
Annexe B

Traitement quantique des
vibrations du réseau

Le but de cet appendice est de montrer comment l’on peut décrire quanti-
quement les vibrations du réseau dans le cas où le potentiel est harmonique.
Comme à l’appendice A nous traitons le cas d’une châıne linéaire, formée
d’atomes identiques équidistants (base monoatomique). La généralisation à
un cristal à 3 dimensions est immédiate et suit les mêmes lignes que dans le
cas classique.

Pour faire le passage du cas classique au cas quantique, nous nous ap-
puyons sur le formalisme introduit à l’appendice A, où nous avons montré
que l’hamiltonien classique s’écrit (voir A.36 où nous avons remplacé uν par
qν).

H =
∑
ν

Hν (pν , qν)

où

Hν (pνqν) =
p2ν
2m

+
m

2
ω2
νq

2
ν (B.1)

avec

ṗν = −∂H
∂qν

q̇ν =
∂H
∂pν

(B.2)

Par analogie avec le traitement de l’oscillateur quantique à une dimension,
nous introduisons l’opérateur qν (multiplication par qν) et l’opérateur pν tel
que

pν = −i~ ∂

∂qν
(B.3)
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L’état du système est caractérisé par la fonction d’onde ψ(q1, . . . qN−1) à
laquelle on associe l’état |ψ〉 de l’espace de Hilbert. Notons ici que l’on a
exclu le mode ν = 0 qui correspond à une translation globale du système
(voir appendice A).

On a d’autre part les relations de commutation usuelles

[qν , pν′ ] = +i~δνν′I (B.4)

B.1 Opérateurs an et a+
n

Dans ce qui suit nous déterminons les états propres et l’énergie des modes
vibratoires du cristal en introduisant les opérateurs de création a+ν et d’an-
nihilation aν associés à un mode propre ν. Par définition

aν =
1√

2~ων
(ωνQν + iPν)

a+ν =
1√

2~ων
(ωνQν − iPν) ,

(B.5)

où nous avons introduit pour simplifier l’écriture

Qν =
√
mqν , Pν =

pν√
m

(B.6)

soit

H =
∑
ν

1

2

(
P 2
ν + ω2

νQ
2
ν

)
. (B.7)

On en déduit immédiatement

Qν =

√
~

2ων

(
aν + a+ν

)
, Pν = i

√
~ων

2

(
a+ν − aν

)
, (B.8)

et en remplaçant dans Hν

Hν =
1

2
~ων

(
a+ν aν + aνa

+
ν

)
.

En partant de la définition B.5 des aν et a+ν et de B.4, on montre que

[aν , aν′ ] = 0 ,
[
a+ν , a

+
ν′

]
= 0 ,

[
aν , a

+
ν′

]
= δνν′I , (B.9)
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ce qui permet d’écrire

Hν = ~ων
(
a+ν aν +

1

2
I
)
. (B.10)

On définit les opérateurs nombre Nν et N , par

Nν = a+ν aν , N =
∑
ν

Nν (B.11)

soit

Hν = ~ων
(
Nν +

1

2
I
)
. (B.12)

On vérifie d’autre part que

Nνaν = aν (Nν − 1) , Nνa
+
ν = a+ν (Nν + 1) , [Nν , Nν′ ] = 0 (B.13)

B.2 Recherche des états propres et valeurspropres

de Nν

La relation de commutation entre Nν et Nν′ implique qu’il existe une base
orthonormée de vecteurs propres simultanés des Nν

Nν |Ω〉 = nν |Ω〉 (B.14)

où
|Ω〉 =|n1, . . . , nν , . . .〉

et
N |Ω〉 =

∑
ν

nν |Ω〉 (B.15)

Comme Nν est un opérateur hermitien les valeurs propres nν sont réelles, de
plus

〈n1, . . . . . . , nν′ , . . . . . . |n1, . . . . . . , nν , . . . . . .〉 = δνν′ (B.16)

Notons d’autre part que

Nνaν |Ω〉 = aν (Nν − I) |Ω〉 = (nν − 1) aν |Ω〉
↑

(B.13)

Nνa
+
ν |Ω〉 = a+ν (Nν + I) |Ω〉 = (nν + 1) a+ν |Ω〉

↑
(B.13)

(B.17)
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On en déduit que si |Ω〉 est un état propre de Nν avec la valeur propre
nν , a

+
ν |Ω〉 est un état propre de Nν avec la valeur propre (nν + 1).

valeur propre
de Nν

nν + 1

nν

nν − 1

nν − 2

—————

—————

—————

—————

état propre
de Nν

a+ν |Ω〉
|Ω〉
aν |Ω〉

(aν)
2 |Ω〉

D’autre part l’échelle des valeurs propres a une borne inférieure, car

〈Ω |Nν |Ω〉 = 〈Ω|a+ν aν |Ω〉 = nν ≥ 0

Pour conclure, il faut encore justifier la notion d’opérateur de création et
d’annihilation, en notant que

Nν |n1, . . . , nν , . . .〉 = nν |n1, . . . , nν , . . .〉

Nνaν |n1, . . . , nν , . . .〉 = (nν − 1)|n1, . . . , nν − 1, . . .〉
↑

(B.17)

