Chapitre 1

Réseaux cristallins dans
I’espace réel et réciproque

Lorsque les atomes sont liés les uns aux autres par les liaisons chimiques,
on observe qu’ils ont des distances a 1’équilibre bien définies déterminées par
la condition que leur énergie totale soit minimum. Dans un solide ce minimum
est atteint lorsque tous les atomes sont dans un environnement identique,
ce qui conduit a 'arrangement périodique tridimensionnel, c’est-a-dire a un
état cristallin. L’existence de la périodicité simplifie considérablement la
description théorique d'un solide. Bien qu'un solide réel ne possede jamais
une périodicité parfaite, on fait 'hypothese de la périodicité et on traite les
défauts comme une perturbation du solide parfait.

L’opposé de I’état cristallin est ’état amorphe. C’est un état dans le-
quel I'ordre a longue distance est perdu, mais dans lequel subsiste un
ordre a courte distance. Les verres, les céramiques, les polymeres, des
métaux tres rapidement trempés depuis I’état liquide, des couches évaporées
sur un substrat refroidi, sont amorphes. L’étude de I’état amorphe est impor-
tante, c’est un domaine de recherche tres actif, cependant la description des
amorphes est difficile a cause du manque de périodicité. Les études montrent
cependant que plusieurs propriétés des solides cristallins se retrouvent dans
les amorphes, ce qui indique que de nombreuses propriétés, électroniques en
particulier, sont largement déterminées par l'ordre a courte distance. Nous
n’en parlerons pas ici.
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1.1 La nature des liaisons dans un solide

Avant de discuter la structure des cristaux, nous allons discuter les dif-
férents mécanismes qui créent les liaisons entre les atomes d’un solide. Nous
allons rencontrer des scénarios tres différents, comme des liaisons ioniques,
covalentes, la liaison métallique, ou encore les liaisons de type van der Waals.
Ces cas sont idéalisés, souvent les liaisons sont un mélange de ces différents
scénarios. Par exemple, dans les métaux de transition la liaison est une combi-
naison de métallique et covalente. Comme en général en Chimie, uniquement
une partie des électrons, notamment les électrons de valence, participent a
la liaison. Ces électrons sont dans les couches électroniques les plus éloignées
du noyau de I’atome. Les électrons de coeur sont beaucoup plus fortement
liés au noyau et plus proches a celui ci. Leurs énergies et fonctions d’onde
sont peu ou pas modifiées par la formation de la liaison avec les atomes au
voisinage.

La Fig. 1.1 montre le tableau périodique des éléments avec leur configura-
tion atomique, spécifiant les électrons de valance. Ce tableau donne également
leur structure cristalline, la constante du réseau et leur température de fu-
sion, la température de Debye est relié au propriétés thermiques traitées au
chapitre 3.
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FIGURE 1.1 — Tableau périodique des éléments (source Ashcroft & Mermin).
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1.1.1 Les forces attractives et répulsives

Toute liaison stable entre deux ou plusieurs atomes, soit dans une molé-
cule ou dans notre cas d’'un solide, demande la présence de deux forces. La
force attractive est nécessaire pour créer une liaison et nous allons discuter de
ces forces aux origines différentes dans les sous sections suivantes. Une force
répulsive est nécessaire pour empécher les atomes de se rapprocher trop. Le
potential inter-atomique résultant peut étre écrit

¢(r):§—rﬁm, AB>0, nmeN, (1.1)
ou r est la distance entre les atomes et n > m, tel que la partie répulsive do-
mine a courte distance, parfois ¢’est obtenu en supposant un potentiel répulsif
exponentiel. Ce potentiel et la force résultante sont montrés dans la Fig. 1.2.
La force répulsive a courte distance est crée par le principe d’exclusion de
Pauli. Pour un recouvrement important des nuages d’électrons appartenant a
deux atomes, les fonctions d’ondes doivent changer pour former des fonctions
d’ondes orthogonales, car le principe de Pauli interdit d’avoir plus qu'un élec-
tron dans le méme état quantique. Cette orthogonalisation coute beaucoup
d’énergie résultant dans une répulsion forte a courte distance.
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FIGURE 1.2 — (a) Potentiel inter-atomique typique selon Eq. 1.1 avec n = 6 et
m = 1. (b) La force résultante F' = —V¢(r).
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1.1.2 Liaisons ioniques

Une liaison ionique implique le transfert d’électrons d’un atome électropo-
sitif a un atome électronégatif. La force de liaison est ’attraction de Coulomb
entre les deux ions résultants. La création d’un ion coute de I'énergie. Dans
le cas du NaCl, I’énergie d’ionisation du Na est 5.1 eV et I'affinité du Cl pour
un électron est 3.6 eV. Le cout net pour la création d’une paire Na® et C1~
a grande distance entre les ions est 5.1 — 3.6 = 1.5 eV. Le gain d’énergie
est donné par 'attraction de Coulomb entre les deux ions. Pour la distance
des deux ions dans le réseau du NaCl de a = 0.282 nm 1’énergie de Coulomb
entre les deux ions est £ = —e? /dmega = —5.1 eV. Donc I'énergie totale d’une
molécule de NaCl a cette distance hypothétique est —3.6 eV par rapport aux
deux atomes neutres séparés d’une distance infinie.

