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Problem Set 7: Hybridization, molecular

structures and the Hückel model

For questions contact: hanning.zhang@epfl.ch

Exercise 1: Hybridization

a) Recall that any action of an element in the rotation group  transforms a state

 as

Show that this action leaves the s-state  unaltered, while a p-state

 is transformed to

. In other words taking the coefficients

 as a vector,  acts as a matrix multiplication from the left side on  giving the new

vector .

 The -state  doesn't have an angular dependence, while the -states

can be written as  (with ), where  doesn't show any angular

dependence.

b) We first look at the  hybridization, where we construct two hybrid orbitals out of a 

and a  orbital

This hybridization is used, if a central atom forms bonds with two equal partners on both its

sides of a given axis (here z-axis). The symmetry constraint is hence that  can be

obtained from  by a  rotation. Using this together with the orthonormality

condition, as well as the requirement that all coefficients are real, derive coefficients

.

In this exercise we discuss hybridizations involving the s and p orbitals.

R ∈ SO(3)

ψ

ψ(→r) → ψ′(→r) = ψ(R−1
→r)

|s⟩

|p⟩ = ∑i∈{x,y,z} ai|pi⟩

|p′⟩ = ∑i,j∈{x,y,z}(Rijaj)|pi⟩ = ∑i∈{x,y,z} a
′
i|pi⟩

ai R →a

→a
′

Hint: s |s(→r)⟩ = s(r) p

|pi(→r)⟩ = rip(r) i = x, y, z p(r)

sp |s⟩

|pz⟩

|sp1⟩ = s1|s⟩ + pz1|pz⟩

|sp2⟩ = s2|s⟩ + pz2|pz⟩

|sp2⟩

|sp1⟩ 180∘

s1, s2, pz1, pz2
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c) Simiarly the  hybridization constructs the 3 hyrbid orbitals out of the , , 

orbitals

This hybridization is used, if the central atom forms 3 equivalent bonds with partners in the

same plane. Proceed as in exercise b) and find the coefficients .

 Note, there is an additional degree of freedom to choose one of the hybridized

orbitals to point along a specific direction in the plane. We will put , which means

that  will point along the -direction.

d) Finally we look at the  hybridization, which constructs the 4 hyrbid orbitals out of the

, , ,  orbitals.

This hybridization is used, if the central atom forms 4 equivalent bonds with partners

yielding a tetrahedral symmetry. Proceed as in exercise b) and find the coefficients.

 Keep in mind that there are three rotational degrees of freedom. You may

choose them such that the calculation will be as simple as possible. We propose to start

with , which fixes two of the three degrees of freedom.

e) Plot the orbitals of the ,  and  hybridization.

%matplotlib inline

import matplotlib.pyplot as plt  # Import library for direct plotting functi

import numpy as np  # Import Numerical Python

import math

from cmath import phase

vphase =np.vectorize(phase)

from scipy.special import sph_harm,genlaguerre

from IPython.display import HTML

theta, phi = np.linspace(0,  np.pi, 40), np.linspace(0, 2*np.pi, 40)

THETA, PHI = np.meshgrid(theta, phi)

s = sph_harm(m,l,PHI,THETA).real #Please fill in l, m

px = np.sqrt(2)*(-1.)**1*sph_harm(m,l,PHI,THETA).real #Please fill in l, m  

py = np.sqrt(2)*(-1.)**(-1)*sph_harm(m,l,PHI,THETA).imag #Please fill in l, 

sp2 |s⟩ |px⟩ py⟩

|sp2
1⟩ = s1|s⟩ + px1|px⟩ + py1|py⟩

|sp2
2⟩ = s2|s⟩ + px2|px⟩ + py2|py⟩

|sp2
3⟩ = s3|s⟩ + px3|px⟩ + py3|py⟩

si, pxi, pyi

Remark:

py1 = 0

|sp2
1⟩ x

sp3

|s⟩ |px⟩ |py⟩ |pz⟩

|sp3
1⟩ = s1|s⟩ + px1|px⟩ + py1|py⟩ + pz1|pz⟩

|sp3
2⟩ = s2|s⟩ + px2|px⟩ + py2|py⟩ + pz2|pz⟩

|sp3
3⟩ = s3|s⟩ + px3|px⟩ + py3|py⟩ + pz3|pz⟩

|sp3
4
⟩ = s3|s⟩ + px4|px⟩ + py4|py⟩ + pz4|pz⟩

Remark:

px1 = py1 = pz1

sp sp2 sp3

In [1]:
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pz = sph_harm(m,l,PHI,THETA).real #Please fill in l, m

allorb = np.concatenate((s[:,:, np.newaxis], px[:,:, np.newaxis], py[:,:, np

#%matplotlib widget use matplotlib widget if you want to interactively rotat

%matplotlib inline

coeffs =  #Write your coefficient matrix from b)

n = len(coeffs)

fig = plt.figure(figsize=(9.5, 4))

fig.suptitle('Orbitals sp')

for i in np.arange(n):

    aux = np.zeros([len(theta), len(phi)])

    for j in np.arange(n):

        aux = aux + coeffs[i, j]*allorb[:,:,j]

    R = abs(aux)

    arg = np.sign(aux)

    X = R * np.sin(THETA) * np.cos(PHI)

    Y = R * np.sin(THETA) * np.sin(PHI)

    Z = R * np.cos(THETA)

    

    fcolors = arg 

    fmax, fmin = fcolors.max(), fcolors.min()

    if fmax-fmin > 0: 

        fcolors = (fcolors - fmin)/(fmax - fmin)

    

    ax = fig.add_subplot(1,n,i+1, projection='3d')

    ax.set_axis_off()

    plot = ax.plot_surface(X, Y, Z, 

    linewidth=0, antialiased=False, alpha=0.4,facecolors=plt.cm.seismic(fcol

    ax.quiver(0, 0, 0, 0.4, 0, 0, color='k', arrow_length_ratio=0.1)  # X-ax

    ax.quiver(0, 0, 0, 0, 0.4, 0, color='k', arrow_length_ratio=0.1)  # Y-ax

    ax.quiver(0, 0, 0, 0, 0, 0.4, color='k', arrow_length_ratio=0.1)  # Z-ax

    ax.text(0.4, 0, 0, "x", color='k', fontsize=12)

    ax.text(0, 0.4, 0, "y", color='k', fontsize=12)

    ax.text(0, 0, 0.4, "z", color='k', fontsize=12)

    ax.set_aspect('equal')

plt.show()

#%matplotlib widget use matplotlib widget if you want to interactively rotat

%matplotlib inline

coeffs =  #Write your coefficient matrix from c)

n = len(coeffs)

fig = plt.figure(figsize=(9.5, 4))

fig.suptitle(r'Orbitals $sp^2$')

for i in np.arange(n):

    aux = np.zeros([len(theta), len(phi)])

    for j in np.arange(n):

        aux = aux + coeffs[i, j]*allorb[:,:,j]

    R = abs(aux)

In [ ]:
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    arg = np.sign(aux)

    X = R * np.sin(THETA) * np.cos(PHI)

    Y = R * np.sin(THETA) * np.sin(PHI)

    Z = R * np.cos(THETA)

    

    fcolors = arg 

    fmax, fmin = fcolors.max(), fcolors.min()

    if fmax - fmin > 0:

        fcolors = (fcolors - fmin)/(fmax - fmin)

    

    ax = fig.add_subplot(1,n,i+1, projection='3d')

    ax.set_axis_off()

    plot = ax.plot_surface(

    X, Y, Z, 

    linewidth=0, antialiased=False, alpha=0.4,facecolors=plt.cm.seismic(fcol

    ax.quiver(0, 0, 0, 0.4, 0, 0, color='k', arrow_length_ratio=0.1)  # X-ax

    ax.quiver(0, 0, 0, 0, 0.4, 0, color='k', arrow_length_ratio=0.1)  # Y-ax

    ax.quiver(0, 0, 0, 0, 0, 0.4, color='k', arrow_length_ratio=0.1)  # Z-ax

    ax.text(0.4, 0, 0, "x", color='k', fontsize=12)

    ax.text(0, 0.4, 0, "y", color='k', fontsize=12)

    ax.text(0, 0, 0.4, "z", color='k', fontsize=12)

    ax.set_aspect('equal')

plt.show()