(B.18)

On en déduit que

aν |n1, . . . . . . , nν , . . . . . .〉 = cnν |n1, . . . . . . , nν − 1, . . . . . .〉 (B.19)

soit

〈aνΩ|aνΩ〉 = c2nν

D’autre part

〈aνΩ|aνΩ〉 = 〈Ω|a+ν aν |Ω〉 = nν

d’où l’on en déduit

cnν =
√
nν (B.20)

soit

aν | . . . . . . , nν , . . . . . .〉 =
√
nν | . . . . . . , nν − 1, . . . . . .〉

↑
(B.19)

(B.21)
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de même

a+ν | . . . . . . , nν , . . . . . . , 〉 =
√
nν + 1| . . . . . . , nν + 1, . . . . . .〉 (B.22)

La relation (B.21) implique que nν est un entier. En effet si nν était non
entier, l’on obtiendrait par l’action répétée de aν des valeurs nν négatives, ce
qui est contraire à l’existence d’une borne inférieure ≥ 0. Par contre, si nν
est un entier positif, on obtient par l’action de nν , un état tel que

aν | . . . . . . , nν = 0, . . . . . .〉 = 0

L’état fondamental pour l’ensemble des modes propres ν, noté |Ω0 > est ainsi
tel que

|Ω0〉 = |n1 = 0, . . . . . . , nν = 0, . . . . . . , nN−1 = 0〉 (B.23)

soit à l’aide de (B.22)

|Ω〉 =
∏
ν

1√
nν !

(
a+ν
)nν |Ω0〉 (B.24)

B.3 Retour à l’hamiltonien H
Nous concluons de ce qui précède que |Ω〉 est un état propre de

H =
∑
ν

~ων
(
Nν +

1

2
I
)

tel que

H|Ω〉 =
∑
ν

~ων
(
nν +

1

2

)
|Ω〉

Les valeurs propres E de l’hamiltonien H sont données par

E =
∑
ν

~ων
(
nν +

1

2

)
ν = 1, 2 . . . , N − 1 (B.25)

nν est le nombre d’occupation du mode propre ν de nombre d’onde kν .
Une autre façon d’exprimer la même réalité est de dire que |Ω〉 est un

état stationnaire ayant nν phonons de mode ν. Dans cette terminologie, les
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relations (B.22) et (B.21) signifient que l’opérateur a+ν crée un phonon dans
le mode ν et aν annihile un phonon de mode ν.

Dans le cas à 3 dimensions, la relation (B.25) se généralise immédiate-
ment. A l’hamiltonien

H =
∑
ν,s

~ωs (kν)

[
a+ν,saν,s +

1

2
I
]

(B.26)

où s = 1, 2, 3 note les directions de polarisation, on associe l’énergie E

E =
∑
ν,s

~ωs (kν)

[
nkν ,s +

1

2

]
(B.27)

où nkν ,s est le nombre d’occupation du mode kν , s.

B.4 Règles de sélection pour l’interaction

particule-phonon

B.4.1 Invariance de l’Hamiltonien d’interaction

Nous avons affirmé au § 6, Chap. 2, que lors de l’interaction entre une
particule incidente sur un cristal et les vibrations du cristal (ou phonons), tout
se passe comme si une pseudo quantité de mouvement, ~k, était conservée
modulo un vecteur ~G du réseau réciproque. Le but de ce § est de démontrer
ce résultat dans le cas à une dimension, la généralisation à 3 dimensions étant
immédiate.

Cette règle de sélection résulte de l’invariance par les translations du ré-
seau de Bravais de l’Hamiltonien d’interaction Hint entre la particule (dont la
position est notée x) et les modes vibratoires caractérisés par le déplacement
qn de l’atome n. Dans le cas où l’interaction est décrite par un potentiel,

Hint =
∑
n

V (x− a · n− qn) (B.28)

Lorsque x→ x− a et qn → qn−1, il est évident que Hint n’est pas modifié.
L’Hamiltonien associé au système particule – phonons en interaction est

donné par

H =
P̂ 2

2M
+Hph. +Hint. (B.29)
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où le 1er terme est l’énergie cinétique de la particule de quantité de mouve-
ment P , le second terme est l’Hamiltonien associé aux phonons (voir B.1) et
le dernier terme décrit l’interaction entre la particule et les phonons. Il agit
dans un espace, qui est le produit tensoriel de l’espace associé aux phonons
et de l’espace associé à la particule. Les vecteurs de cet espace sont notés

|P 〉⊗|Ω〉 (B.30)

où |Ω〉 est donné par (B.24).
Du point de vue quantique, le passage de qn à qn−1 est associé à l’opérateur

unitaire UT tel que
UT |Ω〉 =|ΩT 〉 (B.31)

où |ΩT 〉 correspond à un état vibratoire tel que,

〈ΩT |qn|ΩT 〉 = 〈Ω |qn−1|Ω〉

〈ΩT |pn|ΩT 〉 = 〈Ω |pn−1|Ω〉

}
(B.32)

De même la translation de la particule de x en x−a est associée à l’opérateur
unitaire exp(iaP̂ /~), tel que

exp
(
−iaP̂ /~

)
x̂ exp

(
iaP̂ /~

)
= x̂− a (B.33)

——————
Une façon de démontrer la relation (B.33) est de remarquer

d

dλ

{
exp

(
iλP̂

)
x̂ exp

(
−iλP̂

)}
= exp

(
iλP̂

)
i [p̂, x̂] exp

(
−iλP̂

)
= ~I

Par intégration

λ∫
0

d

dλ

{ }
dλ =

[{ }]λ
0

=

λ∫
0

~Idλ = ~λ

soit exp
(
iλP̂

)
x̂ exp

(
−iλP̂

)
= x̂+ ~λ.