Nous pouvons calculer le gain d’énergie électrostatique pour la structure
cristalline du NaCl. Il suffit d’identifier le nombre de voisins, leur charge, et
leur distance. Ceci donne une série avec des contributions qui deviennent de
plus en plus faibles avec la distance des atomes considérés. Un ion de Na+
a 6 voisins de Cl™ a la distance a donnée en haut. Ceci donne un énergie
électrostatique de —6e?/4mega, ensuite il y a 12 Na™ & une distance V2a
augmentant 1’énergie d’un montant +12¢? /47?60\/§a, suivi par 8 ions Cl~ qui
diminuent 1’énergie totale, etc. C’est une série qui converge lentement. On
trouve

12 8 e? e? e?

FE(Na)=(-6+—4——4+"--- = —1.748 =-M
(Na) = (=6+ 2 3+ 4mega dmega d47reoa

. (1.2)

M, s’appelle constante de Madelung. Elle est spécifique pour une structure
donnée, pour CsCl elle est 1.763, pour cubique ZnS 1.638. Pour calculer
I’énergie électrostatique par mole d’un solide de NaCl nous devons multiplier
par le nombre d’Avogadro, par 2 car nous avons Na et Cl dans le réseau, et
diviser par 2 pour ne pas compter les liaisons a double. Donc le gain d’énergie
électrostatique pour la formation d’un mole de NaCl est — Ny 1.748¢? /4meqa.
Notons que M, > 1 signifie que le gain d’énergie du solide est plus grand que
celle d'un dimere de Nat et C1™ a la distance a. La vrai molécule de NaCl a
une distance entre les ions différente (a = 0.236 nm), mais il reste valable que
la formation d’un crystal de NaCl est avantageux par rapport a la formation
de molécules NaCl isolées. Les grains de sel de cuisine sont tres stables, et
souvent un grain entier est un mono-crystal parfait.

Nous pouvons identifier les contributions suivantes dans le bilan d’énergie
de la formation d’un solide. L’énergie cohésive est la différence d’énergie entre
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le solide et ses atomes isolés. Pour un cristal ionique on a vu en haut dans
I’exemple du NaCl comment calculer I’énergie électrostatique du réseau, ainsi
que l'énergie nécessaire pour la création des ions. L’énergie de cohésion est
la différence des deux. Pour le calcul de I’énergie électrostatique du réseau
nous avons utilisé la distance interatomique a 1’équilibre. Son calcul implique
la mécanique quantique surtout pour la partie répulsive du potentiel. La
partie répulsive est a l'origine du fait que le minimum du potentiel pour une
distance interatomique donnée est plus faible que le potentiel de Coulomb
(typiquement de 10 %). La Fig. 1.2 montre bien que le minimum de ¢ est un
peu moins profond que l'interaction attractive toute seule. La liaison ionique
est tres forte, 'énergie de cohésion des cristaux ioniques est de plusieurs eV.

1.1.3 Liaisons covalentes

La liaison covalente implique le partage réel d’électrons de valence entre
les atomes. Le cas le plus simple est la molécule d’hydrogene. Dans les so-
lides ce type de liaison est souvent trouvé pour les éléments avec une couche
externe (ou de valence) remplie & moitié. Un exemple est le carbone (2s?,
2p?) qui forme les solides diamant et graphite en 3D, en 2D le graphene ; les
couches 2D enroulées donnent lieu aux nanotubes de carbone, et aux molé-
cules Buckminster Fullerene Cg lorsque elle sont repliées sphériquement. Les
liaisons covalentes du diamant sont construites d’une combinaison linéaire
de lorbitale 2s avec les 3 orbitales 2p. Cela donne lieu & 4 orbitales sp? qui
protrudent dans une géométrie tetragonale de I'atome de carbone. Dans gra-
phite et graphene, ainsi que dans les molécules Cg et nanotubes de carbone,
I'orbitale 2s est combinée uniquement avec 2 orbitales 2p, donnant lieu a 3
orbitales sp? se trouvant dans un plan et séparées entre elles de 120°. Il reste
une orbitale p perpendiculaire au plan. Cette combinaison linéaire d’orbitales
révele une caractéristique importante de la liaison covalente, elle est fortement
directionnelle. En plus, ce type de liaison est tres stable et ’énergie cohésive
est de plusieurs eV par atome (Ecoh diamant = 7-37 €V, Econgi = 4.63 eV).

1.1.4 Liaisons métalliques

Dans le métaux les électrons de valence sont éloignés des coeurs ioniques
des atomes (un coeur ionique est le noyau plus les électrons de coeur, il est
positivement chargé). Contrairement aux cristaux ioniques, il n’y a pas d’ions
électronégatifs qui les lient. Donc les électrons de valence sont délocalisés et
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migrent entre les coeurs ioniques du réseau. Ces électrons de valence délocalisé
sont impliqués dans la conduction électrique, ainsi on parle d’électrons de
conduction. On s’attend a ce que les métaux se forment d’éléments avec une
énergie d’ionisation petite. Néanmoins, la délocalisation de 1’électron coute
de I'énergie qui doit étre plus que compensée par la formation de la liaison
métallique. Une fagon de comprendre de qualitativement d’ou vient 1’énergie
de liaison métallique est de considérer ’énergie cinétique des électrons Ecin =
—h2V?/2m,. L'élément de matrice (U] Ey, |¥) mesure I'énergie cinétique
proportionnelle a la courbure de la fonction d’onde. Pour un électron localisé
a un atome cette courbure est beaucoup plus grande que celle d’un électron
presque libre dans un métal.

