
oscillateur harmonique.
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2.5.1 Rappel sur loscillateur harmonique

L’exemple le plus simple d'un oscillateur est celui d’une particule de masse
m se déplagant dans un potentiel

1
Vi(z)= 56’:1:2

Mais l'oscillateur harmonique intervient également dans I’étude du champ
électromagnétique, qui est formellement équivalent & un ensemble d’oscilla-
teurs indépendants. La quantification du champ est obtenue en quantifiant
les oscillateurs associés aux divers modes propres de la cavité.
En mécanique classique ’énergie de la particule est donnée par
N T

E:%+§mwx

ol w = /C/m est la fréquence propre d’oscillation. F est une constante
du mouvement, qui peut prendre toutes les valeurs comprises entre 0, et en
principe l'infini.

En mécanique quantique les grandeurs classiques = et p sont rempla-
cées par les observables = et p, qui vérifient la relation de commutation

[z, p] = ih

L’opérateur hamiltonien H du systeme s’écrit

o1
H=g -+ §mw2x2 (2.54)
et les fonctions propres de I'équation de Schrodinger stationnaire sont

solution de
Tt L e } W (z) = B (z) (2.55)

L’équation aux valeurs propres (2.55) se résout de fagon élégante en intro-
duisant les opérateurs de création et d’annihilation. Le calcul montre que les
valeurs propres sont de la forme

e (v} s
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oun=20,1,2,... En mécanique quantique les états d’énergie de 'oscillateur
harmonique sont quantifiés et ne peuvent pas prendre n’importe quelle valeur.
Remarquons d’autre part que 1’énergie la plus basse possible n’est pas nulle,
la fonction d’onde associée a aussi une certaine extension spatiale. Cette diffé-
rence entre les résultats classique et quantique a son origine dans les relations
d’incertitude, qui interdisent de minimiser simultanément 1’énergie cinétique
et 'énergie potentielle. L’état fondamental correspond a un compromis dans
lequel la somme de ces deux énergies est minimum. On dit que 1'énergie 1/2
hw est ’énergie de point zéro de l'oscillateur harmonique.

2.5.2 Quantification des ondes élastiques. La notion de
phonons

Pour déterminer les nivaux d’énergie d’un cristal harmonique (avec une
base monoatomique) formé de N ions, il faut déterminer les valeurs propres
de 'hamiltonien quantique correspondant a I’hamiltonien classique

1 2
H _% zR:p (R) + Uharm. (257)

ol Upgrm. est donné par (2.10). Nous avons montré dans ’appendice A pour
le cas d’une chaine linéaire, que I’hamiltonien (2.19) (qui est ’équivalent a
une dimension de 2.57), peut étre exprimé comme une somme de N hamil-
toniens découplés de type oscillateur harmonique. Chaque hamiltonien est
associé a un mode propre de vibration du cristal. Le passage d'une descrip-
tion classique a la description quantique est fait dans I'appendice B. Nous
montrons pour la chaine linéaire que I'hamiltonien H a pour état propre un
état |Q2 > caractérisé par I'ensemble des nombres quantiques n,, ot n,, est un
entier positif ou nul

Hlny, ... ony,...ny—1 >=FE|[ny,...,ny,...nx_1 > (2.58)
ol

E=YS hw, (n + 1) (2.59)

Ce résultat se généralise a 3 dimensions et on peut écrire (2.57) sous la forme
de 3 N hamiltoniens correspondant a des oscillateurs harmoniques découplés,
les fréquences de ces oscillateurs correspondent aux 3 N modes normaux
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classiques décrits au paragraphe 2.3. La contribution a 1’énergie totale d’un
mode normal particulier, de fréquence angulaire wg (k, ), ne peut prendre que
I’ensemble discret de valeurs

1
<nku,s + 5) hws (k,,)

ol ny, s, noté nombre d’occupation du mode normal v, s, prend les valeurs

0,1,2,.... L’énergie totale est la somme des énergies des modes normaux
1
E = s + = | hws (k, 2.60
5™ (st 3) s (2.60)