Ce qui démontre (B.33) dans le cas où λ = −a/~.
——————
L’opérateur conservant l’invariance de Hint est ainsi donné par

UT = exp
(
iaP̂ /~

)
⊗ UT

Il commute avec Hint

[UT ,Hint] = 0 (B.34)
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B.4.2 Recherche de UT

Les relations (B.32) impliquent, en tenant compte de (B.31),

U−1T qnUT = qn−1
∀n

U−1T pnUT = pn−1

En tenant compte de la relation (A.38, appendice A), on obtient

U−1T aνUT =
(Qν)+

(
U−1T pUT − imωνU−1T qUT

)
−2imων

=

=
∑
n

(Qν
n)+ (pn+1 − imωνqn+1)

−2imων
=

=
∑
n

(
Qν
n−1
)+

(pn − imωνqn)

−2imων

En tenant compte de (A.20) et de la définition (A.19) de zν , il vient

Qν
n = zνQ

ν
n−1 −→

(
Qν
n−1
)+

= zν (Qn)+

soit

U−1T aνUT = zν
∑
n

Qν
n (pn − imωνqn)

−2imων

et en tenant compte de (A.38)

U−1T aνUT = zνaν (B.35)

La solution de (B.35) est unique, à une phase près, elle est donnée par

UT = exp

(
ia
∑
ν

kνNν

)
(B.36)

où Nν est l’opérateur nombre donné en (B.11) et kν est le vecteur d’onde
défini en (A.28)

kν =
2πν

Na

Pour le prouver, montrons qu’en remplaçant (B.36) par son expression, la
relation (B.35) est vérifiée.
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Soit
A = −ia

∑
ν

kνNν où Nν = a+ν aν

[A, aµ] = −iakµ
[
a+µ aµ, aµ

]
= −iakµ

[
a+µ , aµ

]︸ ︷︷ ︸
−1

aµ

On en déduit
Aaµ = aµ (A+ iakµ)

De même
Anaµ = aµ (A+ iakµ)n

et en utilisant le développement en série de l’exponentielle

eAaµ = aµ exp (A+ iakµ) = exp (+iakµ) aµexp (A)︸ ︷︷ ︸
U−1
T

où en introduisant UT

U−1T aµ = exp (+iakµ) aµU
−1
T

En multipliant à droite par UT , on a

U−1T aµUT = exp (iakµ)︸ ︷︷ ︸
zµ

aµ

soit la relation (B.35).

B.4.3 Règles de sélection

La relation de commutation (B.34) implique que l’opérateur UT est une
constante du mouvement et par conséquent que les valeurs propres de UT pour
l’état initial du système (avant l’interaction) et l’état final (après interaction)
sont conservées. On a,

UT |initial〉 = exp

(
i
aP̂

~
+ ia

∑
ν

kνNν

)
|initial〉

où
|initial〉 = |P 〉 ⊗ |Ωinit.〉
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avec
|Ωinit.〉 = | {n}〉

La valeur propre associée est donc

exp

(
ia
P

~
+ ia

∑
ν

kνnν

)
(B.37)

De même pour l’état final, caractérisé par la quantité de mouvement P ′ et
les nombres d’occupation n′ν , la valeur propre est donnée par

exp

(
ia
P ′

~
+ ia

∑
ν

kνn
′
ν

)
(B.38)

En égalant les valeurs propres, on en déduit

aP

~
+
∑
ν

akνnν =
aP ′

~
+
∑
ν

akνn
′
ν mod 2π

soit

P +
∑
ν

~kνnν = P ′ +
∑
ν

~kνn′ν mod
2π~
a

(B.39)

C’est la règle de sélection pour l’interaction particule – phonon. On remarque
que l’introduction du vecteur G = 2π/a est reliée au fait que les valeurs
propres sont en fait les exponentielles données en (B.37) et (B.38).

Cette relation se généralise à 3 dimensions,

P +
∑
ν,s

~kνnν,s = P′ +
∑
ν,s

~kνn′ν,s + ~G (B.40)

qui est la relation (3.65) introduite au Chapitre 2.
A la règle de sélection (B.40) il faut encore ajouter la règle de sélection

qui exprime la conservation de l’énergie, soit

P 2

2m
+
∑
ν,s

~ωs (kν)

[
nν +

1

2

]
=

P
′2

2m
+
∑
ν,s

~ωs (kν)

[
n′ν +

1

2

] (B.41)


