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le.Drawing

Problem Set 7: Hybridization, molecular
structures and the Hiickel model

For questions contact: hanning.zhang@epfl.ch

Exercise 1: Hybridization

In this exercise we discuss hybridizations involving the s and p orbitals.

a) Recall that any action of an element in the rotation group R € SO(3) transforms a state

1 as
¥(r) = ¥/(F) = p(R77)
Show that this action leaves the s-state |s) unaltered, while a p-state
lp) = Zie{w’y’z} a;|p;) is transformed to
py=3". Ri;a;)pi) = ), a’|p;). In other words taking the coefficients
i,j€{z,y,2} J ie{x,y,z} i

a; as a vector, R acts as a matrix multiplication from the left side on @ giving the new
vector @ .

Hint: The s-state |s(7)) = s(r) doesn't have an angular dependence, while the p-states
can be written as |p; (7)) = rip(r) (with i = z, y, 2), where p(r) doesn't show any angular
dependence.

b) We first look at the sp hybridization, where we construct two hybrid orbitals out of a |s)
and a |p;) orbital

|sp1) = s1]8) + paalp2)
|sp2) = 82[8) + p22|p2)

This hybridization is used, if a central atom forms bonds with two equal partners on both its
sides of a given axis (here z-axis). The symmetry constraint is hence that |sps) can be
obtained from |sp1) by a 180° rotation. Using this together with the orthonormality
condition, as well as the requirement that all coefficients are real, derive coefficients

51,82, P21y P22-
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c) Simiarly the sp? hybridization constructs the 3 hyrbid orbitals out of the |s), |pz), py)
orbitals

[5p1) = s1ls) + Parlpz) + pyr|py)

|Sp§> = 82|S> + Pz2 |p£L‘> +py2 |py>

|5P3) = s3ls) + Paslpz) + pyslpy)

This hybridization is used, if the central atom forms 3 equivalent bonds with partners in the
same plane. Proceed as in exercise b) and find the coefficients s;, Py, Py;-

Remark: Note, there is an additional degree of freedom to choose one of the hybridized
orbitals to point along a specific direction in the plane. We will put py1 = 0, which means
that | sp?) will point along the z-direction.

d) Finally we look at the sp? hybridization, which constructs the 4 hyrbid orbitals out of the
|3>: |pm>, |py>, |pz> orbitals.

|sD7) = 81|8) + Do1|Pz) + Py1lDy) + PaalD2)
|sp3) = $28) + Pa2|pe) + Py2|py) + De2|p:)
|sp3) = s3]8) + Pas|Pa) + Pyslpy) + p:3[p:)
|sp3) = $3]8) + PralPs) + Pyalpy) + Paa|py)

This hybridization is used, if the central atom forms 4 equivalent bonds with partners
yielding a tetrahedral symmetry. Proceed as in exercise b) and find the coefficients.

Remark: Keep in mind that there are three rotational degrees of freedom. You may
choose them such that the calculation will be as simple as possible. We propose to start
with pz1 = py1 = P21, which fixes two of the three degrees of freedom.

e) Plot the orbitals of the sp, sp? and sp® hybridization.

%matplotlib inline

import matplotlib.pyplot as plt # Import library for direct plotting functi

import numpy as np # Import Numerical Python
import math

from cmath import phase

vphase =np.vectorize(phase)

from scipy.special import sph _harm,genlaguerre
from IPython.display import HTML

theta, phi
THETA, PHI

np.linspace(0, np.pi, 40), np.linspace(0, 2*np.pi, 40)
np.meshgrid(theta, phi)

s = sph_harm(m,1,PHI, THETA).real #Please fill in 1, m
pX
py
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np.sqrt(2)*(-1.)**1*sph harm(m,1,PHI, THETA).real #Please fill in 1, m
np.sqrt(2)*(-1.)**(-1)*sph harm(m,1,PHI, THETA) .imag #Please fill in 1,
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pz = sph _harm(m,1,PHI,THETA).real #Please fill in 1, m
allorb = np.concatenate((s[:,:, np.newaxis], px[:,:, np.newaxis], pyl[:,:, nf

