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Problem set 5: Thomas-Fermi model for many-
electron atoms

For questions contact: tabea.buhler@epfl.ch

In this exercise sheet we will explore the Thomas-Fermi model, which was introduced
independently by Llewellyn Thomas and Enrico Fermi in 1927 and describes many-electron

atoms.

Exercise 1: From central field to the Thomas-Fermi

equation for screening

We consider an atom containing several electrons. Rather than analyzing the exact many-
body Hamiltonian, we apply the concept of screening. In this approach, each electron is
assumed to experience a centrally symmetric potential, which is not a pure Coulomb
potential. Instead, the nuclear charge is effectively screened by the presence of other
electrons within the atom. It follows the Ansatz for the potential ¢(7) and the potential

energy V(r) experienced by an electron within the atom:
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where we call the dimensionless function F(r) the screening function.
a) What should be the boundary condition lim,_,o F(r) and why?

To derive properties of V (), the approach followed by Thomas and Fermi is to consider
V (r) to be locally constant and to describe the atomic electrons experiencing V (r) locally as
a degenerate Fermi gas with density n(r) and Fermi wavevector kp(r):



local Fermi gas with density n(r)
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b) The chemical potential u is defined as the energy cost to add one particle to the system.
Given the explanation and illustration above, write down p considering the kinetic energy
cost and the potential energy cost V (r).

Hint: For an electron Fermi gas in 3 dimensions, recall the relation between density and

Fermi wavevector: k2.(r) = 37%n(r).

We consider the atom to be in equilibrium (no net flow of electrons), which means that the
total energy of an electron must be constant over the atom. This implies that the chemical

potential p is constant. Considering p at » — oo, we further conclude p = 0.

c) Use the expression of the chemical potential p to derive the electron density n(r) as a

function of the screening function F(r).

It follows another, conceptually important step in the Thomas-Fermi treatment of atoms. It is
imposed that the potential ¢(7) obeys the electrostatic Poisson equation:
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where we directly consider p(r) to be spherically symmetric and write the Poisson equation
for r only. p(r) is the charge density of the electrons causing the electrostatic potential,
related to the electron density as p(r) = —e n(r).

d) Use the Poisson equation to show the following relation between the partial derivative of

the screening function and the electron density:

gafF(r) = 4mn(r).

e) Use the results of ¢) and d) to derive a partial differential equation for the screening

function F'(r). Show that, by changing variable r = az, F — F, where z is a dimensionless



variable, this partial differential equation takes the form:

~ ~3/2
82F(z) = o V2F (2) (1)
This is called the Thomas-Fermi equation for screening.
Hint:
2
¢ To shorten notation you can use the definition of the Bohr radius ag = 47“0? .
me

Exercise 2: The universal scaling solution

In this exercise we explore more in detail the Thomas-Fermi equation for screening and solve

it numerically. We further look at its implications on the scaling of physical quantities.

a) Give the scaling law as a function of Z of the Thomas-Fermi atom of the following

quantities:

¢ the radius r

¢ the potential V'

¢ the density n

® the kinetic energy

Besides the boundary condition limm_mﬁ(m) = 1 (no screening near the nucleus), the
function F(z) has to be a normalizable density distribution. This implies
lim,_,., « F(x) = 0 and therefore, F'(z) has to decay sufficiently fast.

b) Show that the asymptotic behaviour of 15’(:1:) goes like ﬁ’(m) ~ 144/ 3 for large z.
Hint: Propose that the leading contribution as £ — oo is of the form F x Bz~ and write
the leading contribution to equation (1).

c) Solve the non-linear differential equation numerically.
Hints:

* To avoid the singularity when /z = 0, rewrite the potential as
F(z)=(1+ %133/2) y(z) and solve numerically the differential equation for y(z).
* Note that

4
lim (1 — (1 + §.7[:3/2)3/2 y(z)) — =0,

z—0
which can be set to zero with an if statement to avoid numerical problems.

* You can use the provided initial value for 4'(0), which ensures y — 0 for z — co.



import numpy as np

from scipy.integrate import solve_ivp
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors

def solve_differential_equation(func, x_span, y@, method='LSODA', atol=1e-8, rtol=1

Solver for nonlinear differential equations.

Parameters:
func: Callable. Defines the system of equations dy/dx = f(x, y).
It should take the form func(x, y), where y can be a scalar or a list o
- x_span: Tuple. The range of x values (x_start, x_end).
- y@: List or array-like. Initial conditions for the system.
- method: String. Integration method ('RK45', 'RK23', 'LSODA', etc.).
- t_eval: Array-like. Points at which to store the computed solution.
- plot_result: Boolean. Whether to plot the result.

Returns:
- solution: ODE solution object from scipy.integrate.solve_ivp.

# Provide default evaluation points if not specified
if t_eval is None:
t_eval = np.linspace(x_span[@], x_span[1l], 500)

# Solve differential equation
sol = solve_ivp(func, x_span, y0@, method=method, t_eval=t_eval)

if plot_result:
plt.figure(figsize=(7, 5))
plt.plot(sol.t, sol.y[@])
plt.xlabel('x")
plt.ylabel('y(x)")
plt.show()

return sol

def DGL_system(x, y):
# Rewrite secon order differential equation as a system of first order differen
#Z:yl; zl :yll

dydx = y[1]

B B B B B e Bt e e
# Todo: define the differential equation
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dzdx =

return [dydx, dzdx]

# Define x range and initial conditions
X_range = (0, 10)
initial_conditions = [1, -1.5886] #[y(9), y'(9)]



# Solve differential equation with initial conditions
solution = solve_differential_equation(DGL_system, x_range, initial_conditions, ploc

d) Plot the obtained solution for F'(z) for z € [0,10] and comment on the regime 2 — 0.

The Thomas-Fermi function F'(z) represents a universal scaling solution. It is called universal
because ﬁ’(w) is independent of Z, i.e. the shape of the function is the same for all atoms. It
is a scaling solution because the variable  depends on Z, i.e. the radial profile of the

electron density scales with atomic size.

We will use the obtained solution F’(:c) to predict the filling of electron shells in the periodic
table.

e) Consider the effective potential V; associated with the Thomas-Fermi function F'(z).
Show that for each value of £ there is a minimal value of Z such that the effective potential
has a bound state. Use the numerical solution ﬁ’(m) to calculate Z associated to the angular
momentum values £ = 1, 2, 3. Hints:

£(4+1)
2r?
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e Consider the effective potential in atomic units V, (1) = —Z F(r) +

obtain a bound state if V¢ has a minimum with negative energy. Using the same
change of variable as before, show that the minimal Z to obtain a bound state is

Z(E):%(E(Zntl))?»/?

® Determine numerically the value of  for which F’(m)x is maximal.

f) Give one example of a drawback of the Thomas-Fermi model of atoms as we have
introduced it in this exercise.