#%matplotlib widget use matplotlib widget if you want to interactively rotat

%matplotlib inline

coeffs = #Write your coefficient matrix from d)

n = len(coeffs)

fig = plt.figure(figsize=(9.5, 4))

fig.suptitle(r'Orbitals $sp^3$')

for i in np.arange(n):

    aux = np.zeros([len(theta), len(phi)])

    for j in np.arange(n):

        aux = aux + coeffs[i, j]*allorb[:,:,j]

    R = abs(aux)

    arg = np.sign(aux)

    X = R * np.sin(THETA) * np.cos(PHI)

    Y = R * np.sin(THETA) * np.sin(PHI)

    Z = R * np.cos(THETA)

    

    fcolors = arg 

    fmax, fmin = fcolors.max(), fcolors.min()

    if fmax - fmin > 0:

        fcolors = (fcolors - fmin)/(fmax - fmin)

    

    ax = fig.add_subplot(1,n,i+1, projection='3d')

    ax.set_axis_off()

    plot = ax.plot_surface(

    X, Y, Z, 

    linewidth=0, antialiased=False, alpha=0.4,facecolors=plt.cm.seismic(fcol

    ax.quiver(0, 0, 0, 0.4, 0, 0, color='k', arrow_length_ratio=0.1)  # X-ax

    ax.quiver(0, 0, 0, 0, 0.4, 0, color='k', arrow_length_ratio=0.1)  # Y-ax

    ax.quiver(0, 0, 0, 0, 0, 0.4, color='k', arrow_length_ratio=0.1)  # Z-ax

In [ ]:
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    ax.text(0.4, 0, 0, "x", color='k', fontsize=12)

    ax.text(0, 0.4, 0, "y", color='k', fontsize=12)

    ax.text(0, 0, 0.4, "z", color='k', fontsize=12)

    ax.set_aspect('equal')

plt.show()

Exercise 2: Molecules

We are interested in the structure of the following molecules ,

, ,

 and .

a) For every atom ( ) determine the hybridization, such that the bond orders given

in the brackets can be satisfied.

b) Sketch the 3D structure of the molecules.

 You can use this interactive website https://app.molview.com/ to visualize your

molecules.

Exercise 3: The Hückel model

In first part of this exercise we will study the butadiene molecule  (see Figure 1).

ai) According to the Hückel model, set up the Hamiltonian for butadiene describing the 

orbitals of the carbon chain. Write the Hamiltonian in terms of the onsite energies  and

the hoppings between two neighbouring carbon atoms .

aii) Calculate the eigenvalues of the matrix.

aiii) Keeping in mind that each molecular orbital can be populated by two electrons, what is

the energy of the HOMO (highest occupied molecular orbital) and the LUMO (lowest

unoccupied molecular orbital) in the ground state. What is the HOMO-LUMO energy

difference (HOMO-LUMO gap)?

aiv) We will now examine the eigenvectors:

 with . Without

calculating them explicitely, can you order them in energetically ascending order.

In this exercise we determine the structure of different molecules using the knowledge 

C2H6(H3\ceC − CH3)

N2H4(H2\ceN − NH2) H2O2(H\ceO − OH)

\text{H}\text{C}\text{N} (\text{H}\ce{C#N}) H2CCCH2(H2\ceC = C = CH2)

C, N, O

Remark:

We use the Hückel model for computing of the energy spectra and charge distributions

C4H6

pz

α

β < 0

(a, b, b, a), (a, −b, b, −a), (b, a, −a, −b), (b, −a, −a, b) a, b > 0
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Alt text

Figure 1: butadiene molecule.

The second part of this exercise will be concerned with the benzene molecule (see Figure 2)

b) Numerically calculate the molecular orbital energies and wavefunctions. To do so, use

the provided code and setup the corresponding Hückel matrix. We will take the common

approximation  eV for the hoppings, while  is set to zero. You can use the

second python cell to visualize your results.