L’autre contribution a I’énergie est I’énergie potentielle. On pourrait conclure
que le potentiel électrostatique ressenti par un seul électron dans un solide
métallique est proche de zéro car il y a presque autant d’électrons que d’ions,
avec des charges qui se compensent. Mais chaque électron ressent un poten-
tial attractif. La raison est le principe de Pauli interdisant a deux électrons
du méme spin d’étre au méme endroit. Donc les électrons s’évitent. Cet ef-
fet est encore renforcé par I'interaction de Coulomb entre les électrons. Par
conséquent, chaque électron ressent I’énergie potentielle des coeurs ioniques.
Donc la liaison dans un cristal ne diminue pas beaucoup I’énergie potentielle
des électrons de valence, leur énergie cinétique est diminuée ce qui crée la
liaison.

Les métaux préferent des structures cristallines denses. La liaison métal-
lique n’est pas directionnelle et des structures denses permettent le recouvre-
ment maximale des orbitales de valence des atomes et ainsi la délocalisation
et le gain en énergie cinétique. Ces structures maximisent aussi le nombre de
plus proches voisins pour un atome donné résultant en des états fortement
délocalisés. Typiquement, la liaison métallique n’est pas aussi forte que les
liaisons ioniques et covalentes, mais 1'énergie cohésive reste quelques eV par
atome (Econng = 1.51 €V, Eonal = 3.39 eV). Une énergie cohésive plus
importante est trouvée dans les métaux de transition. Ce sont des métaux
avec des électrons de conduction fournis comme dans les autres métaux par
les couches atomiques s et p, mais auxquelles se rajoutent des couches d par-
tiellement remplies. Ceci donne lieu a une liaison mixte. Les électrons s et
p deviennent des électrons de conduction délocalisés et les électrons d res-
tent localisés et participent a une liaison covalente. Des exemples sont Fe,
Co, Ni dans la troisieme rangé du tableau périodique (Econpe = 4.28 €V,
Ecoh,Co =4.39 eV, Ecoh,Ni =4.44 eV)
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1.1.5 Liaisons van der Waals

La liaison de van der Waals nait de fluctuations quantiques de la densité de
charge autour des atomes. Un atome de gaz rare avec une couche électronique
entierement remplie peut ainsi étre regardé comme dipole fluctuant. Le champ
électrique variable crée par ce dipole fluctuant peut polariser des atomes a
proximité créant un deuxieme dipole. L’interaction entre deux dipoles est
attractive donnant lieu a une liaison. Ce type de liaison est présente entre
tous les atomes, mais elle est beaucoup plus faible que la liaison ionique,
covalente, ou métallique. Les énergies de liaison van der Waals typiques sont
de l'ordre de quelques meV. Elle est observable uniquement dans les cristaux
de gazes rares et ces cristaux de van der Waals pures sont stables uniquement
a tres basse température.

1.2 Reéseaux de Bravais

Un réseau de Bravais est I’ensemble des points dont le vecteur position
est donné par

R = nia; + Ngdo + N3as (13)

ol ay, ag, ag sont 3 vecteurs non situés dans le méme plan et nq, no, ng sont des
entiers (positifs ou négatifs). Les vecteurs a; sont dits vecteurs primitifs. Il
faut remarquer qu’il y a plusieurs choix possibles de vecteurs primitifs pour
un réseau de Bravais donné.
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FIGURE 1.3 — Réseau de Bravais & deux dimensions. Deux choix possibles de
vecteurs primitifs sont indiqués.
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Une cellule (ou maille) primitive est un volume de I’espace qui, lors-
qu’il est translaté par tous les vecteurs R d’un réseau de Bravais, remplit
exactement 1’espace sans recouvrement. Il y a plusieurs choix possibles, mais
toute cellule primitive ne peut contenir qu'un point du réseau de Bravais,
ainsi le volume v de la cellule primitive est relié a la densité n de points du
réseau par

1
vV =aj- (8_2 A 83) = E (14)

Le volume d’une cellule primitive est indépendant du choix de la cellule.

Dans le cas des réseaux cubiques (par ex. b.c.c. et f.c.c.) on a souvent
avantage a choisir, au lieu d'une cellule primitive, une cellule convention-
nelle, qui rend mieux compte de la symétrie du réseau (voir § 1.3).

La cellule de Wigner-Seitz autour d’un point du réseau est la région
de I'espace qui est plus proche de ce point que de n’importe quel autre point
du réseau. La cellule de Wigner Seitz est une cellule primitive, elle possede
de plus la symétrie du réseau de Bravais.

On l'obtient en tracant des lignes qui connectent le point du réseau consi-
déré a tous les autres et en tragant les plans bissecteurs de chaque ligne.
Le plus petit polyedre contenant le point considéré et limité par les plans
bissecteurs est la cellule de Wigner-Seitz. Nous donnons dans la Fig. 1.4 un
exemple a deux dimensions.

F1GURE 1.4 — Cellule de Wigner-Seitz d'un réseau de Bravais a deux dimen-
sions.