smatplotlib widget use matplotlib widget if you want to interactively rotat
%matplotlib inline

coeffs = #Write your coefficient matrix from b)
n = len(coeffs)

fig = plt.fiqure(figsize=(9.5, 4))
fig.suptitle('Orbitals sp')
for i in np.arange(n):
aux = np.zeros([len(theta), len(phi)])
for j in np.arange(n):
aux = aux + coeffs[i, jl*allorb[:,:,j]
R = abs(aux)

arg = np.sign(aux)

X =R * np.sin(THETA) * np.cos(PHI)
Y = R * np.sin(THETA) * np.sin(PHI)
Z = R * np.cos(THETA)

fcolors = arg
fmax, fmin = fcolors.max(), fcolors.min()
if fmax-fmin > 0:
fcolors = (fcolors - fmin)/(fmax - fmin)

ax = fig.add subplot(l,n,i+1l, projection='3d")
ax.set axis off()
plot = ax.plot surface(X, Y, Z,
linewidth=0, antialiased=False, alpha=0.4,facecolors=plt.cm.seismic(fcol
ax.quiver(0, 0, 0, 0.4, 0, 0, color='k', arrow length ratio=0.1) # X-ax
ax.quiver(o, 0, 0, 0, 0.4, 0, color='k', arrow length ratio=0.1) # Y-ax
ax.quiver(0, 0, 0, 0, 0, 0.4, color="k', arrow length ratio=0.1) # Z-ax
ax.text(0.4, 0, 0, "x", color="k', fontsize=12)
ax.text(0, 0.4, 0, "y", color='k', fontsize=12)
ax.text(0, 0, 0.4, "z", color="k', fontsize=12)
ax.set aspect('equal')

plt.show()

[cNocNo]

smatplotlib widget use matplotlib widget if you want to interactively rotat
%matplotlib inline

coeffs = #Write your coefficient matrix from c)
n = len(coeffs)

fig = plt.figure(figsize=(9.5, 4))
fig.suptitle(r'Orbitals $sp™2$"')
for i in np.arange(n):
aux = np.zeros([len(theta), len(phi)])
for j in np.arange(n):
aux = aux + coeffs[i, jl*allorb[:,:,j]
R = abs(aux)
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arg = np.sign(aux)

X =R * np.sin(THETA) * np.cos(PHI)
Y =R * np.sin(THETA) * np.sin(PHI)
Z = R * np.cos(THETA)

fcolors = arg
fmax, fmin = fcolors.max(), fcolors.min()
if fmax - fmin > 0:
fcolors = (fcolors - fmin)/(fmax - fmin)

ax = fig.add subplot(1l,n,i+1l, projection='3d")
ax.set axis off()

plot = ax.plot surface(

X, Y, Z,

linewidth=0, anti

ax.quiver(0, 0, 0, 0.4, 0, 0, color='k', arrow length ratio=0.1)
ax.quiver(0, 0, 0, 0, 0.4, 0, color='k', arrow length ratio=0.1)
ax.quiver(0, 0, 0, 0, 0, 0.4, color="k', arrow length ratio=0.1)
ax.text(0.4, 0, 0, "x", color='k', fontsize=12)

ax.text(0, 0.4, 0, "y", color='k', fontsize=12)

ax.text(0, 0, 0.4, "z", color='k', fontsize=12)

ax.set aspect('equal')
plt.show()

ntialiased=False, alpha=0.4,facecolors=plt.cm.seismic(fcol

# X-ax
# Y-ax
# Z-ax

smatplotlib widget use matplotlib widget if you want to interactively rotat

%smatplotlib inline

coeffs = #Write your coefficient matrix from d)
n = len(coeffs)

fig = plt.figure(figsize=(9.5, 4))
fig.suptitle(r'Orbitals $sp”3$"')
for i in np.arange(n):
aux = np.zeros([len(theta), len(phi)])
for j in np.arange(n):
aux = aux + coeffs[i, jl*allorb[:,:,]]
R = abs(aux)

arg = np.sign(aux)

