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Problem Set 9: Light Propagation
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Exercise 1: The Ray Transfer - ABCD Matrix

In the framework of geometric optics and under the paraxial approximation, light propagation problems can be addressed using
the ABCD matrix model. This is what we propose to study in this first exercise. This tool is particularly useful for understanding the
mechanism of resonators, which, in addition to an amplifying medium, constitute the second main component required for the
functioning of a laser. Additionally, within the paraxial approximation, this formalism can also be used to predict the propagation of
Gaussian beams through various optical systems.

1. Recall Snell-Descartes' laws in the paraxial approximation.

The light beam being described only by its position y and its angle 8, the ABCD matrix M 4pcp, or ray transfer matrix, is defined for
the propagation of light rays through an optical system as:
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where 51/2 = nb, ), are the reduced angles and with (y1,2, 61,2) defined on the graph below. This matrix has a unitary determinant,
dEt(MABCD) =1
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2. Calculate the ABCD matrix for the following optical systems:

e a) Flat interface between two media with respective refractive indexes ny and ny;
¢ b) A medium with refractive index n and thickness d;
e ) A spherical surface with a radius of curvature R separating two mediums of refractive indexes n; and na.
The ABCD matrix of an optical system can be decomposed into subsystems as follows:
Moy = My X My_1X... XMy x M.

3. A thin lens can be considered as two adjacent spherical interfaces with radius of curvature R. The ABCD matrix associated with
a thin lens can be written as

Mypep = <—71/f (1)>

with n the refractive index of the external medium and f the focal length of the lens. Write the focal length f as a function of the
refractive index of the medium n, the radius of curvature of the spherical surfaces R and the refractive index ny of the lens
medium.

Application to the stability of resonators

Resonators are optical systems in which light remains trapped, making numerous round trips before escaping. Optical cavities, such
as the Fabry-Pérot type, are among the most well-known examples. In addition to the presence of constructive or destructive
interference, which allows the selection of specific frequencies of light waves, it is necessary to ensure that the geometry of the
resonator allows for the stability of the light rays.

The resonator studied here is a resonator composed of two spherical mirrors with respective radius of curvature R.
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4. Calculate the ABCD matrix of a flat mirror.
5. Calculate the ABCD matrix of a spherical mirror with a radius of curvature R. Recover the ABCD matrix for a flat mirror.

6. Express the ABCD matrix M after one round trip in the resonator. What is the ABCD matrix M after IV round trips ?

A

7. In general, show that the condition on the coefficients of the ABCD matrix M = (C’ D

) of a resonator for it to be

considered stable is given by

< A+f+2 <
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0

Hint: write the matrix in its diagonal form M = PDP~* with D = (5601
2

) and find a stability condition on the parameters
T1/9 = |@1)2|exp(ipy 7). Notice that det(M) = 1.

8. Deduce the condition of stability for the cavity formed by two spherial mirrors.

9. The code below allows you to obtain the position y and the angle € of a light ray after IV passes through a cavity composed of

two spherical mirrors with the same radius of curvature R. Verify the stability condition obtained in the previous question.

import numpy as np
import matplotlib.pyplot as plt
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=1.0 ## refractive index
=1.0 ## resonnator Length
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R = XXX*d ## radius of curvature
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y_theta = np.array([0.05*d,np.pi*1.0/180])  ## initial conditions

N = 100

y_array = np.zeros(N)
theta_array = np.zeros(N)
y_array_right = np.zeros(N)
theta_array_right = np.zeros(N)

#i###t elementary ABCD matrices ##t##HH###
M1 = np.array([[1,0],[-2*n/R,1]])

M2 = np.array([[1,d/n],[0,1]])

M3 = np.array([[1,0],[-2*n/R,1]])

M4 = np.array([[1,d/n],[0,1]])

M_ABCD_right = np.dot(M3,M4)
M_ABCD = np.dot(np.dot(M1,M2),np.dot(M3,M4))

for i in range(N):
M_ABCD_i = np.linalg.matrix_power(M_ABCD, i)
y_array[i] = np.dot(M_ABCD_i, y_theta)[0]
theta_array[i] = np.dot(M_ABCD_i, y_theta)[1]
M_ABCD_right_i = np.dot(M_ABCD_right,M ABCD_i)
y_array_right[i] = np.dot(M_ABCD_right_i, y theta)[0]
theta_array_right[i] = np.dot(M_ABCD_right_i, y theta)[1]

##### to draw the mirrors of the cavity ######
def F_cercle_xy (fy, fR, fd):
return -np.sqrt(fR**2 - fy**2) - fR - fd*0.5

Y_mirror = np.linspace(-5*y_theta[@],5*y_theta[0])
X_array_left = F_cercle_xy(Y_mirror, R,d)
X_array_right = -F_cercle_xy(Y_mirror, R,d)