Une structure cristalline est un réseau de Bravais avec une base. La
base peut étre formée de un ou de plusieurs atomes. La Fig. 1.5 montre le



1.3. EXEMPLES DE STRUCTURES CRISTALLINES 9

réseau de graphene. Les atomes de C forment une structure de nid d’abeille,
chaque atome a trois voisins. Le réseau de Bravais est hexagonale. La base a
deux atomes.

FIGURE 1.5 — Le réseau nid d’abeille du graphene dérive d'un réseau de
Bravais hexagonal avec une base formée de deux atomes.

1.3 Exemples de structures cristallines simples
souvent rencontrées

La structure f.c.c

La structure cubique face centrée (fcc = face centered cubic) appartient a
I'une des 14 classes de symétrie des réseaux de Bravais. Chaque atome de la
structure est entouré de 12 plus proches voisins. Le nombre de plus proches
voisins dans un réseau est ce que 'on note le nombre de coordination.
Le nombre de coordination 12 correspond a ’empilement le plus compact de
spheres. Dans un plan le nombre de spheres plus proches voisines est de 6, il y
en a encore 3 dans chacun des plans situés au-dessus et au-dessous. Les plans
compactes de la structure f.c.c. sont représentés dans la Fig. 1.6, ce sont des
plans [111]. Tls correspondent aux plans A, B et C obtenus en empilant des
spheres (voir Fig. 1.7). Il faut remarquer que chaque plan compact a deux
types de sites ot I'on peut placer une sphere (voir Fig. 1.7). La structure f.c.c.
est obtenue en plagant une couche de spheres sur I'un des sites possibles et
la couche suivante sur 'autre site, on parle d’empilement ABC. Les métaux
Cu, Ag, Au, Ni, Pd, Pt, Al cristallisent dans la structure f.c.c.

La Fig. 1.8 indique quels sont les vecteurs primitifs du réseau f.c.c., le
volume de la cellule primitive est égal & a®/4.
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FIGURE 1.7 — Les couches com-
pactes de la structure f.c.c. avec ’em-
pilement des sphéres dans la séquence
ABC

FIGURE 1.6 — La structure f.c.c., les
plans compacts sont indiqués par les
lignes en traits interrompus.

P
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2 33:§(X+Y)

FIGURE 1.8 — Vecteurs primitifs du réseau f.c.c. Le volume de la cellule primitive
est égal au quart du volume a? de la cellule conventionnelle. X, ¥, Z sont les vecteurs
unités.

La cellule de Wigner-Seitz du réseau f.c.c. est donnée dans la Fig. 1.9. Il
faut remarquer que le cube entourant la cellule n’est pas le cube convention-
nel de la Fig. 1.8, mais un cube dans lequel les points du réseau sont au centre
du cube et au milieu des 12 arétes. Chacune des 12 faces est perpendiculaire
a la ligne joignant le point central a un point au milieu d'une aréte.
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FIGURE 1.9 — Cellule de Wigner-Seitz du réseau de Bravais cubique face centrée
(f.c.c.).

La structure h.c.p.

La structure hexagonale compacte (hcp = hexagonal closed packed) s’ob-
tient lorsque les plans compactes sont empilés dans la séquence ABAB ... Elle
ne correspond pas a un réseau de Bravais, a la cellule primitive hexagonale il
faut ajouter une base formée de deux atomes. La structure h.c.p. est donnée
par deux réseaux de Bravais hexagonaux simples, intercalés et déplacés de
%al + %32 + %c I'un par rapport a l'autre (Fig. 1.10).

Comme pour la structure f.c.c., le nombre de coordination est 12. Les
métaux importants qui cristallisent dans cette structure sont Zn, Cd, Be, Ti,
Co Mg, Re, Ru, Os et le graphite.
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FIGURE 1.10 — Structure hexagonale compacte avec vecteurs primitifs a; et ag de
longueur a formant un angle de 120°, I’axe ¢ est perpendiculaire au plan formé par
a; et ag. Les 2 atomes de la base sont indiqués, un atome est a ’origine, ’autre
atome est a la position r = %al + %ag + %c. Pour la structure hcp idéale ¢ = 1.633 a.

La structure b.c.c

La structure cubique centrée (b.c.c. = body centered cubic) a un nombre
de coordination égal a 8, de ce point de vue elle apparait moins favorable
pour les métaux, dont les liaisons sont non directionnelles, que la structure
f.c.c. dont le nombre de coordination est 12. Cependant il ne faut pas négliger
Ieffet des second plus proches voisins, qui ne sont pas beaucoup plus éloignés

que les proches voisins pour la structure b.c.c. (a\/S/ 2 et a). Un ensemble
"symétrique” de vecteurs de translation primitifs est donné dans la Fig. 1.11

La cellule de Wigner-Seitz du réseau b.c.c. est donnée dans la Fig. 1.12,
c’est un octaedre tronqué. Le cube entourant la cellule de Wigner-Seitz est
un cube conventionnel. Les faces hexagonales sont perpendiculaires au milieu
de la ligne joignant le point central aux sommets du cube. Les faces carrées
sont perpendiculaires a une ligne joignant le centre du cube a chacun des
centres des 6 cubes voisins.
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FIGURE 1.11 — Structure cubique centrée. Un ensemble "symétrique” de vecteurs
primitifs est indiqué. Le volume de la cellule primitive est égal a la moitié du
volume de la cellule conventionnelle. X, ¥, z sont les vecteurs unités.