X = R * np.sin(THETA) * np.cos(PHI)
Y = R * np.sin(THETA) * np.sin(PHI)
Z = R * np.cos(THETA)

fcolors = arg
fmax, fmin = fcolors.max(), fcolors.min()
if fmax - fmin > 0:
fcolors = (fcolors - fmin)/(fmax - fmin)

ax = fig.add subplot(1l,n,i+1l, projection='3d')
ax.set axis off()

plot = ax.plot surface(

X, Y, Z,
linewidth=0, antiali
ax.quiver(0, 0, 0, 0
ax.quiver(0, 0, 0, 0
ax.quiver(0, 0, 0, 0

S
4

’ ’
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ntialiased=False, alpha=0.4,facecolors=plt.cm.seismic(fcol
, 0, 0, color="k"', arrow_length ratio=0.1)
, 0.4, 0, color='k', arrow_length ratio=0.1)

0, 0.4, color='k', arrow length ratio=0.1)

# X-ax
# Y-ax
# Z-ax
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ax.text(0.4, 0, 0, "x", color='k', fontsize=12)
ax.text(0, 0.4, 0, "y", color='k', fontsize=12)
ax.text(0, 0, 0.4, "z", color='k', fontsize=12)
ax.set aspect('equal')

plt.show()

Exercise 2: Molecules

In this exercise we determine the structure of different molecules using the knowledge
< — >

We are interested in the structure of the following molecules CoHg(H3\ceC — CHj3),
N2H4(H2\CGN — NHQ), HQOQ(H\CGO — OH),
|\text{H}\text{CAtext{N} (\text{H}\ce{C#N})|and H,CCCH,(Hs\ceC = C = CHa).

a) For every atom (C, N, O) determine the hybridization, such that the bond orders given
in the brackets can be satisfied.

b) Sketch the 3D structure of the molecules.

Remark: You can use this interactive website https://app.molview.com/ to visualize your
molecules.

Exercise 3: The Hiickel model

We use the Hiickel model for computing of the energy spectra and charge distribution.

In first part of this exercise we will study the butadiene molecule C4Hg (see Figure 1).

ai) According to the Hiickel model, set up the Hamiltonian for butadiene describing the p,
orbitals of the carbon chain. Write the Hamiltonian in terms of the onsite energies a and
the hoppings between two neighbouring carbon atoms 8 < 0.

aii) Calculate the eigenvalues of the matrix.

aiii) Keeping in mind that each molecular orbital can be populated by two electrons, what is
the energy of the HOMO (highest occupied molecular orbital) and the LUMO (lowest
unoccupied molecular orbital) in the ground state. What is the HOMO-LUMO energy
difference (HOMO-LUMO gap)?

aiv) We will now examine the eigenvectors:
(a,b,b,a),(a,—b,b, —a), (b,a, —a, —b), (b, —a, —a, b) with a, b > 0. Without
calculating them explicitely, can you order them in energetically ascending order.
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LAt text
Figure 1: butadiene molecule.

The second part of this exercise will be concerned with the benzene molecule (see Figure 2)

b) Numerically calculate the molecular orbital energies and wavefunctions. To do so, use
the provided code and setup the corresponding Hiickel matrix. We will take the common
approximation 8 = —2.7 eV for the hoppings, while a is set to zero. You can use the
second python cell to visualize your results.