Nous avons décrit le résultat (2.60) en terme de nombre d’occupation des
modes normaux de vecteur d’onde k, et d’indices s, ou s caractérise la po-
larisation et la branche (acoustique ou optique) du mode normal considéré.
En général le language des modes normaux est remplacé par une description
de type corpusculaire, équivalente a la terminologie utilisée dans la descrip-
tion quantique du champ électromagnétique. Dans cette théorie les énergies
des modes normaux de la radiation E.M. dans une cavité sont données par
(n + %) hw ou w est la fréquence angulaire du mode. Dans ce cas on ne parle
pas du nombre d’occupation n du mode de fréquence w, mais du nombre
n de photons de fréquence w. De la méme maniere, au lieu de parler du
nombre d’occupation ny, s du mode normal de fréquence w; (k, ), on dit qu’il
y a ny, s phonons de vecteur d’onde k, et de polarisation s présents dans le
crystal. Cette terminologie est particulierement utile lorsqu’on examine les
processus d’échange d’énergie entre modes normaux, entre un électron et les
modes normaux, ou encore entre une onde E.M. et une vibration du réseau.

Cependant, il faut bien réaliser qu’un phonon n’est pas une particule, on
parle de quasiparticule, car il n'y a pas d’observable de position. La quasi-
particule est délocalisée sur ’ensemble du cristal.

2.6 Regles de sélection pour ’interaction entre
une particule (ou rayonnement) et les pho-
nons

Le but de ce paragraphe est de montrer que lors de l'interaction d’une
particule (par exemple un neutron) avec un cristal, il existe des regles de
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sélection lors du processus d’échange d’énergie et de quantité de mouvement
entre la particule et les phonons du cristal. Pour cela nous considérons un
état initial caractérisé par une particule d’énergie E et de quantité de mouve-
ment p et un nombre ny, ; de phonons dans le mode k, ,. L’état final, apres
. . /. /7 ! ! !

interaction, est caractérisé par p', E" et ny_ ..

p.E e
\ / [/ [/ [/ [/ [/ /
/[ /[ [ [ ]/

L [ [ [ [ [/
/[ /[ [ [ [
/[ / /[ [ [/

77 r 7 r -7

7
nk g nk g

2.6.1 Quantité de mouvement d’un phonon

I1 faut toutefois bien réaliser que les phonons d’un réseau ne portent
pas de quantité de mouvement. On peut démontrer sans difficulté ce
résultat a une dimension, on a en effet

p=m— Y uy(t) (2.61)

ou u, (t) est donné par (2.25). En ne considérant qu’un mode v on a
Up (t) ~ a, exp[i (k,na —iw,t)] + c.c.

et
_27TV

k, = ——
a N
En remplagant (2.25) dans (2.61), il vient

N
Py = —iw,ma, exp (—iw,t) Z exp (ik,na) + c.c.

n=1
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La somme est une série géométrique qui s’annule pour toutes les valeurs
k, compatibles avec les conditions aux bords de la chaine linéaire. On a
ainsi démontré, dans le cas classique, que la quantité de mouvement associée
au mode normal k,, donc au phonon k,, s’annule. Dans le cas ou k, = 0,
les amplitudes sont les mémes pour tous les ions du cristal, la quantité de
mouvement résultante est non nulle. k, = 0 correspond a une translation
globale du cristal, ce n’est pas un mode propre vibrationnel. Toutefois, c’est
le déplacement en bloc du cristal qui assure la conservation de la quantité
de mouvement lors d’'une interaction entre une particule (ou un rayonne-
ment) et le cristal. Ce calcul & une dimension se généralise immédiatement
a 3 dimensions, de méme que lorsque les vibrations du réseau sont décrites
quantiquement.

2.6.2 Regles de sélection

Lors de l'interaction entre une particule incidente dans le cristal et les
phonons, tout se passe comme si une pseudo quantité de mouvement, Ak,
que l'on notera "crystal momentum”, était conservée a un vecteur AG du
réseau réciproque pres. Pour démontrer ce résultat, il faut tenir compte de
la symétrie de translation du réseau. Prenons par exemple l'interaction entre
un neutron (n) et les ions du réseau (i). L’hamiltonien d’interaction s’écrit,

Hoi=) w(r—R-u(R) (2.62)

ou r représente la position du neutron. A cause de la symétrie de translation
du réseau, cet hamiltonien ne change pas lorsque

r — r+Ry et u(R) — u(R - Ry) (2.63)
ou Ry est un vecteur du réseau de Bravais. En effet, on a

