
Problem set 4: Rydberg atoms

For questions contact: tabea.buhler@epfl.ch

A Rydberg atom is an atom excited to a state of very high principal quantum number . Typically, the valence electron of an alkali
atom can be excited to . There, it behaves (almost) like the electron of a Hydrogen atom. Let’s explore a few of the
properties of Rydberg atoms, their interactions and the phenomenon called Rydberg Blockade.

Exercise 1: Properties of Rydberg atoms

Rydberg atoms are one class of hydrogen-like atoms, meaning that a single electron dominates the atomic properties. As in the case
of Hydrogen, the electronic wavefunctions, or “atomic orbitals”, can be indexed by the quantum numbers , ,  and  (taking into

account the spin-orbit coupling) and can be separated into a radial term and an angular term 

. Here we denote with  the solutions of the radial part of the Schrödinger equation for Rydberg atoms, keeping in mind that
they slightly differ from the functions we are familiar with from the case of Hydrogen . We further denote by  the angular

part of the wavefunction. It is constructed, as in the case of Hydrogen, using the spherical harmonics .

The corresponding eigenenergies read:

where  is the ionization energy for the electron and  denotes the the so called quantum defect.

We will now explore a few general properties of Rydberg atoms.

a) Write the matrix element of the position vector  between two orbitals as a product of an angular term

 and a radial term .

b) Write the mean value of the radius  for an atom in state .

*Hint: You can use that the angular part of the wavefunction  is normalized to .

c) Write as products of  and  terms the matrix elements of the dipole operator , where  denotes charge, between:
(i) State  and state . This is called the transition dipole moment between state  and state

.

(ii) State  and itself. What is the difference with the quantity calculated in question b)?

d) The radial part  of these integrations is a known mathematical problem. It can be solved numerically by a method known as
Numerov integration. The main result we need to know here is that . How does the mean radius scale with  and
how does this relate to the scaling of the mean radius of the Hydrogen wavefunctions that you have seen in the lecture?
How does the transition dipole moment between state  and state  with similar quantum numbers ,

scale with ? We will use this result in the following exercise.

: One approach to find the radial solutions of the Schrödinger equation in the case of Rydberg atoms is the quantum defect theory,
as you have seen for alkali atoms in the lecture, taking into account the screening of the nuclear charge by the other electrons in the
region close to the nucleus.

: If we work in the coupled basis of  and , we have to consider the different combinations of  and  that can lead to a specific
.

Explicitly written, the construction of the angular part of the wavefunction reads:

where  denote the Clebsch-Gordan coefficients and we denote by  the two spin eigenstates, given in vector

form as:
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Exercise 2: Rydberg-Rydberg Interaction

The scaling of the transition dipole moment with  between neighboring Rydberg levels makes them exceptional antennas for
electromagnetic radiation at the transition frequencies. Just like in classical electromagnetism, dipoles can interact with an external
field but also with each other. This will give rise to the Rydberg-Rydberg interactions that we will study here.

Let us consider two atoms  and  separated by a vector  and in states  and  respectively. We have to

work in the Hilbert space that is the tensor product of the atomic states Hilbert space of each atom . For each atom,

 denotes the position operator of their valence electron, as represented in Fig. 1, and  the corresponding dipole
operators.

The coupling between these two dipoles reads :

Figure 1: Two atoms separated by
.

Figure 2: Diagram of the dipole-dipole second-order coupling between two
atoms in the same Rydberg state 

To carry on the calculation, we need to choose an axis to define coordinates. In the absence of any external field (electric or
magnetic), which axis do you suggest to choose as a quantization axis?

a) Show that, in the right coordinate system, where the orbital for atom  will be described by , we can write

where the spherical harmonics read:  and  and we denote with  the

absolute value of the position operator as in the previous exercise . The form of  accounts for the angular part of the
interaction and indicates that the  operator conserves the total magnetic quantum number  of the pair.

b) If the two atoms are in states with similar quantum numbers , what is the scaling of  with ?

Let us now consider a pair of Rydberg atoms in the same atomic state  and consider  as a perturbation in the

total Hamiltonian.

c) Show that . However, since there are neighboring Rydberg states with different quantum numbers, we need to
consider the second order perturbation induced by .

d) These neighboring states can be represented by pair states of the form . Write the

contribution  of one pair state  to the second order perturbation of the energy of .

e) Summing over all these states , write the explicit sum for the interaction energy  between two Rydberg atoms in
state  given by second order perturbation theory.

What is the dependence on  of ? Write it as  with the right integer value for . Show that the terms in

 with , scale as .

From now on we focus on the case where .

f) Using the selection rules of dipole allowed transitions that you have seen in the lecure, as well as the properties of ,
rewrite the sum , mentioning explicitly all the combinations of  that need to be considered.

Hint: The selection rules for dipole allowed transitions are  (except ); .
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g) Since the denominator  becomes very large when  increases, a first rough approximation is to restrict
the calculation to . With this restriction, and adding the constraint that , write the list of states to take
into account in the sum.

Note that this approximation is too strong, and and we should at least consider the terms where  and  or the
opposite. A better way to do the approximation is to set a limit on the denominator, such as for example

.

Exercise 3: The Alkali Rydberg Calculator (ARC) and Rydberg Blockade

We have now treated the simplest case of Rydberg-Rydberg interaction. There are many more possible cases, including in particular
the interaction between different Rydberg states |a⟩ and |b⟩, or cases where the choice of axis we made in exercise 2 is made invalid,
for example by the presence of external fields. However, the case we just treated is sufficient to understand many phenomena of
Rydberg atom physics, such as the “Rydberg blockade”, which will be treated in the following exercise.

