
Problem Set 8: Classical description of the light matter
interaction

For questions contact: lea.dubois@epfl.ch

Exercise 1: A classical model, the harmonically bound electron

In this exercise, we present a simple classical approach to describe the atom-fied interaction. We will describe the interaction
of a classical field with an harmonically bound charge. This is admittedly a rather naive model of an atom (often called
Thomson model, and proposed at the end of the 19th century when the existence of the electron was first revealed).
However, it captures many essential aspects of the interaction and its predictions coincide rather well with those of a more
refined semi-classical model.

The harmonically bound electron

We consider a single electron of mass  and charge  bounded to the origin (the atom is motionless) by a harmonic
force. The position of the electron being , the motion equation is

The situation described above is not physical. To make it more physical, we should include some damping to reflect the finite
lifetime of the excited states. We will consider here only damping corresponding to the emission of light by the accelerated
electron. We assume that the total average power radiated by the electron is given by the Larmor formula

with  the acceleration of the electron and  the vacuum permittivity.

1. Deduce from the power expression that the effective damping force can be written as

Hint : to write radiated power as that of a force, it is possible to do so by integrating the power over a time interval that is long
in relation to the electron's oscillation frequency, but short in relation to the timescale of energy dissipation.

2. Assuming that the motion is nearly harmonic, rewrite this damping force as a function of , ,  and .

3. Show that the motion equation can be written as

where the amplitude damping coefficient  depends on the physical parameters.

4.  being the ionisation energy of the hydrogen atom, give an order of magnitude of the pulsation 

and the wavelength associated to the system. The constant  is here the fine structure constant. Derive the

order of magnitude for the quality factor of the oscillating electron.
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Classical polarisability

The electron is set in movement by an incoming oscillating field . In the steady state  and
the oscillating dipole created by the moving electron is defined as .

5. Write the equation of motion in presence of the electric field. Deduce the classical polarizability  defined as
.

6. From the Larmor formula, write the total average radiated power as a function of the classical polarizability .

Polarisation density for an atomic ensemble

From the Maxwell equation in matter, the electric displacement is defined as

with  the density of polarisation of the bound charges. For a density  of independant atoms, the density of polarisation
can be rewritter  with .

7. Deduce the relative permittivity  such that .

The density of energy given by the field into the matter is given by

8. Write this density of energy as a function of . Does this model explain the light field amplification effect?

Remark: This classical description of the atom agrees with the quantum mechanical treatment in the limit where the
saturation of the transition is negligible, be it due to low beam intensity, or large detuning of the light from atomic
resonance. Here the amplitude damping coefficient corresponds to the linewidth of the atomic transition. In the quantum
mechanical description,  is the spontaneous population decay rate of the atomic excited state, given in

terms in the dipole matrix element  between the ground state  and the excited state .

Exercise 2: Emission, absorption and dispersion by an atom

This exercise is a logical continuation of the previous one, in which we set out to explain, still using a classical model, the
principle of emission, absorption and scattering by an atom or group of atoms.

We analyse the interaction of a single atom, described as a pointlike classical dipole oscillator, with a Gaussian TEM  mode
of wave number  and a waist  that is at least somewhat larger than an optical wavelength  such that the
paraxial approximation for the propagation of Gaussian beams is valid.

The atom polarizability  is now slightly different from the one derived in exercise , given by

and obeys the relation

In presence of a driving field , the oscillating dipole emits a radiation field whose amplitude at large
distance  from the atom is given by

where  is the angle between the polarization  of the driving field and the direction of observation.

The field radiated into the same mode as the driving field can interfere with the latter, resulting in absorption and emission
effects.

Scattering into a free space mode: emission
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An incident field  is polarized perpendicular to the TEM  mode and drives an atomic dipole oscillator that emits an
electromagnetic field  at large distance  from the atom. The atom is located on the axis at the waist of the TEM
mode, as shown in the figure below.

The TEM  field at position  can be written for  as

with  the mode amplitude which can be related to the total power  and to the electric field at waist
 where  is the effective mode area. We can similarly define a mode amplitude for the driving

field , even if the driving field is some arbitrary mode.

1. Show that the TEM  mode amplitude arising from the radiated field can be expressed as  with the
dimensionless parameter

Hints: The mode amplitude  can be calculated as the projection  in the plane . The

spatial dependence of the emitted dipole field  over the region occupied by the TEM  can be approximated as 
and .

In the following, we will use another dimensionless parameter called the single-atom cooperativity  defined as

2. Give the mathematical value of .

3. Recover the total scattered power into all directions  obtained from Exercice . Express it as a function of  and .

Hint: The total power into all directions  can be calculated by integrating over the intensity  of the
radiated field over the surface of the sphere of radius .

4. Express the power emitted into both directions of TEM  mode .

5. Give a physical interpretation of .

Scattering from a free space mode: absorption and dispersion

We consider the same TEM  mode as in the previous section but now take the light to be incident in that mode with power

, as shown in the figure below.
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6. We propose to derive the fractional attenuation  with  the power absorbed from the driving field by two
different ways :

• a) by using the energy conservation, i.e. the power  scattered by the atom must be equal to .

• b) by using the idea that the power reduction in the forward direction must be arising from destructive interference
between the incident field  and the field .

In general, the driving field is not only attenuated but also experiences a phase shift in the presence of the atom. This phase
shift, corresponding to the atomic index of refraction can be simply understood as arising from the interference of the out of
phase component of the forward-scattered field by the atom  with the incident field in the same mode .

7. Show that this atom-induced phase shift can be written as .

Within the rotating wave approximation (RWA), , the mode coupling parameter  in terms of the light-
atom detuning  takes the simple form

where  and  are the Lorentzian dispersive and absorptive lineshapes
respectively.

8. Plot both the fractional attenuation and the phase-induced shift in function of  Comment the results.

Absorption and dispersion by an atom ensemble

For an ensemble of  atoms located on the mode axis, the total fractional attenuation equals  times the single-atom
fractional attenuation. Similarly, the phase shift induced by the ensemble on the light is  times the single-atom phase shift.

9. Write both the fractional attenuation and the phase-induced shift at resonance and at large detuning  in
presence of  atoms. How can we define the collective cooperativity ?
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