
Annexe A

Décomposition en modes propres.

Le but de cet appendice est de montrer d’un point de vue classique com-
ment l’on peut décomposer les vibrations d’un solide en modes propres de
vibration. Nous nous restreindrons au cas particulier d’une châıne linéaire for-
mée d’atomes équidistants, identiques, de masse m. Nous adopterons d’autre
part les conditions de bord périodique de Born et von Karman, soit

un = un+N n = 1, . . . , N (A.1)

où un représente le déplacement de l’atome n par rapport à sa position d’équi-
libre, celle-ci étant donnée par Rn = na.

u2 uN - 1 

a 

n = 1 2 3 N – 1 N 

uN u1 

Figure A.1 – Châıne linéaire formée d’atomes équidistants identiques, les atomes
1 et N sont reliés par un ressort de constante C via une barre rigide de masse nulle,
telle que uN+1 = u1.
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2 ANNEXE A. DÉCOMPOSITION EN MODES PROPRES

La dynamique du système est déterminée par l’hamiltonien

H (p, u) =
N∑
n=1

p2n
2m

+ U (u) (A.2)

où pn est la quantité de mouvement de l’atome n et U(u) le potentiel har-
monique d’interaction, donné par

U (u) =
1

2

∑
n,n′

unDn,n′un′ n, n′ = 1, . . . , N (A.3)

Dans le cas où l’énergie potentielle d’interaction entre les ions est décrite
comme une somme d’interactions de paires d’atomes plus proches voisins,
U(u) s’écrit (voir Chap. 2)

U (u) =
C

2

N∑
n=1

(un+1 − un)2 (A.4)

Pour simplifier les notations, nous introduirons dans la suite de cet appendice
la notation matricielle, soit

u =


u1
u2
·
·
·
uN

 p =


p1
p2
·
·
·
pN

 p, u ∈ RN (A.5)

L’énergie potentielle d’interaction de la châıne s’écrit dans cette notation,

U (u) =
1

2
utDu (A.6)

où D est la matrice dynamique.
Dans le cas de l’énergie U (u) donnée en (A.4), la matrice dynamique

s’écrit,

D = C


2 −1 0 · · · 0 0 −1
−1 2 −1 · · · 0 0 0

...
...

...
...

...
...

0 0 0 · · · −1 2 −1
−1 0 0 · · · 0 −1 2

 (A.7)
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Les calculs seront conduits de façon à montrer le rôle déterminant joué par la
symétrie de translation. D’autre part le formalisme choisi peut se généraliser
sans difficulté au cas quantique (voir appendice B).

A.1 Introduction de la matrice de translation

Nous définissons la matrice de translation T (Rj) telle que

T (Rj)u = u′ avec u′n = un+j (A.8)

Ainsi
T (Rj)T (R`) = T (R`)T (Rj) = T (R` +Rj)

ce qui implique avec la notation T (R1) = T ,

T (Rj) = T j (A.9)

où la matrice T correspond à,

T =


0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

1 0 0 0 0

 (A.10)

Elle est telle que (cond. de B.v.K),

TN = I T t = T−1 (A.11)

Les conditions de B.v.K. et la symétrie de translation impliquent que

U (Tu) = U (u) ; ∀u (A.12)

et dans le cas particulier de l’approximation harmonique,

U (Tu) =
1

2
utT tDTu =

1

2
utDu ;∀u

↑
(A.6)

↑
(A.12)

soit en tenant compte de (A.11)

T tDT = T−1DT = D

On arrive à la conclusion que la matrice dynamique D et la matrice de trans-
lation T commutent

[D,T ] = 0 (A.13)
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A.2 Recherche des modes propres

L’équation de mouvement des atomes s’obtient à partir des équations de
Hamilton, soit

u̇n =
∂H
∂pn

ṗn = − ∂H
∂un

(A.14)

oùH est donné par (A.2). En notation matricielle on obtient, pour le potentiel
harmonique (A.6),

u̇ =
p

m
ṗ = −Du

soit

mü = −Du (A.15)

Pour trouver les modes propres il faut étendre l’action de D et T de RN à
CN . D’autre part la relation de commutation (A.13) permet de choisir une
base orthonormée de CN (munie du produit scalaire usuel) formée des valeurs
propres de D etT . Nous noterons Qν les N vecteurs propres de cette base,