Alt text

Figure 2: benzene molecule.

import numpy as np

from scipy.linalg import eigh

import matplotlib.pyplot as plt

def benzene():

    #Calculate the spectrum in eV and eigenfunctions

    beta = -2.7 # hopping in eV

    mat = np.zeros([6, 6])

    ### Set the hoppings by hand mat[i, j] = beta

    evs, evecs = eigh(mat)

    return evs, evecs

evs, evecs = benzene()

##No additional input needed

## If the hybridization orbitals are displayed (from exercise 1), please rer

%matplotlib inline

n = 6

r = 1

angles = np.linspace(0, 2 * np.pi, n, endpoint=False)

x_coords6 = r * np.cos(angles)

y_coords6 = r * np.sin(angles)

fig, ax = plt.subplots(2, 3, figsize = (17, 10))

fig.suptitle('Benzene molecule eigenfunctions')

for i in np.arange(6):

    ax[int(i/3), i%3].set_title('Energy = {:.2f} eV'.format(evs[i]))

    sign = np.sign(evecs[:, i])

    ax[int(i/3), i%3].plot( np.append(x_coords6, x_coords6[0]),  np.append(y

    ax[int(i/3), i%3].scatter(x_coords6, y_coords6, c=sign, cmap = 'grey',  

    # Filled circles have positive sign, while empty circles have negative s

    # The size of the circle reflects the absolute value

    plt.axis('scaled')

The last part of this exercise is concerned with naphtalene and azulene(see Figure 3 and 4)

that are isomers, This means that both have the same molecular formula , but

β = −2.7 α

In [2]:

In [ ]:

C10H8
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different structures. Furhtermore all carbon atoms in the two molecules have 

hybridization. Nevertheless we will see that their energy spectra and molecular orbitals,

and hence their physical properties, are quite different. We will demonstrate this with the

example of the electrical dipole moment.

ci) Set up the Hückel Hamiltonian and calculate the spectra and eigenvectors for both

molecules. Use  eV and onsite energy  eV.

cii) Compare the sizes of the HOMO-LUMO energy gaps of the two molecules.

Azulene

Figure 3: Azulene molecule.

Naphtalene

Figure 4: Naphtalene molecule.

import numpy as np

from scipy.linalg import eigh

import matplotlib.pyplot as plt

def naphtalene():

    #Calculate the spectrum in eV and eigenfunctions

    t = -2.7 # hopping in eV

    mat = np.zeros([10, 10])

    ### Set the hoppings by hand mat[i, j] = t

    evs, evecs = eigh(mat)

    return evs, evecs

def azulene():

    #Calculate the spectrum in eV and eigenfunctions

    t = -2.7 # hopping in eV

    mat = np.zeros([10, 10])

    ### Set the hoppings by hand mat[i, j] = t

    evs, evecs = eigh(mat)

    return evs, evecs

evs, evecs = naphtalene()

print('The band gap of azulene is', , 'eV')

evs, evecs = azulene()

print('The band gap of naphtalene is', , 'eV')

The azulene molecule has a remarkably big dipole moment, which we will try to estimate in

the following

ciii) Numerically define the positions of the carbon atoms assuming all (nearest neighbour)

 distances are  Ang. You can use the provided code snipplets.

sp2

β = −2.7 α = 0

\newline

In [1]:

In [ ]:

C − C l = 1.39
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## If the hybridization orbitals are displayed (from exercise 1), please rer

%matplotlib inline

l = 1.39 # C-C bond length in Ang widget

# Generating a unit heptagon

n = 7

r = 1

rotation_angle = ##Fill in a rotation angle

angles = np.linspace(0 + rotation_angle, 2 * np.pi + rotation_angle, n, endp

x_coords7 = r * np.cos(angles)

y_coords7 = r * np.sin(angles)

## Scaling 

scale =  ##appropriately scale the hexagon

x_coords7 = scale *x_coords7

y_coords7 = scale *y_coords7

# Generating a unit pentagon

n = 5

r = 1

rotation_angle = ## Fill in a rotation angle

angles = np.linspace(0 + rotation_angle, 2 * np.pi + rotation_angle, n, endp

x_coords5 = r * np.cos(angles)

y_coords5 = r * np.sin(angles)

