Annexe A

Décomposition en modes propres.

Le but de cet appendice est de montrer d'un point de vue classique com-
ment 'on peut décomposer les vibrations d’un solide en modes propres de
vibration. Nous nous restreindrons au cas particulier d’'une chaine linéaire for-
mée d’atomes équidistants, identiques, de masse m. Nous adopterons d’autre
part les conditions de bord périodique de Born et von Karman, soit

Up = UpiN n=1,...,N (A.1)

ou u, représente le déplacement de I’atome n par rapport a sa position d’équi-
libre, celle-ci étant donnée par R, = na.

]
—TTEI T e TV T G e JTVV U —
n=1 2 3 N-1 N
[ ] [ ] [ ] [ ]
- —» - -
Uy U Uy .1 Uy

FIGURE A.1 — Chaine linéaire formée d’atomes équidistants identiques, les atomes
1 et N sont reliés par un ressort de constante C via une barre rigide de masse nulle,
telle que un41 = ug.
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La dynamique du systeme est déterminée par I’hamiltonien

N p2

n=1

+ U (u) (A.2)

ou p, est la quantité de mouvement de 'atome n et U(u) le potentiel har-
monique d’interaction, donné par

1
Uu) = 3 ZunDn,n’un/ nn=1,...,N (A.3)

Dans le cas ou 'énergie potentielle d’interaction entre les ions est décrite
comme une somme d’interactions de paires d’atomes plus proches voisins,
U(u) s’écrit (voir Chap. 2)

N

Z (Uns1 — un)2 (A.4)

n=1

U(u)z%

Pour simplifier les notations, nous introduirons dans la suite de cet appendice
la notation matricielle, soit

_U1 ] _P1 ]
Uz b2
u= p= p,u € RN (A.5)
| UN | | PN ]

L’énergie potentielle d’interaction de la chaine s’écrit dans cette notation,

1
U(u) = éutDu (A.6)
ou D est la matrice dynamique.
Dans le cas de I'énergie U (u) donnée en (A.4), la matrice dynamique

s’écrit,

2 -1 0 -~ 0 0 -1
1 2 -1 -~ 0 0 0

D=cC : SR (A.7)
0 0 0 1 2 -1
1 0 0 0 -1 2
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Les calculs seront conduits de fagon a montrer le role déterminant joué par la
symétrie de translation. D’autre part le formalisme choisi peut se généraliser
sans difficulté au cas quantique (voir appendice B).

A.1 Introduction de la matrice de translation

Nous définissons la matrice de translation 7'(R;) telle que
T(Rj)u=u" avec  u, = Upyj (A.8)

Ainsi
T(R))T(Re) =T (R)T (R;) =T (Re + Ry)

ce qui implique avec la notation T'(R;) =T,

T(R;) =T’ (A.9)
ou la matrice T correspond a,
[0 100 0]
0010 -0
T=(0001-- 0 (A.10)
b0 o
Elle est telle que (cond. de B.v.K),
™ =1 ' =T"" (A.11)
Les conditions de B.v.K. et la symétrie de translation impliquent que
U(Tu)=U (u) ; Vu (A.12)

et dans le cas particulier de 'approximation harmonique,
U(Tu) = %utTtDTu = %utDu ;Yu
T T
(A.6) (A.12)
soit en tenant compte de (A.11)
T'DT =T7'DT =D
On arrive a la conclusion que la matrice dynamique D et la matrice de trans-

lation T" commutent
(D, T] =0 (A.13)
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A.2 Recherche des modes propres

L’équation de mouvement des atomes s’obtient a partir des équations de
Hamilton, soit

OH OH
= — I = — A14
Opn, b ouy, (A-14)
ou H est donné par (A.2). En notation matricielle on obtient, pour le potentiel
harmonique (A.6),

U,

p=—Du

soit
mii = —Du (A.15)

Pour trouver les modes propres il faut étendre I'action de D et T de RY &
CV. D’autre part la relation de commutation (A.13) permet de choisir une
base orthonormée de CV (munie du produit scalaire usuel) formée des valeurs
propres de D etT. Nous noterons Q¥ les N vecteurs propres de cette base,

o
Q3
Q= v=0,1,...,N—1 (A.16)
| Q% |
ainsi que
D@ =d,Q" (A.17)
TQ" = 2,Q" (A.18)

ou d, et z, sont les valeurs propres.
Les relations (A.11) impliquent que T est unitaire et que zY = 1. Ainsi

2, = exp (231;]/) v=0,...,N—1 (A.19)

D’autre part, la définition (A.8) de la matrice T' et (A.18) impliquent que,

2Qn = = Qr=(2)"Q% (A-20)
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On a donc, i i
2y
2
= | & (A.21)
A
Les relations d’orthonormalisation
(Qy>+ le - 61/1/’ (AQ].blS)

impliquent que

1
= —— A .21bis
QN \/N ( )
de méme que la relation de fermeture,
S @) -1 (A2)

Les valeurs propres d,, de la matrice D sont données par (voir A.17 et A.21),
Q)" DQ" =d, (A.23)

D’autre part en tenant compte de A.22 et A.17, on montre (théoréme spec-
tral) que,

D=%d.Q" @) (A.24)

Le déplacement w,(t) de ’atome n peut étre exprimé en fonction des vecteurs
de base Q¥

un (t) = a, (H) QY + c.c.

v

ou sous forme matricielle

u(t) = Z a, (t) Q" + c.c. (A.25)

En introduisant A.25 dans I’équation de mouvement A.14, nous pouvons
écrire pour chaque indice v (v =0,..., N — 1),

ma, (t) = —d,a, (t) (A.26)
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soit
a, (t) = a, exp (—iw,t) (A.27)
ou
w, =\/d,/m
Finalement en remplacant Q¥ par son expression A.21 et en introduisant le
vecteur d’onde k,,

2mv
k, = =0,...,N—1 A2
N v=>0 (A.28)
1
up, (1) = TN E a, exp [i (k,na —w,t)] + c.c (A.29)

Pour l'indice v = 0 les déplacements u,(t) de chaque atome sont identiques,
le mode v = 0 correspond donc a un déplacement en bloc de toute la chaine,
ce n’est pas un mode vibratoire du cristal.