FIGURE 1.12 — Cellule de Wigner-Seitz d'un réseau cubique centré.

La structure diamant

Dans la structure diamant chaque atome est entouré de 4 plus proches
voisins, ce qui permet de former des liaisons covalentes. Elle peut étre dé-
crite comme étant formée de 2 structures f.c.c. déplacées I'une par rapport
a lautre le long de la diagonale principale. La position de l'origine de la se-
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conde structure f.c.c. par rapport a 'origine de la premiere est (1/4, 1/4, 1/4)
— voir Fig. 1.13. Le diamant cristallise dans cette structure, mais aussi le Si,

Ge, a—Sn.

(000)

FIGURE 1.13 — La structure diamant. Cette structure est typique des éléments de
la colonne IV du tableau périodique, mais aussi des composés III — V dans lesquels
les sites (0,0,0) et (1/4, 1/4, 1/4) sont occupés par différents types d’atomes. On
parle dans ce cas de structure Zinc blende (ZnS structure)

1.4 Réseau direct et réseau réciproque

A un réseau de Bravais donné (ou réseau direct), on associe le réseau
réciproque, formé de ’ensemble des vecteurs G tels que

exp (iG-R) =1 (1.5)

ot R est un vecteur du réseau de Bravais donné en Eq. (1.3).

Cette définition est étroitement reliée a la symétrie de translation du
réseau de Bravais. Considérons pour le montrer une grandeur p(r) invariante
par translation d’un vecteur R du réseau de Bravais, soit

p(x+R) = p(r) (1.6)
Cette fonction périodique peut étre décomposée en série de Fourier, soit

p(r)=> pgexp(iG-r) (1.7)
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La condition (1.6) implique que les vecteurs G de (1.7) satisfont la condition
(1.5).
Montrons que I'on peut décomposer G en la somme de 3 vecteurs tels que

G = hb, + kb, + (bs (1.8)

ou h,k,¢ sont des entiers. On vérifie, en remplagant (1.8) dans (1.5), que
pour un choix arbitraire de R, la définition (1.5) de G ne peut étre satisfaite
que si

Les 3 vecteurs primitifs by, by, bg que nous avons ainsi définis génerent le
réseau réciproque. Ils sont donnés par les expressions,

as N\ as

by =27 + perm. cyclique (1.10)

aj - (a2 VAN a3)
On peut montrer que les propriétés de symétrie du réseau réciproque sont les
mémes que celles du réseau direct. Le réseau réciproque appartient au méme
groupe ponctuel que le réseau de Bravais.

A titre d’exemple nous donnons dans la Fig. 1.14 les vecteurs primitifs
du réseau réciproque dans le cas d’un réseau de Bravais oblique a deux di-
mensions.

a) b)
; az; ; ;
/ S e /

FIGURE 1.14 — a) Réseau direct oblique a 2 dimensions et b) son réseau réci-
proque. Les vecteurs by et by sont respectivement perpendiculaires a as et aj.
Leur longueur (en cm™!) est telle que a; - by = as - by = 27.
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Dans le cas d'un cristal de volume fini V' comportant N; cellules primi-
tives dans la direction a;,

3
i=1
Le volume V est tel que

V= (Nlal) . (N2a2 A Ngag) = NlNQNg?J
N

Le volume d’'une cellule primitive du réseau réciproque est donné, en rempla-
cant les b; par leur expression (1.10),

(2m)* _ (2n)°
~ V/N
Il est utile de noter que dans I'expression (1.8), les entiers h, k, ¢ peuvent

prendre toutes les valeurs comprises entre +o0o et —oo, méme si le volume V'
est fini.

by - (ba Ab3) =

(1.11)

1.5 Les zones de Brillouin

La notion de zone de Brillouin est nécessaire pour décrire les propriétés
vibrationnelles (voir chap. 2 et 3) ou électroniques (voir chap. 5) d’un cristal
dans lequel la symétrie de translation joue un role essentiel.

1.5.1 1°" zone de Brillouin

La 1% zone de Brillouin est la cellule de Wigner-Seitz du réseau réci-
proque, c’est-a-dire qu’elle est formée de ’ensemble des points qui sont plus
proches d'un point Gg du réseau réciproque (généralement Go = (0,0,0))
que de n’importe quel autre point G. On peut la construire en tracant les
plans bissecteurs des vecteurs joignant Gy a un point G quelconque du réseau
réciproque.

Dans le cas d'un réseau direct carré a deux dimensions, soit a; = aZ et
as = ay, les vecteurs by, by du réseau réciproque sont donnés par

21 2m .

blz—l' b2:—y
a a
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On obtient la zone de Brillouin représentée dans la Fig. 1.15.

FIGURE 1.15 — 1°*¢ zone de Brillouin d’un réseau direct carré bidimensionnel.

