Annexe B

Traitement quantique des
vibrations du réseau

Le but de cet appendice est de montrer comment I’on peut décrire quanti-
quement les vibrations du réseau dans le cas ou le potentiel est harmonique.
Comme a l'appendice A nous traitons le cas d’'une chaine linéaire, formée
d’atomes identiques équidistants (base monoatomique). La généralisation a
un cristal a 3 dimensions est immédiate et suit les mémes lignes que dans le
cas classique.

Pour faire le passage du cas classique au cas quantique, nous nous ap-
puyons sur le formalisme introduit a ’appendice A, ou nous avons montré
que 'hamiltonien classique s’écrit (voir A.36 ou nous avons remplacé u, par

@)

H = Z 7'[1/ (pu; QV)

ou

2
by m o 9
= T B.1
H, (poqy) 5 T 3w (B.1)
avec 8’].[ a’].l
.l/ == — .l/ = B2
p 90, @ = (B.2)

Par analogie avec le traitement de 'oscillateur quantique a une dimension,
nous introduisons l'opérateur ¢, (multiplication par ¢,) et U'opérateur p, tel
que

0
dq,

py = —ih (B.3)
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L’état du systeme est caractérisé par la fonction d’onde ¥(q,...qn-1) &
laquelle on associe I'état ) de l'espace de Hilbert. Notons ici que l'on a
exclu le mode v = 0 qui correspond a une translation globale du systeme
(voir appendice A).

On a d’autre part les relations de commutation usuelles

[QZupu’] - +ih(5w/]l (B4)

B.1 Opérateurs a, et a,

Dans ce qui suit nous déterminons les états propres et 1’énergie des modes
vibratoires du cristal en introduisant les opérateurs de création a; et d’an-
nihilation a, associés a un mode propre v. Par définition

1
a, = QE/WV (WVQV + ZPV)
1 (B.5)
aj = Z—M (WVQV — ZPV> s
ou nous avons introduit pour simplifier I’écriture
Dbv
v — v Py - B.6
soit 1
H=> 3 (P2 +w2Q?) . (B.7)
On en déduit immédiatement
h hw,
@ = 2wy(a’/+aj)’ b= 2 () —a) (B.8)

et en remplacant dans H,
H, = lhw (afa, + ava)) .
v 2 v v v vy
En partant de la définition B.5 des a, et a) et de B.4, on montre que

vy

lay,a] =0, [af,al] =0, [a,a)] = 6,1, (B.9)
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ce qui permet d’écrire

1
H, = hw, (aja,, + 5]1) : (B.10)
On définit les opérateurs nombre N, et N, par
N, =ala, N=>"N, (B.11)
soit .
H, = hw, (N,, + 511) : (B.12)

On vérifie d’autre part que

Nya, = a, (Nz/_l) ) Nl/a;—:aj (Nu+1) ’ [NWNV’} =0 (B13)

B.2 Recherche des états propres et valeurspropres
de IV,

La relation de commutation entre NV, et N, implique qu’il existe une base
orthonormée de vecteurs propres simultanés des N,

N, [9) = n,| ) (B.14)
ou

Q) =|ny,...,n,,...)
et

NIQ) =) n,|Q) (B.15)

Comme N, est un opérateur hermitien les valeurs propres n, sont réelles, de
plus
Ny, ... .. Mty e Ing, . ... .. A ) = 0 (B.16)

Notons d’autre part que
N,a,|Q) = a, (N, —1)|Q) = (n, — 1) a,|Q2)
T
(B.13)
N,al|Q) =af (N, +1)|Q) = (n, + 1) af|2)
T

(B.13)

(B.17)
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On en déduit que si |€2) est un état propre de N, avec la valeur propre
ny,a;|Q) est un état propre de N, avec la valeur propre (n, + 1).

valeur propre état propre
de N, de N,
n, +1 - al|2)
Ty — 1€2)
n, — 1 — a,|2)
ny — 2 D (a,)*[92)

D’autre part I’échelle des valeurs propres a une borne inférieure, car
(QIN,| Q) = <Q|aja,,\Q) =mn, >0

Pour conclure, il faut encore justifier la notion d’opérateur de création et
d’annihilation, en notant que