La relation (A.29) indique que le déplacement w,(t) d’un atome n autour
de sa position d’équilibre peut étre décomposé en la somme de (N —1) modes
propres collectifs s’étendant a I’ensemble du cristal. En d’autres termes les N
équations couplées A.15 peuvent étre transformées en N équations a variable
séparée du type oscillateur harmonique.

Il est intéressant de noter que pour chaque mode propre v # 0,

N N
1

E Up (1) = —=a, exp (—iw,t) E exp (ik,na) =0

n=1 N n=1

De méme

D pn(t)=m) i (t)=0

ce qui permet de conclure que la quantité de mouvement associée a chaque
mode propre v # 0 est nulle. Ce résultat reste vérifié a 3 dimensions.

A.3 Application au cas de la chaine linéaire avec
couplage aux plus proches voisins

La décomposition en modes propres est donnée par (A.29) pour autant
que 'on connaisse la fréquence w,, soit selon A.27 les valeurs propres d, de
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la matrice D donnée en A.7. On peut simplifier le calcul de d,, en remarquant
que

D=CQI-T-T") (A.30)
soit
du =C (QV)JF (2 [-7- T_l) QV
/I\
(A.23)

et avec aide de A.21 et A.18

dV:C(2—zy—i)
2y

ky
d, = 2C (1 — cosk,a) = 4C sin® (TG)

soit avec z, =exp(ik,a)

On en tire

C
w, =24/ —
m

2

sin (ka)‘ v=0,1,...,N—1 (A.31)

On retrouve donc de fagon plus élégante le résultat donné en (2.28).

A.4 Formalisme hamiltonien

Le but de ce § est de montrer que I'hamiltonien H donné en (A.2) peut
étre décomposé en une somme d’hamiltoniens de type oscillateur harmonique.
On introduit d’autre part un formalisme qui peut étre aisément adapté au
cas quantique. Pour cela introduisons

po(t) = —imw,a, (t) Q%+ c.c

v

ou en notation matricielle

p(t) = Z —imw,a, (t) Q" + c.c (A.32)
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et définissons p, et u, € R tels que

Py — imwyu, = (Q) (p — imw,u) . (A.33)
Montrons alors que l'expression ci-dessous correspond a H(p, u)
2,22
1
R P S 30 + i) Q1) (o = i)
/]\
(A.33)

1
= 5P P Q@)+ Fut e (@)

D wut@Q Q) p = wptQ(@QY)"

Z;Wf L ZwQQ” QN u= % + 21ﬁDu =H (p,u)
) ) )
(A.22) (A.24) (A.6)
(A.34)

Pour montrer que les termes mixtes disparaissent on les écrit en utilisant
la notation "bra-ket” qui permet de remarquer qu’il s’agit d'une couple de

conjugueés : .
72 ~ ~
3 [(u1D1p)=(pID]u)]

ot D =Y w,Q (Q")"

v
| u) et | p) sont les vecteurs de 'hamiltonien du systeme H(p, u) et donc ils
sont réels. Si on montre que la matrice D est aussi réelle, les duex termes
mixtes s’annullent.

En écrivant D = Zwy | Q"){Q" | on peut voire que tous les éléments

14
sont réels :

Q[ D" =(Q > w, | Q)Q" Q") =
= Q1Y w, | Q)6 = (Q* | wy | Q) = w, 8™
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D’autre part

Dy — MW, T, = (Q”)Jr (p —imw, i) =

= (@) (—Du —iw,p) = (Q")" (—dyu — iw,p) =
T )

(A.15) (A.17)

(@) (=Du) = (@) (=dyw) = = (@) > du (Q") (@) u=
T I
(A.24)
== > dd" Q) u=—d, (@) u=—(Q)" du

= (Q")" (—mwlu — iw,p) = —iw, (Q")" (p — imw,u)
/I\
(A.27)
= —lwy, (pl/ - imw,,ul,)
/]\
(A.33)

En identifiant les parties réelles et imaginaires,

Py = —mw3u, et U, = by (A.35)
m

Le passage des variables p,u aux variables p,,u, est une transformation
canonique. En terme de ces nouvelles variables 1’évolution est guidée par un
hamiltonien de la forme

H(p,u)=>_ H,(p,u)

/I\
(A.34)

(A.36)

ou
2
Py m o 9
Hy vy, Uy ) = I A.

Ainsi, du point de vue dynamique, le systeme se comporte comme N — 1
oscillateurs harmoniques découplés (le mode de translation v = 0 est exclu).
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Chaque oscillateur constitue un mode vibratoire collectif du systeme (voir

A.29).
Pour terminer cet appendice, estimons les a, (t) introduits en A.25 et A.32

en fonction de p, et u,.

A25 + A2l + A2lbis — (Q") u=a,+ay_,
A32 4+ A21 + A2lbis — (QV) p=imw, (a, —ak_,)

Donc

v+ o s
o — Q") (p‘ imw,u) _ D z.mwl,u,, (A.38)
—2imw, —2tmw,

(A.33)