La 1% zone de Brillouin d’un cristal f.c.c. a la méme forme que la
cellule de Wigner-Seitz d'un cristal b.c.c., en effet le réseau réciproque d’un
cristal f.c.c. est b.c.c. Nous la donnons dans la Fig. 1.16, ot nous avons aussi
noté les points de symétrie élevée par les lettres I', L, X, etc.

o
b1:?§(y+Z—X)
O
b2—?§(z x-y)
Al .
bs—zé(Xer—Z)

FIGURE 1.16 — 1°® zone de Brillouin d’un réseau f.c.c. Les points de haute symé-

trie sont indiqués.
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le long de I'X : k:c:kZ:O,ky:u%T 0<pu<l
le long de T'L : km:kzzky:u%r ogugé
le long de TK : kzzo,kx:kyzu%ﬂ ogﬂgz
le long de T'W : kZ:O,kx:%,u%r,ky:u%T 0<pu<l

La 1°® zone de Brillouin d’un cristal b.c.c a la méme forme que la
cellule de Wigner-Seitz f.c.c., elle est donnée dans la Fig. 1.17, ol nous avons
aussi noté les points de symétrie élevée.

FIGURE 1.17 — 1° zone de Brillouin d’un réseau b.c.c. Les points de symétrie
élevée sont indiqués.
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2
lelong de TH : hy=k, =0k, =p— 0<p<l1

a
2m 1
lelongde I'N :  k, =0k, =k, =p— 0§M§§
a
2 1
b= ky = p 0<p<s
le 1 rP: @
e long de . on < /<\/§
z_,ua 0_/1_7

1.5.2 n®™e zone de Brillouin

On peut généraliser la notion de zone de Brillouin, en remarquant que la
1°r® zone de Brillouin est I'ensemble des points de I’espace réciproque qui
peuvent étre atteints a partir de l'origine sans traverser un plan bissecteur,
ou plan de Bragg.

La seconde zone de Brillouin est définie comme I’ensemble des points
qui peuvent étre atteints a partir de ’origine en traversant un plan de Bragg.
De facon générale la ni®™¢ zone de Brillouin est I’ensemble des points
atteints a partir de l'origine en traversant (n — 1) plans de Bragg.

Ces définitions sont illustrées a deux dimensions dans la Fig. 1.18.

/ \

6 /> s 2\ 6
15/ 4 2 4 \5™
1
[ ]

U5\ 4 2 4 5|~
6 3 3 6
\ /

FIGURE 1.18 — Illustration de la définition des zones de Brillouin pour un réseau
de Bravais carré a deux dimensions. La figure montre tous les plans de Bragg
contenus dans un carré de coté 2b (b = 27/a) centré a lorigine. Il faut noter que
seules les zones 1, 2, 3 sont entierement contenues dans le carré représenté.
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On peut montrer que chaque zone de Brillouin est une cellule primitive
du réseau réciproque, le volume de la n'*™® zone est donc égal au volume de
la 1% zone. Cette remarque est illustrée dans la Fig. 1.19 dans laquelle il est
indiqué comment on peut, par translations de vecteur G, réduire la 2°™¢ et
la 3°™° zone de Brillouin dans la 1ére zone. Ceci correspond (voir chap. 5) au
passage d'une description en schéma de zone étendue a une description en
schéma de zone réduite.

24
3p
o 2, 2,
0 0 0 3.
2
1% zone 2°Me 4 6ne 3™ 7one

FIGURE 1.19 — Représentation de la 1% | 2°™¢ et 3°™¢ zone de Brillouin dans
un schéma de zone réduite. Les parties de la seconde zone dans la Fig. 1.18 sont
translatées pour former un carré. Chaque partie est translatée par un vecteur G
du réseau réciproque. Il en est de méme pour la 3™ zone.

Ces notions seront reprises en relation avec la structure de bande.

1.6 Détermination de la structure cristalline

La technique expérimentale la plus importante pour déterminer la struc-
ture cristalline est la diffraction de rayons X. Ces rayons interagissent fai-
blement avec la matiere. Beaucoup de photons incidents ne sont pas du tout
diffusés par le cristal. Ceux qui le sont, subissent avec une grande probabilité
un seul évenement de diffusion, ce qui justifie de décrire la diffusion de rayons
X par un cristal dans 'approximation cinématique. Nous supposons que la
source et le détecteur sont placés loin de I’échantillon, ce qui permet de décrire
les ondes incidentes et émergeantes comme ondes planes de vecteurs d’onde
k, respectivement k’. Nous considérons des processus de diffusion élastiques,
k = k'. La diffraction de rayons X a été découverte et décrite par M. von
Laue en 1912, la méme année, W. L. Bragg a proposé une description plus
simple que nous allons aborder en premier.
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1.6.1 Théorie de Bragg

Bragg a traité le probleme comme si les rayons X étaient réfléchis par les
plans atomiques du cristal. Ceux-ci peuvent étre les plans denses de cristaux
h.c.p. ou f.c.c. ou les plans alternants de Na et Cl constituant le cristal de
sel. Au premier abord, il est étonnant qu’une description de réflexion par
des plans successifs soit valable car la longueur d’onde des rayons X est
comparable a la distance inter-atomique. Néanmoins, elle décrit une grande
partie des observations et permet d’obtenir la structure et les dimensions
du réseau de Bravais, mais pas la composition de sa base. Nous allons voir
plus loin qu’elle est un cas spécial de la théorie plus complexe de Laue. La
Fig. 1.20 montre les considérations géométriques derriere la théorie de Bragg.
On considere uniquement la reflexion spéculaire, 'angle incident de I'onde
plane est égale a I’angle de I'onde planes émergeante, ces angles sont 90° — ©
par rapport a la normale aux plans atomiques dans la figure.