To further explore the properties of Rydberg atoms and the phenomenon of the Rydberg blockade, we will use the Python library
for alkali Rydberg atoms (ARC) that has been developed by the research group of Charles S. Adams at Durham University. It allows
to calculate all the one- and two-atom properties of low-angular-momentum Rydberg states for any alkali atom.

Note: The detailed documentation of the ARC library can be found here:
https://arc-alkali-rydberg-calculator.readthedocs.io/en/latest/index.html.
Application examples are provided here:
https://arc-alkali-rydberg-calculator.readthedocs.io/en/latest/Rydberg_atoms_a_primer_notebook.html#Rydberg-atom-
wavefunctions.

a) Use the cell below to plot the probability of presence of the electron as a function of the distance to the nucleus for states
 and  for . Comment the result, especially how does it compare to the expectation you have from exercise 1?

import matplotlib.pyplot as plt # Import library for direct plotting functions

import numpy as np # Import Numerical Python

from arc import * # Import the Alkali Rydberg Calculator

atom=Rubidium87()

colors = ["b","r","g"]

### Todo: fill in the quantum numbers of the states of interest

pqn = [] # principle quantum numbers

l = # L 

j = # J 

plotLegend = []

for i in range(len(pqn)):

n = pqn[i]

step = 0.001    

a1,b1 = atom.radialWavefunction() ### Todo: complete

legendInfo, = plt.plot(a1,(b1)*(b1),"-",lw=2,color = colors[i], label = ("n = %d" % n) )

plotLegend.append(legendInfo)

    

plt.legend(handles=plotLegend)

plt.xlabel(r"Distance from nucleus $r$ ($a_0$)")

plt.ylabel(r"$\vert rR(r)\vert^2$")

plt.show()

b) Use the cell below to calculate the transition dipole moment between states  and between states  for
.

atom=Rubidium87()

### Todo: fill in the quantum numbers of the states of interest

n1=

l1=

j1=

mj1=

n2=

l2=

j2=

mj2=

q=+1

2Ea − Ec − Ed |n − nc,d|
nc,d = n ± 1 nc + nd = 2n

nc = n nd = n ± 1

|2Ea − Ec − Ed| < h × 25GHz

10S, 25S 60S 87Rb

In [ ]:

In [ ]:

10S − 10P 50S − 50P
87Rb

In [ ]:
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print("Rb 87 Transition 10S_{1/2}-->10P_{3/2}")

print("====================================")

#Angular Coupling

print("<nljmj|er|n'l'j'mj'> = %.3f ea_0\n" %\

atom.getDipoleMatrixElement(n1,l1,j1,mj1,n2,l2,j2,mj2,q))

### Todo: fill in the quantum numbers of the states of interest

n1=

l1=

j1=

mj1=

n2=

l2=

j2=

mj2=

q=+1

print("Rb 87 Transition 50S_{1/2}-->50P_{3/2}")

print("===========================================")

#Angular Coupling

print("<nljmj|er|n'l'j'mj'> = %.3f ea_0\n" % \

atom.getDipoleMatrixElement(n1,l1,j1,mj1,n2,l2,j2,mj2,q))

c) Using the functions of ARC, extract the value of the  coefficient perturbatively for the state  of  that we have focused
on in exercise 2. What is the interaction energy in MHz for a distance of 5 µm and 7 µm?
Plot the interaction energy as a function of distance between 5 µm and 20 µm.

# ToDo: define quantum numbers of state

n0 = 

l0 = 

j0 = 

mj0 = 

theta = 0 # Polar Angle [0-pi w.r.t. quantization axis (0 in our case)

phi = 0 # Azimuthal Angle [0-2pi] w.r.t. quantization axis (0 in our case)

dn = 5 # Range of n to consider (n0-dn:n0+dn)

deltaMax = 25e9 # Max pair-state energy difference [Hz]

# Set target-state and extract value

calculation = PairStateInteractions(Rubidium87(), n0, l0, j0, n0, l0, j0, mj0, mj0)

C6 = calculation.getC6perturbatively(theta, phi, dn, deltaMax)

print("C6 [%s] = %.2f GHz (mum)^6" % (printStateString(n0, l0, j0), C6))

### Todo: complete

atom_distance =  

int_energy = 

print(r'Interaction energy at {} mum = '.format(atom_distance), int_energy, 'MHz')

d) We learned in the previous exercises that the interaction energy, and therefore the total energy of the two-atom state, can
depend on the relative distance between the two atoms.
Given what you learned in the exercises before, sketch (qualitatively) the energy diagram you expect for a two-atom state as a
function of  in the following cases:
(i) both atoms in the ground state
(ii) one atom excited to the Rydberg state  as we considered before

(iii) both atoms excited to this Rydberg state
Hint: You only have to consider a dependence on  in case (iii).

e) Now imagine we shine a laser resonant with the transition from the ground state to a Rydberg state . Why is it not possible to
excite both atoms to the Rydberg state in this situation?
Hint: The topic of light-matter interaction will be treated in detail towards the end of this course. For now, you can assume that
there is a term in the Hamiltonian  coupling state  to  if the difference in energy  equals the energy of one

photon .

f) The natural linewidth of a Rydberg state is typically in the few  range. Assuming an infinitely narrow laser and given a
linewidth  for the  state of , what is the minimal distance at which two atoms can be excited by the
scheme mentioned above? This distance is called the “blockade radius”.

Remark: In the scope of this exercise we used basic functions of ARC. Don't hesitate to dive further into the documentation and try
out more of its functionalities!
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