##Scaling 

scale = ##appropriately scale the pentagon

x_coords5 = scale *x_coords5

y_coords5 = scale *y_coords5

##Shift

x_shift = #appropriately shift the pentagon 

y_shift = #appropriately shift the pentagon 

x_coords5 = x_coords5 + x_shift

y_coords5 = y_coords5 + y_shift

# Plotting the heptagon + pentagon

plt.title('Azulene molecule')

plt.plot(x_coords7, y_coords7,  'o',  color='k')

plt.plot(x_coords5, y_coords5,  'o',  color='k')

plt.plot( np.append(x_coords5, x_coords5[0]),  np.append(y_coords5, y_coords

plt.plot( np.append(x_coords7, x_coords7[0]),  np.append(y_coords7, y_coords

plt.axis('scaled')

plt.xlabel('x [Ang]')

plt.ylabel('y [Ang]')

plt.show()

pos_a = np.zeros([10, 2])   #positions of the azulene molecule

pos_a[:,0] = np.concatenate((x_coords7[#:#], x_coords5[#:#])) #Two of the tw

In [ ]:
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pos_a[:,1] = np.concatenate((y_coords7[#:#], y_coords5[#:#])) #Two of the tw

#Depending on how you set up your Hückel matrix it might be appropriate to r

#your pos_a vector such that evecs and pos_a use the same convention (i.e. t

#to the same carbon atom)

civ) Use the results from ci) to calculate the electron occupation for each carbon atom in

the ground state. Deduce from this the dipole moment of azulene.

 The electron occupation  of an atom  is given by

where the sum extends over the occupied molecular orbitals  and the factor 2 is

accounting for the spin degeneracy. In the exercise,  corresponds to the -th entry of

the -th eigenvector. Using the electron occupation  the dipole moment is furthermore

given by

cv) Show, using explicit numerical computation that the dipole moment of naphtalene is 0.

Justify this result using symmetry.

#cv) ## If the hybridization orbitals are displayed (from exercise 1), pleas

%matplotlib inline

l = 1.39 # C-C bond length in Ang

# Generating a unit hexagon

n = 6

r = 1

rotation_angle = ##Fill in a rotation angle 

angles = np.linspace(0 + rotation_angle, 2 * np.pi + rotation_angle, n, endp

x_coords61 = r * np.cos(angles)

y_coords61 = r * np.sin(angles)

## Scaling 

scale = ##appropriately scale the hexagon

x_coords61 = scale *x_coords61

y_coords61 = scale *y_coords61

# Generating a unit hexagon

n = 6

r = 1

rotation_angle = ##Fill in a rotation angle 

angles = np.linspace(0 + rotation_angle, 2 * np.pi + rotation_angle, n, endp

x_coords62 = r * np.cos(angles)

y_coords62 = r * np.sin(angles)

Hint: ρi i

ρi = 2∑
j

|ψj(i)|2

ψj

ψj(i) i

j ρi

→d = ∑
i

(1 − ρi)→r i

In [ ]:
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## Scaling 

scale = ##appropriately scale the hexagon

x_coords62 = scale *x_coords62

y_coords62 = scale *y_coords62

x_shift = #appropriately shift the hexagon 

y_shift = #appropriately shift the hexagon 

x_coords62 = x_coords62 + x_shift

y_coords62 = y_coords62 + y_shift

# Plotting the two hexagons

plt.title('Naphtalene molecule')

plt.plot(x_coords61, y_coords61,  'o',  color='k')

plt.plot(x_coords62, y_coords62,  'o',  color='k')

plt.plot( np.append(x_coords61, x_coords61[0]),  np.append(y_coords61, y_coo

plt.plot( np.append(x_coords62, x_coords62[0]),  np.append(y_coords62, y_coo

plt.axis('scaled')

plt.xlabel('x [Ang]')

plt.ylabel('y [Ang]')

plt.show()

pos_n = np.zeros([10, 2])   #positions of the naphtalene molecule

pos_n[:,0] = np.concatenate((x_coords61[#:#], x_coords62[#:#]))#Two of the t

pos_n[:,1] = np.concatenate((y_coords61[#:#], y_coords62[#:#]))#Two of the t

#Depending on how you set up your Hückel matrix it might be appropriate to r

#your pos_a vector such that evecs and pos_a use the same convention (i.e. t

#to the same carbon atom)
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