//

/
/

FIGURE 1.20 — Diffusion de rayons X par deux plans cristallins successifs séparés
par d.

La condition d’interférence constructive d’ondes émergeantes de plans
successifs est 2AB = n\, oun € N. Avec AB = dsin © on obtient la condi-
tion de Bragg

nA = 2dsin©,n € N. (1.12)

Si cette condition est remplie pour deux plans successifs elle est également
remplie pour tous les plans identiques du réseau. Les rayons X pénetrent
profondément dans le cristal et beaucoup de plans contribuent a la réflexion
de 'onde incidente. Ceci donne lieu a des pics de diffraction tres étroits. La
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condition de Bragg peut uniquement étre remplie pour A\ < 2d, mettant une
limite supérieure a la longueur d’onde et ainsi une limite inférieure a 1’énergie
des photons (d = 2 A implique E = he/A = 3.1 keV).

Les plans d’un réseau de Bravais contiennent au moins trois points non-
colinéaires du réseau. Si c’est le cas pour un plan il contient un nombre infini
de points par la symétrie de translation du réseau. La Fig. 1.21 montre trois
exemples pour un réseau cubic simple.

(1,1,0) (1,1,1)

FIGURE 1.21 — Trois plans d’un réseau cubique simple caractérisés par leurs in-
dices de Miller.

Tous les plans du réseau peuvent étre caractérisés par trois nombres en-
tiers que l'on appelle indices de Miller. Pour les dériver, on trouve d’abord
les intersections avec les axes cristallographiques, exprimées en unités des
vecteurs primitifs. Pour le plan a gauche de Fig. 1.21 ce sont (1, 00, 00). En-
suite on prend les valeurs réciproques de ces nombres, pour notre exemple
cela donne (1,0,0). Ensuite on multiplie les trois chiffres par un facteur pour
qu’ils deviennent des nombres entiers, dans notre exemple c’est déja le cas.

Les pics de diffraction sont tellement étroits que c’est difficile d’aligner
source et détecteur dans un plan perpendiculaire a un plan donné du cristal.
Pour un échantillon en poudre ce probleme n’existe pas. Les grains de la
poudre sont des monocristaux orientés arbitrairement. Donc il y a toujours
des grains orientés correctement pour donner une interférence constructive
pour un certain plan cristallin, en plus, on observe le motif de diffraction
pour tous plans cristallins possibles.

1.6.2 Théorie de Laue

Meéme si la théorie de Bragg permet de déterminer la distance entre les
plans atomiques du cristal, elle ne permet pas de déterminer de quoi le cristal



1.6. DETERMINATION DE LA STRUCTURE CRISTALLINE 23

est fait, c’est-a-dire la base, et elle ne donne pas de justification pour traiter la
réflexion de plans cristallins comme une reflexion spéculaire sur des surfaces
planes. La théorie de Laue traite la diffusion des rayons X comme interaction
avec la densité électronique du cristal. Le champ électrique de I’onde met en
oscillation la densité électronique du cristal ce qui donne lieu a I’émission de
I’'onde émergeante. La géométrie de la diffusion sur un point r du réseau est
illustrée dans la Fig. 1.22. La source et le détecteur sont placés en R et R’,
respectivement. Le champ électrique de 'onde incidente au point r est donné
par E(r,t) = Egexp(ik - (r — R) — iwt), ou Eq est "amplitude complexe de
I’onde.

RI

FIGURE 1.22 — Diffusion de rayons X par un échantillon. Source et détecteur sont
placés en R et R’, respectivement, les deux sont loin de I’échantillon. r dénote
I’emplacement de diffusion dans le cristal.

Dans la suite nous allons négliger 'amplitude car nous sommes intéressés
au changement de phase qui détermine la diffraction. Donc E(r,t) o exp(ik -
(r—R)—iwt). L’amplitude de 'onde émergeante est proportionnelle au champ
électrique de 'onde incidente et la probabilité de diffusion et la phase sont
données par la densité électronique au lieu de la diffusion, p(r). Le champ
électrique au détecteur est donné par

E(R',t) x E(r,t)p(r) exp(ik’ - (R — 1)) (1.13)

Insérant I'expression pour E(r,t) donne
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E(R',t) o« exp(ik-(r—R))p(r)exp(ik’- (R —r)) exp(—iwt)
= exp(i(k'-R' —k-R))p(r) exp(i(k — k') - r) exp(—iwt).

Nous omettons le premier facteur car il ne contient pas r et de ce fait ne
joue pas de role pour l'interférence des ondes émises aux différentes positions
du cristal. Le champ total au détecteur est obtenu en intégrant sur le volume
du cristal. Comme le détecteur est placé tres loin de ’échantillon, c¢’est une
bonne approximation de supposer le méme vecteur d’onde k’ pour tous les
points de I’échantillon. Le résultat pour 'amplitude du champ est

E(R',t) x exp(—iwt) /Vp(r) exp(i(k — X') - r)dV (1.14)

Souvent il n’est pas possible de mesurer 'amplitude du champ des rayons
X mais uniquement leur intensité I donnée par

2

I(K)

exp(—iwt) /v p(r)exp(i(k — k') - r)dV

2

/ p(r) exp(—iK - r)dV
v

Y

ol nous avons introduit le vecteur de diffusion K = k’—k. Nous rappelons
notre hypothese de diffusion élastique impliquant k" = k. Selon Eq. (1.7) on
peut écrire toute fonction qui a la périodicité du réseau en série de Fourier
sur les vecteurs du réseau réciproque. Insérant ce résultat pour p(r) donne