L Alt text
Figure 2: benzene molecule.

import numpy as np
from scipy.linalg import eigh
import matplotlib.pyplot as plt

def benzene():
#Calculate the spectrum in eV and eigenfunctions
beta = -2.7 # hopping in eV
mat = np.zeros([6, 6])
### Set the hoppings by hand mat[i, j] = beta
evs, evecs = eigh(mat)
return evs, evecs

evs, evecs = benzene()

##No additional input needed
## If the hybridization orbitals are displayed (from exercise 1), please rer
%smatplotlib inline

n==~6

r=1

angles = np.linspace(0, 2 * np.pi, n, endpoint=False)
x_coords6 = r * np.cos(angles)

y coords6 = r * np.sin(angles)

fig, ax = plt.subplots(2, 3, figsize = (17, 10))
fig.suptitle('Benzene molecule eigenfunctions')
for i in np.arange(6):
ax[int(i/3), i%3].set title('Energy = {:.2f} eV'.format(evs[i]))
signh = np.sign(evecs|[:, i])
ax[int(i/3), 1%3].plot( np.append(x coords6, x coords6[0]), np.append(y
ax[int(i/3), i%3].scatter(x coords6, y coords6, c=sign, cmap = 'grey’,
# Filled circles have positive sign, while empty circles have negative ¢
# The size of the circle reflects the absolute value
plt.axis('scaled")

The last part of this exercise is concerned with naphtalene and azulene(see Figure 3 and 4)
that are isomers, This means that both have the same molecular formula C19Hsg, but
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different structures. Furhtermore all carbon atoms in the two molecules have sp?

hybridization. Nevertheless we will see that their energy spectra and molecular orbitals,
and hence their physical properties, are quite different. We will demonstrate this with the

example of the electrical dipole moment.

ci) Set up the Hiickel Hamiltonian and calculate the spectra and eigenvectors for both

molecules. Use B = —2.7 eV and onsite energy a = 0 eV.

cii) Compare the sizes of the HOMO-LUMO energy gaps of the two molecules.

lwaAzulene l».Naphtalene

Figure 3: Azulene molecule. Figure 4: Naphtalene molecule.

import numpy as np
from scipy.linalg import eigh
import matplotlib.pyplot as plt

def naphtalene():
#Calculate the spectrum in eV and eigenfunctions
t = -2.7 # hopping in eV
mat = np.zeros([10, 10])
### Set the hoppings by hand mat[i, j] =t
evs, evecs = eigh(mat)
return evs, evecs

def azulene():
#Calculate the spectrum in eV and eigenfunctions
t = -2.7 # hopping in eV
mat = np.zeros([10, 10])
### Set the hoppings by hand mat[i, j] =t
evs, evecs = eigh(mat)
return evs, evecs

evs, evecs = naphtalene()

print('The band gap of azulene is', , 'eV')
evs, evecs = azulene()
print('The band gap of naphtalene is', , 'eV')

The azulene molecule has a remarkably big dipole moment, which we will try to estimate in

the following

ciii) Numerically define the positions of the carbon atoms assuming all (nearest neighbour)

C — Cdistances are l = 1.39 Ang. You can use the provided code snipplets.
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## If the hybridization orbitals are displayed (from exercise 1), please rer
%smatplotlib inline

1 =1.39 # C-C bond length in Ang widget

# Generating a unit heptagon

n=7

r=1

rotation angle = ##Fill in a rotation angle

angles = np.linspace(0 + rotation angle, 2 * np.pi + rotation angle, n, endg
x_coords7 = r * np.cos(angles)

y coords7 = r * np.sin(angles)

## Scaling

scale = ##appropriately scale the hexagon
x_coords7 = scale *x_coords7

y coords7 = scale *y coords7

# Generating a unit pentagon

n=>5

r=1

rotation angle = ## Fill in a rotation angle

angles = np.linspace(0 + rotation angle, 2 * np.pi + rotation angle, n, endf
x_coords5 = r * np.cos(angles)

y coords5 = r * np.sin(angles)