Ny|ng, .oy, ...y =nyng, ... ,ny,...)
Noay|ny,...,ny,...) = (n, —)|ny,...,n, —1,...) (B.18)
/I\
(B.17)

On en déduit que

a, [ng,...... N )= Cou| M1, ny, — 1, ... ) (B.19)
soit
D’autre part

(a,Qa,Q) = (Qata,|Q) =n,
d’ou 'on en déduit
Cow = /T, (B.20)

soit

ayl...... My e e Y=/l sy — 1, ) (B.21)
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de méme
o My e D=V, + 1. B S P ) (B.22)

La relation (B.21) implique que n, est un entier. En effet si n, était non
entier, I’on obtiendrait par ’action répétée de a, des valeurs n, négatives, ce
qui est contraire a 'existence d’une borne inférieure > 0. Par contre, si n,
est un entier positif, on obtient par I'action de n,, un état tel que

L’état fondamental pour ’ensemble des modes propres v, noté |2y > est ainsi
tel que
|QQ> = |TZ1 = 0, ...... , Ny = 0, ...... ,MIN—1 = O> (BQS)

soit a l'aide de (B.22)

) = T —— ()™ 9%) (B.24)

B.3 Retour a ’hamiltonien H
Nous concluons de ce qui précede que |Q2) est un état propre de
H=> hw, (Nl,—i— 111)
- 2
tel que )
H|Q) = Z hw, (n + 5) [9))

Les valeurs propres F de I’hamiltonien H sont données par

1
E:Zhwy<ny+§) v=12... ,N—1 (B.25)

n, est le nombre d’occupation du mode propre v de nombre d’onde k,,.
Une autre fagon d’exprimer la méme réalité est de dire que |2) est un
état stationnaire ayant n, phonons de mode v. Dans cette terminologie, les
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relations (B.22) et (B.21) signifient que l'opérateur a;f crée un phonon dans
le mode v et a, annihile un phonon de mode v.

Dans le cas a 3 dimensions, la relation (B.25) se généralise immédiate-
ment. A I'hamiltonien

1
H=> hw,(k,) [a;saw + 511} (B.26)

ou s = 1, 2,3 note les directions de polarisation, on associe I’énergie F

1

P=Y e o) [n n 5] (B.27)

ou ng,,s est le nombre d’occupation du mode k,, s.

B.4 Regles de sélection pour I’interaction
particule-phonon

B.4.1 Invariance de ’Hamiltonien d’interaction

Nous avons affirmé au § 6, Chap. 2, que lors de l'interaction entre une
particule incidente sur un cristal et les vibrations du cristal (ou phonons), tout
se passe comme si une pseudo quantité de mouvement, Ak, était conservée
modulo un vecteur AG du réseau réciproque. Le but de ce § est de démontrer
ce résultat dans le cas a une dimension, la généralisation a 3 dimensions étant
immédiate.

Cette regle de sélection résulte de I'invariance par les translations du ré-
seau de Bravais de 'Hamiltonien d’interaction H,;,; entre la particule (dont la
position est notée x) et les modes vibratoires caractérisés par le déplacement
¢n de I'atome n. Dans le cas ou l'interaction est décrite par un potentiel,

Hint = Z V(iz—a-n—qp) (B.28)

Lorsque © —  — a et g, — ¢,_1, il est évident que H,;,; n’est pas modifié.
L’Hamiltonien associé au systeme particule — phonons en interaction est
donné par

2

P
H = 207 + Hpn, + Hine. (B.29)
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ou le 1°" terme est ’énergie cinétique de la particule de quantité de mouve-
ment P, le second terme est I'Hamiltonien associé aux phonons (voir B.1) et
le dernier terme décrit I'interaction entre la particule et les phonons. Il agit
dans un espace, qui est le produit tensoriel de ’espace associé aux phonons
et de I'espace associé a la particule. Les vecteurs de cet espace sont notés

|P)®| Q) (B.30)

ou |2) est donné par (B.24).
Du point de vue quantique, le passage de ¢, & ¢, _1 est associé a ’opérateur

unitaire Ur tel que
Ur |2) =[Qr) (B.31)

ou |{2r) correspond a un état vibratoire tel que,
(Qr |ga| Q1) = (@ gn—1] )
(Qr |pal Q1) = (2 |Pr-1| Q)

De méme la translation de la particule de  en x —a est associée a I'opérateur
unitaire exp(iaP/h), tel que

exp (—iaﬁ/h) T exp (iaﬁ/h) =I—a (B.33)

(B.32)

Une fagon de démontrer la relation (B.33) est de remarquer
dd)\ {exp (iAP) dexp (—iAP) } =exp (iAP) i[p, 7] exp (~irP) = I

Par intégration

[l sl - [

soit exp (MP) T exp < > =2+ hA.
Ce qui démontre (B.33) dans le cas ou A = —a/h.