Qν =


Qν

1

Qν
2

·
·
·
Qν
N

 ν = 0, 1, . . . , N − 1 (A.16)

ainsi que

DQν = dνQ
ν (A.17)

TQν = zνQ
ν (A.18)

où dν et zν sont les valeurs propres.
Les relations (A.11) impliquent que T est unitaire et que zNν = 1. Ainsi

zν = exp

(
2iπν

N

)
ν = 0, . . . , N − 1 (A.19)

D’autre part, la définition (A.8) de la matrice T et (A.18) impliquent que,

zνQ
ν
n = Qν

n+1 → Qν
n = (zν)

nQν
N (A.20)
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On a donc,

Qν =



zν
z2ν
·
·
·
·
zNν


Qν
N (A.21)

Les relations d’orthonormalisation

(Qν)+Qν′ = δνν′ (A.21bis)

impliquent que

Qν
N =

1√
N

(A.21bis)

de même que la relation de fermeture,∑
ν

Qν (Qν)+ = I. (A.22)

Les valeurs propres dν de la matrice D sont données par (voir A.17 et A.21),

(Qν)+DQν = dν (A.23)

D’autre part en tenant compte de A.22 et A.17, on montre (théorème spec-
tral) que,

D =
∑
ν

dνQ
ν (Qν)+ (A.24)

Le déplacement un(t) de l’atome n peut être exprimé en fonction des vecteurs
de base Qν

n,

un (t) =
∑
ν

aν (t)Qν
n + c.c.

ou sous forme matricielle

u (t) =
∑
ν

aν (t)Qν + c.c. (A.25)

En introduisant A.25 dans l’équation de mouvement A.14, nous pouvons
écrire pour chaque indice ν (ν = 0, . . . , N − 1),

mäν (t) = −dνaν (t) (A.26)
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soit
aν (t) = aν exp (−iωνt) (A.27)

où
ων =

√
dν/m

Finalement en remplaçant Qν
n par son expression A.21 et en introduisant le

vecteur d’onde kν ,

kν =
2πν

a ·N
ν = 0, . . . , N − 1 (A.28)

un (t) =
1√
N

∑
ν

aν exp [i (kνna− ωνt)] + c.c (A.29)

Pour l’indice ν = 0 les déplacements un(t) de chaque atome sont identiques,
le mode ν = 0 correspond donc à un déplacement en bloc de toute la châıne,
ce n’est pas un mode vibratoire du cristal.

La relation (A.29) indique que le déplacement un(t) d’un atome n autour
de sa position d’équilibre peut être décomposé en la somme de (N−1) modes
propres collectifs s’étendant à l’ensemble du cristal. En d’autres termes les N
équations couplées A.15 peuvent être transformées en N équations à variable
séparée du type oscillateur harmonique.

Il est intéressant de noter que pour chaque mode propre ν 6= 0,

N∑
n=1

un (t) =
1√
N
aν exp (−iωνt)

N∑
n=1

exp (ikνna) = 0

De même

N∑
n=1

pn (t) = m
N∑
n=1

u̇n (t) = 0

ce qui permet de conclure que la quantité de mouvement associée à chaque
mode propre ν 6= 0 est nulle. Ce résultat reste vérifié à 3 dimensions.

A.3 Application au cas de la châıne linéaire avec

couplage aux plus proches voisins

La décomposition en modes propres est donnée par (A.29) pour autant
que l’on connaisse la fréquence ων , soit selon A.27 les valeurs propres dν de
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la matrice D donnée en A.7. On peut simplifier le calcul de dν en remarquant
que

D = C
(
2 I− T − T−1

)
(A.30)

soit
dν = C (Qν)

+ (2 I− T − T−1)Qν

↑
(A.23)

et avec l’aide de A.21 et A.18

dν = C

(
2− zν −

1

zν

)
soit avec zν =exp(ikνa)

dν = 2C (1− cos kνa) = 4C sin2

(
kνa

2

)
On en tire

ων = 2

√
C

m

∣∣∣∣sin(kνa2
)∣∣∣∣ ν = 0, 1, . . . , N − 1 (A.31)

On retrouve donc de façon plus élégante le résultat donné en (2.28).