Hoi — > wir+Re—R—-u(R-Ry) =
R

> whr—(R-Ro) —u(R—Ry)] =Hpny

C’est cette invariance qui est a l'origine des regles de sélection. Nous montrons
a I’appendice B, § 4, que, dans le cas d'une chaine linéaire, l'on a,

2
p+ Z hk,n, = p + Z hk,n,mod mh

a
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Ce résultat se généralise a 3 dimensions,

p+ Y Mk, =p + Y hknj, ,+hG (2.64)

v,s v,s

ou G est un vecteur du réseau réciproque. Il faut noter que cette regle de
sélection est plus faible que celle que 'on obtiendrait si le cristal possédait
la symétrie de translation complete de I'espace vide. Elle est vraie a un vec-
teur du réseau réciproque pres, car la symétrie de translation du cristal est
uniquement celle du réseau de Bravais.
Pour décrire 'interaction, il faut encore ajouter la conservation de 1’éner-
gie, soit
E+) hw, (k). =E+) ho,(k,)n, (2.65)

k,,s k,,s

2.7 Diffraction des neutrons par un cristal

Les relations de dispersion w (k) sont en général déterminées par la diffu-
sion inélastique de neutrons impliquant I’émission ou I’absorption de phonons.
Un neutron "voit” le cristal essentiellement par interaction avec les noyaux
des atomes, il peut traverser le cristal sans interaction ou en excitant un
faible nombre de modes vibratoires du cristal. D’autre part les énergies et
longueurs d’onde associées au neutron ont le bon ordre de grandeur pour
sonder le cristal. On obtient pour n entier,

k= 10"cm™! s A\ =6.28- 105 "A
E
E =2.07-102" 19V — T=1 =24 102n—15K

Ainsi les neutrons ayant une valeur k = 108cm™!, correspondant au bord de

zone, ont une longueur d’onde A = 6.28 A qui est de l'ordre de grandeur des
distances interatomiques. La température associée correspond a T' = 24 K|
on parle de neutrons thermiques.

Considérons tout d’abord le cas d’une diffusion élastique, soit sans
modification de I'état vibratoire du cristal, ny . = ny, s (zero phonon scatte-
ring). Dans ce cas (2.64) et (2.65) deviennent en notant p = hk,, et p’ = hk/,
(k,, est le vecteur d’onde du neutron a ne pas confondre avec le vecteur d’onde
k, du mode normal)

kn=Fk, et K =k,+G (2.66)
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Ce sont précisément les conditions de diffraction de von Laue, établies dans
le cas des rayons X. Ainsi la diffusion élastique de neutrons donne les mémes
informations que la diffraction des rayons X. D’autre part, comme le neutron
porte un moment magnétique, qui peut interagir avec le moment magnétique
d’un atome, la diffraction de neutrons donne en plus des informations sur la
structure magnétique des cristaux.

Ce sont les neutrons qui émettent ou absorbent un phonon qui donnent
des informations sur les courbes de dispersion. On parle de diffusion a un
phonon (one-phonon scattering). Prenons pour étre spécifique le cas ou le
neutron absorbe un phonon, les équations (2.64) et (2.65) donnent,

E' = FE + hw; (k) avec my , — Nis = —1

(2.67)
p'=p+ hk + hG

En tirant p’ — p de la seconde relation et en remarquant que w; (k) =
ws (k + G), il vient & partir de la 1°7® relation

/2 2

s P —p
2m—2m+hws< 7 ) (2.68)

Lors de la mesure, ’énergie et la quantité de mouvement du neutron incident
sont connues. On détermine, pour une direction de détection donnée, qui fixe
la direction de p’, I’énergie du neutron diffusé, ce qui permet de calculer wy
et p’. Toutes les grandeurs intervenant dans (2.68) sont ainsi connues, et
I’on observe un pic de diffusion en fonction de 1’énergie des neutrons diffusés
lorsque la relation (2.68) est satisfaite. Un tel spectre expérimental est donné
dans la Fig. 2.12.
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FIGURE 2.12 — Diffusion de neutrons sur un cristal de cuivre : le nombre de

neutrons émergeant dans une direction donnée, pour une énergie incidente donnée,
est reporté en fonction de la longueur d’onde des neutrons diffusés. La largeur des

pics est une mesure du temps de vie des phonons.