2

I(K) (1.15)

XG: Pc /v exp(i(G — K) - r)dV

L’exponentielle est une onde plane de vecteur d’onde G — K. Si le cristal
est grand, l'intégration moyennera sur les maxima et minima de cette onde
et donnera une valeur tres petite, ou zéro pour un cristal infini. La seule
exception est le cas K = k' — k = G, ou le vecteur de diffusion est égal
a un vecteur du réseau réciproque. Dans ce cas, I'exponentielle vaut 1 et
I'intégrale est égale au volume du cristal. La relation K = G est souvent
appelée condition de Laue.
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Regardant ’'Eq. (1.15) on voit que l'intensité mesurée pour un vecteur K,
respectivement G donné, est proportionnelle au carré du coefficient Fourier
de la densité électronique |pg|>. On peut avoir 'impression qu’il suffit de
mesurer 'intensité pour tous les vecteurs G pour obtenir tous les coefficients
de Fourier pg de la distribution électronique et ainsi entierement déterminer
la structure du cristal. Malheureusement cette approche ne fonctionne pas car
les pg sont des nombres complexes et 'intensité donne leur norme mais pas
leur phase qui est perdue si on mesure que I. C’est connu comme probléme
de phase dans la diffraction. Une maniere de le contourner est de supposer
une structure cristalline, calculer les pg et I(K), comparer avec 1'expérience
et adapter jusqu’a que un accord soit obtenu.

Ceci peut étre effectué de fagon suivante. On part de I'expression pour
I(K) en haut et utilise la condition de Laue

2

I(G) x /Vp(r) exp(—iG - r)dV (1.16)

L’intégrale sur le volume du cristal peut étre écrite comme la somme sur
les cellules primitives repérées par le vecteur du réseau de Bravais R (a ne
pas confondre avec R utilisé dans la Fig. 1.22) et une intégrale sur le volume
de la cellule primitive

2

I(G)
Vcell

3 / p(r + R) exp(—iG - (r + R))dV

2

Y

- ’N/V p(r) exp(—iG - r)dV

cell

ou N est le nombre de cellules primitives et nous avons utilisé la pério-
dicité de p(r). Nous supposons que la densité d’électrons p(r) dans la cellule
primitive est donnée par la somme des densités électroniques p;(r) des atomes
de la base. p;(r) est donnée par les fonctions d’ondes atomiques. Ceci néglige
la formation de liaisons, qui concerne uniquement les électrons de valence.
Pour les éléments pas trop légers, le nombre d’électrons de valence est faible
comparé au nombre totale d’électrons. Nous pouvons donc écrire

p(r) = Zpi(r — i) (1.17)
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Cette somme est sur les atomes de la base situés en r;. Ceci nous permet
d’écrire I'intégrale dans I'expression de I(G) comme une somme d’intégrales
sur les atomes individuels de la base.

J

cell

p(r) exp(—iG - r)dV = Z exp(—iG - 1y) / p;(r") exp(—iG - ')dV’,
1 Vatom

(1.18)

our’ = r—r;. Les deux exponentielles décrivent deux types d’interférence.

Le premier 'interférence entre rayons X diffusés par les atomes de la cellule

primitive et le deuxieme l'interférence entre rayons X diffusés par les élec-

trons au sein d’'un atome. La derniere intégrale s’appelle facteur de forme

atomique et peut étre calculée en partant des propriétés atomiques. Nous

voyons ainsi comment calculer I'intensité de diffraction pour une structure

supposée en partant des facteurs de forme atomiques et de 'arrangement des
atomes au sein de la cellule primitive.

1.6.3 Construction d’Ewald

En 1913 P. Ewald publiait une construction intuitive pour visualiser la
condition de Laue et déterminer les directions k’ dans lesquelles on s’at-
tend a une interférence constructive. Cette construction est montrée dans la
Fig. 1.23. Elle représente une coupe du réseau réciproque.

° °
° °
° °
° ° ) ° °

FIGURE 1.23 — Construction d’Ewald pour trouver les directions ou 'interférence
constructive peut étre observée. Les points représentent le réseau réciproque. k et
k’ sont le vecteur d’onde de I'onde incidente et émergeante.
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On place k de l'onde incidente tel qu’il pointe a l'origine de l’espace
réciproque. Ensuite on dessine un cercle de rayon k autour du pied du vecteur
k. A tout point ou ce cercle touche un point du réseau réciproque la condition
de Laue k' — k = G est satisfaite. Pour un cristal en trois dimensions on
doit effectuer cette constructions pour différentes coupes. La figure montre
clairement que la condition de Laue est une restriction importante. Il n’est pas
trés probable pour la sphere (en 3D) de toucher un deuxieme point du réseau
réciproque, donc on s’attend a l'interférence constructive uniquement dans
quelques directions bien particulieres. En pratique la diffraction des rayons
X est effectuée en utilisant une gamme de longueurs d’ondes (synchrotron)
ou en utilisant une seule longueur d’onde mais un échantillon sous la forme
d’une poudre. Dans les deux cas, multiples maxima de diffraction peuvent
étre observés.