##Scaling

scale = ##appropriately scale the pentagon
x_coords5 = scale *x_coords5

y coords5 = scale *y coords5

##Shift

x_shift = #appropriately shift the pentagon
y shift = #appropriately shift the pentagon
Xx_coords5 = x _coords5 + x shift

y coords5 =y coords5 + y shift

# Plotting the heptagon + pentagon

plt.title('Azulene molecule')

plt.plot(x coords7, y coords7, 'o', color='k")

plt.plot(x coords5, y coords5, 'o', color='k")

plt.plot( np.append(x coords5, x coords5[0]), np.append(y coords5, y coords
plt.plot( np.append(x _coords7, x coords7[0]), np.append(y coords7, y coords
plt.axis('scaled")

plt.xlabel('x [Ang]")

plt.ylabel('y [Ang]")

plt.show()

pos a = np.zeros([10, 21) #positions of the azulene molecule
pos al[:,0] = np.concatenate((x coords7[#:#], x coords5[#:#])) #Two of the tn
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pos al[:,1] = np.concatenate((y coords7[#:#], y coords5[#:#])) #Two of the tn

#Depending on how you set up your Hickel matrix it might be appropriate to r
#your pos a vector such that evecs and pos a use the same convention (i.e. t
#to the same carbon atom)

civ) Use the results from ci) to calculate the electron occupation for each carbon atom in
the ground state. Deduce from this the dipole moment of azulene.

Hint: The electron occupation p; of an atom 7 is given by
2
pi = 22 |1;(4)]
J

where the sum extends over the occupied molecular orbitals ¢, and the factor 2 is
accounting for the spin degeneracy. In the exercise, v,bj(i) corresponds to the 2-th entry of
the j-th eigenvector. Using the electron occupation p; the dipole moment is furthermore
given by

d = Z(l — pi)T

i

cv) Show, using explicit numerical computation that the dipole moment of naphtalene is 0.
Justify this result using symmetry.

#cv) ## If the hybridization orbitals are displayed (from exercise 1), pleas
%smatplotlib inline

1 =1.39 # C-C bond length in Ang

# Generating a unit hexagon

n==~o

r=1

rotation angle = ##Fill in a rotation angle

angles = np.linspace(0 + rotation angle, 2 * np.pi + rotation angle, n, endg

x_coords6l = r * np.cos(angles)
y coords6l = r * np.sin(angles)
## Scaling

scale = ##appropriately scale the hexagon
x_coords6l = scale *x coords6l
y coords6l = scale *y coords6l

# Generating a unit hexagon

n==~6

r=1

rotation angle = ##Fill in a rotation angle

angles = np.linspace(0 + rotation angle, 2 * np.pi + rotation angle, n, endg
X _coords62 = r * np.cos(angles)

y coords62 = r * np.sin(angles)
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## Scaling

scale = ##appropriately scale the hexagon
X_coords62 = scale *x_coords62

y coords62 = scale *y coords62

x_shift = #appropriately shift the hexagon
y shift = #appropriately shift the hexagon
x_coords62 = x_coords62 + x_shift

y coords62 = y coords62 + y shift

# Plotting the two hexagons

plt.title('Naphtalene molecule')

plt.plot(x coords6l, y coords6l, 'o', color='k")

plt.plot(x coords62, y coords62, 'o', color='k")

plt.plot( np.append(x coords6l, x coords61[0]), np.append(y coords6l, y coc
plt.plot( np.append(x coords62, x coords62[0]), np.append(y coords62, y coc
plt.axis('scaled')

plt.xlabel('x [Ang]"')

plt.ylabel('y [Ang]"')

plt.show()

pos n = np.zeros([10, 2]) #positions of the naphtalene molecule

pos n[:,0] = np.concatenate((x coords6l[#:#], x coords62[#:#]))#Two of the t
pos n[:,1] = np.concatenate((y coords6l[#:#], y coords62[#:#]))#Two of the t

#Depending on how you set up your Hickel matrix it might be appropriate to r
#your pos a vector such that evecs and pos a use the same convention (i.e. t
#to the same carbon atom)
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