
Problem Set 1: Virial Theorem, Hydrogenic Ions
and Harmonic Oscillator

For questions contact: tabea.buhler@epfl.ch

Exercise 1: Proof of the Virial Theorem

In this exercise we will proof the quantum mechanical version of the so called Virial Theorem.
We start with the Hamiltonian:

where the first term in the Hamiltonian is the kinetic energy operator  and the second part 
is the potential. Assuming the generic form of the potential , the Virial Theorem relates
the expectation values of the kinetic energy operator  and the potential energy operator  for
a given energy eigenstate  with energy :

Remark: This exercise is expected to be solved with pen and paper.

Hint: Apply the Ehrenfest theorem  to the operator .

Exercise 2: Hydrogenic ions

Hydrogenic ions are atoms consisting of one electron bound to a nucleus with . They are
of interest for precision experiments to test quantum electrodynamics or determine the fine
structure constant. In this exercise we will explore the similarities with the Hydrogen atom as
well as the scaling of several quantities with the nuclear charge .

Remark: This exercise is expected to be solved with pen and paper.

a) Write down the Hamiltonian for a hydrogenic atom. By introducing a change of variable
 show that this Hamiltonian, up to a scaling factor, is the same as for the Hydrogen

atom. Therefore, what is the natural length scale for hydrogenic ions compared to Hydrogen?
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dt

i

ℏ
p̂ x̂

Z > 1

Z

ρ := r

Z



For the rest of the exercise determine the scaling with the nuclear charge  of the following
quantities:

b) the expectation values of , 1/  and 1/ , where  is the distance of the electron to the
nucleus.

c) the expectation value of the potential energy .

d) the total Energy .

e) the probability to find the electron at the origin .

f) .

g) the fine structure splitting due to the relative movement between nucleus and electron.

Hints: (i) Motivated by the semi-classical Bohr model, you can use that from the point-of-view of
the electron, the nucleus of charge  is orbiting around it with a velocity  with  the
fine-structure constant.
(ii) The magnetic field can then be calculated using the formula  for the orthogonal

component of a magnetic field  originating from a static electric field  in a reference frame
moving with velocity  (in the system of units where ).

h) the hyperfine energy splitting due to the magnetic dipole moment of the nucleus.

Hint: The magnetic field of a dipole falls off as .

Exercise 3: Harmonic Oscillator in three dimensions

Consider an isotropic harmonic oscillator in three dimensions with the Hamiltonian

In this exercise we will explore the similarities of this system with the Hydrogen atom.

Remark: This exercise is expected to be solved with pen and paper.

a) Using what you know about the harmonic oscillator, what is the energy spectrum of the
Hamiltonian (1) and what are the degeneracies?

b) Without calculation, show that  commutes with the operators  and . What are the
implications of this on the eigenfunctions of the Hamiltonian (1).

To continue the exercise we will first state some results.
There are different methods to solve the eigenvalue equation associated with equation (1). In
cartesian coordinates, the problem is separable and one can use the solution of the problem in 1
dimension to solve the equation in three dimensions. The corresponding eigenvalues are:
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where the integer  is given by the sum n = , where . Therefore the

degeneracy  of each energy level is:

The corresponding eigenfunctions can be written as:

where the functions  are the solutions of the harmonic

oscillator in 1 dimension (  respectively). The functions  are Hermite

Polynomials and  are the normalization constants satisfying: , .

Motivated by the isotropy of the problem, one can look at the problem in spherical coordinates.
There is a basis of eigenfunctions that are not only eigenfunctions of  but also of the
operators  and .
The structure of the solutions is

with the spherical harmonics  we already know from the hydrogen atom. The radial
part further satisfies:

For the coefficients  one can derive the recursion relation:

where  is related to the eigenenergy . Furthermore the coefficient  must be

zero ( ), forcing all odd coefficients to be zero according to relation (2).

c) Consider  given the results above. Which condition must always be satisfied in order for
the overall function to represent a physically meaningful eigenfunction? Hint: Use that the
resulting function must be square-integrable. Consider the case where no even coefficient  is
equal to zero: can the resulting eigenfunction be square-integrable? Then show that there is one
 for which .

d) Write down the energy spectrum, now in terms of the integers . What are the
degeneracies and how does this compare to the result in (a)? Draw the energy spectrum in the

 plane.

e) For the two lowest energy states write down the relation between the eigenfunctions 
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and .

Remark: More details on the derivation of (2) starting from the Schrödinger equation can be
found, for example, in Claude Cohen-Tannoudji, Bernard Diu, Frank Laloe, Quantum Mechanics
1, appendix B .
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