L’opérateur conservant 'invariance de H;,; est ainsi donné par
Z/{T = exXp <Z&p/h> & UT

Il commute avec H,;,;

[Ur, Hint) =0 (B.34)
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B.4.2 Recherche de Uy

Les relations (B.32) impliquent, en tenant compte de (B.31),

U;IQnUT = QGn-1
Vn
U’ItlanT = Pn—-1

En tenant compte de la relation (A.38, appendice A), on obtient

ey — (@) Ui'p—im Uit atir) _
—2imw,,
_ Z (Q;)Jr (pn-H - imwu@nﬂ) _

—2tmw,,

n

v

_ Z ( n—1)+ (pn - imqun)

—2tmw,

n

En tenant compte de (A.20) et de la définition (A.19) de z,, il vient

Q=20 — (@) =2(Qu)"

soit

—2tmw,,

" n - imwl/ n
UflaVUT =z, Z Qn (p q )

et en tenant compte de (A.38)
U;lal,UT = 2,04, (B.35)

La solution de (B.35) est unique, & une phase pres, elle est donnée par

Ur = exp (mz kl,Nl,> (B.36)

ou N, est 'opérateur nombre donné en (B.11) et k, est le vecteur d’onde
défini en (A.28)

_ 2mv

~ Na

Pour le prouver, montrons qu’en remplacant (B.36) par son expression, la
relation (B.35) est vérifiée.

ky
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Soit
A= —ia) k,N, ol N, =a}a,

(A, a,] = —iak, [a:au, au] = —iak, [a:, a,J a,
-1

On en déduit
Aa, = a, (A +iak,)

De meéme
Aa, = a, (A + iak,)"

et en utilisant le développement en série de I’exponentielle

A . .
e“a, = a,exp (A +iak,) = exp (+iak,) a,exp (A
w m p( u) P ( u) ju p(A)

unt
ou en introduisant Ur
Ur'a, = exp (+iak,) a,Us"
En multipliant a droite par Ur, on a

Ur'a,Ur = exp (iak,)a,,
—_——
Zp

soit la relation (B.35).

B.4.3 Regles de sélection

La relation de commutation (B.34) implique que 'opérateur Ur est une
constante du mouvement et par conséquent que les valeurs propres de Uy pour
I’état initial du systeme (avant U'interaction) et I’état final (apres interaction)
sont conservées. On a,

p
Ur|initial) = exp (z% +ia) k,,N,,) |initial)

ou
|initial) = |P) & |Qnir.)
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|Qinit.) = [{n})

La valeur propre associée est donc

P
exp <z’a% +ia) k,,n,,) (B.37)

De méme pour 'état final, caractérisé par la quantité de mouvement P’ et
les nombres d’occupation n!,, la valeur propre est donnée par

P/
exp (ia? +ia), kl,nly) (B.38)

En égalant les valeurs propres, on en déduit

P P’
% + Y ak,n, = ah + 3" ak,n!, mod 2w
soit
2mh
P+ hk,n, = P'+ 3 hk,n,, mod — (B.39)
v v a

C’est la regle de sélection pour 'interaction particule — phonon. On remarque
que l'introduction du vecteur G = 27/a est reliée au fait que les valeurs
propres sont en fait les exponentielles données en (B.37) et (B.38).

Cette relation se généralise a 3 dimensions,

P+ hk,n,, = P'+ Y hk,nl,, + hG (B.40)

qui est la relation (3.65) introduite au Chapitre 2.
A la regle de sélection (B.40) il faut encore ajouter la regle de sélection
qui exprime la conservation de ’énergie, soit

P2 1
S, (k) |+ 2| =

, (B.41)
P + > hws (k) |0, + L
om o e ) T Ty