##t### PLOT : ray propagation through the resonnators ###it#
colors = np.linspace(0.9, 0.2, N-1)



colormap = plt.cm.magma
plt.rcParams['figure.figsize'] = (12, 5)

plt.figure()
for i in range(N-1):
if (R**2 - y_array[i]**2 >0) and (R**2 - y_array_right[i]**2 >0) and (R**2 - y_ array[i+1]**2 >0) :
plt.plot(np.array([F_cercle_xy(y_array[i],R,d), -F_cercle_xy(y_array_right[i],R,d)])/d,\
np.array([y_array[i], y_array_right[i]])/d,color=colormap(colors[i]))
plt.plot(np.array([-F_cercle_xy(y_array_right[i],R,d), F_cercle_xy(y_array[i+1],R,d)])/d,\
np.array([y_array_right[i], y_array[i+1]])/d,color=colormap(colors[i]))
else :
plt.plot(np.array([-0.5*d,0.5*%d])/d,np.array([y_array[i], y_array_right[i]])/d,color=colormap(colors[i]))
plt.plot(np.array([0.5*%d,-0.5*d])/d,np.array([y_array_right[i], y_array[i+1]])/d,color=colormap(colors[i]))
plt.plot(X_array_left/d, Y_mirror/d, color = "gray", linewidth = 2)
plt.plot(X_array_right/d, Y_mirror/d, color = "gray", linewidth = 2)
plt.xlabel("x/d")
plt.ylabel("y/d")
plt.show()

HUHHHH B RS HHHHH T 1 HHHH U RS SHHEHS TS HHHHHH

Exercise 2: Gaussian Beams and Ray Transfer Matrices

We are interested in a type of wave equation solution in the paraxial approximation which plays a central role in laser physics: the
gaussian beams. The fundamental gaussian mode is called the TEMgp mode. In one dimension, the field propagates according to

2
E(z,2) =& wo eV exp{ik z }
w(z) 2q(2)

with wy the beam waist (in z = 0) and g(z) the complex radius of curvature defined as

where R(z) is the radius of curvature.

In this context, the ABCD matrix formalism is still valid: the propagation of the Gaussian beam can be described by defining the

A B
matrix M gcp = (C D>' such that

Aq(z1) + B

qz) =
Cq(z1)+ D

In this exercice, the refractive index is set to n = 1. We recall that the waist position wy of the Gaussian beam lies at z = 0.

1. Calculate the complex radius of curvature of the Gaussian beam ¢(0) as a function of the Rayleigh length zg = 71'11](2)/)\.

2. The beam propagates in free space. Deduce the complex radius of curvature at a position z using the matrix M 4pcp obtained
in the previous exercise.

3. Find the expression for the radius of curvature R(z) and the transverse size w(z) as a function of the waist wg and the
Rayleigh length zg.

Determining the waist position of a Gaussian beam as it propagates through a lens

Consider a Gaussian beam of rayleigh length zg; and waist w;. The position of waist w; is at a distance Ly from a simple
converging lens of focal length f. We want to characterize the Gaussian beam at a distance Lo from the lens.
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As in the case of geometrical optics, the matrix describing the propagation of a Gaussian beam through a converging lens of focal
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length f is written as follows



4. Calculate the matrix ABCD associated with the optical system.

5. The length L is chosen as corresponding to the waist position of the Gaussian beam. Show that this distance L is related to
the position of the initial waist L1 by the equality

A2 +d; x(dy—1
dy = 1% (dr )withdlz%,dzz%andA:ﬂ.

A2 4 (dy — 1) f

The code below represents the position Lo of the waist at the output of the optical system as a function of the position L; of the
initial waist for different Rayleigh lengths zg;.

6. Discuss the evolution of the curves: make the link with the predictions of geometrical optics, in particular for L1 = f.

In [8]: dimport numpy as np
import matplotlib.pyplot as plt

def F_conjug (fdl, fDelta):
return (fDelta**2 + fd1*(fd1l-1))/(fDelta**2 + (fd1-1)**2)

Npoints = 1000
D1_array = np.linspace(-3,4, Npoints)
Delta_array = np.array([0.0,0.25,0.5,1.0,2.0])

colors = np.linspace(0.1, 0.9, Delta_array.shape[0])
colormap = plt.cm.magma
plt.rcParams[ 'figure.figsize'] = (7, 5)

plt.figure()
plt.title("Waist position $L_2$ at the output of the lens according to the initial waist position $L_1$")
for i in range(Delta_array.shape[0]):

plt.plot(D1_array, F_conjug(D1l_array, Delta_array[i]), '.', color = colormap(colors[i]), label = "$z_R/f = $"+st
plt.ylim(-3,4)
plt.legend()
plt.xlabel('$L_1 / f$")
plt.ylabel('$L_2 / f$")

plt.grid()
plt.show()
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