A.4 Formalisme hamiltonien

Le but de ce § est de montrer que l’hamiltonien H donné en (A.2) peut
être décomposé en une somme d’hamiltoniens de type oscillateur harmonique.
On introduit d’autre part un formalisme qui peut être aisément adapté au
cas quantique. Pour cela introduisons

pn (t) =
∑
ν

−imωνaν (t)Qν
n + c.c

ou en notation matricielle

p (t) =
∑
ν

−imωνaν (t)Qν + c.c (A.32)
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et définissons pν et uν ∈ R tels que

pν − imωνuν = (Qν)+ (p− imωνu) . (A.33)

Montrons alors que l’expression ci-dessous correspond à H(p, u)∑
ν

p2ν +m2ω2
νu

2
ν

2m
=

1

2m

∑
ν

(p+ + imωνu
+)Qν (Qν)+ (p− imωνu)

↑
(A.33)

=
1

2m
p+p

∑
ν

Qν (Qν)+ +
m

2
u+
∑
ν

ω2
νQ

ν (Qν)+ u

+
i

2

[∑
ν

ωνu
+Qν (Qν)+ p−

∑
ν

ωνp
+Qν (Qν)+ u

]

=
p+p

2m
+
m

2
u+
∑
ν

ω2
νQ

ν (Qν)+ u =
p+p

2m
+

1

2
u+Du = H (p, u)

↑
(A.22)

↑
(A.24)

↑
(A.6)

(A.34)

Pour montrer que les termes mixtes disparaissent on les écrit en utilisant
la notation ”bra-ket” qui permet de remarquer qu’il s’agit d’une couple de
conjugués :

i

2

[〈
u | D̃ | p

〉
−
〈
p | D̃ | u

〉]
où D̃ =

∑
ν

ωνQ
ν (Qν)+.

| u〉 et | p〉 sont les vecteurs de l’hamiltonien du système H(p, u) et donc ils
sont réels. Si on montre que la matrice D̃ est aussi réelle, les duex termes
mixtes s’annullent.

En écrivant D̃ =
∑
ν

ων | Qν〉〈Qν | on peut voire que tous les éléments

sont réels :

〈Qα | D̃ | Qµ〉 = 〈Qα |
∑
ν

ων | Qν〉〈Qν | Qµ〉 =

= 〈Qα |
∑
ν

ων | Qν〉δνµ = 〈Qα | ωµ | Qµ〉 = ωµδ
αµ
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D’autre part

ṗν − imων u̇ν = (Qν)+ (ṗ− imων u̇) =

= (Qν)+ (−Du− iωνp) = (Qν)+ (−dνu− iωνp) =
↑

(A.15)

↑
(A.17)

(Qν)+ (−Du) = (Qν)+ (−dνu) = − (Qν)+
∑
µ

dµ (Qµ) (Qµ)+ u =

↑
(A.24)

= −
∑
µ

dµδ
µν (Qµ)+ u = −dν (Qν)+ u = − (Qν)+ dνu

= (Qν)+ (−mω2
νu− iωνp) = −iων (Qν)+ (p− imωνu)

↑
(A.27)

= −iων (pν − imωνuν)
↑

(A.33)

En identifiant les parties réelles et imaginaires,

ṗν = −mω2
νuν et u̇ν =

pν
m

(A.35)

Le passage des variables p, u aux variables pν , uν est une transformation
canonique. En terme de ces nouvelles variables l’évolution est guidée par un
hamiltonien de la forme

H (p, u) =
∑
ν

Hν (pν , uν)

↑
(A.34)

(A.36)

où

Hν (pν , uν) =
p2ν
2m

+
m

2
ω2
νu

2
ν (A.37)

Ainsi, du point de vue dynamique, le système se comporte comme N − 1
oscillateurs harmoniques découplés (le mode de translation ν = 0 est exclu).
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Chaque oscillateur constitue un mode vibratoire collectif du système (voir
A.29).

Pour terminer cet appendice, estimons les aν(t) introduits en A.25 et A.32
en fonction de pν et uν .

A.25 + A.21 + A.21bis −→ (Qν)+ u = aν + a∗N−ν

A.32 + A.21 + A.21bis −→ (Qν)+ p = imων
(
aν − a∗N−ν

)
Donc

aν =
(Qν)+ (p− imωνu)

−2imων
=
pν − imωνuν
−2imων

(A.38)

↑
(A.33)


