
Problem Set 12: Molecular Spectroscopy II

For questions contact: hanning.zhang@epfl.ch

Exercise 1: Polyatomic vibrations of H O

a.) Assume the H O molecule lies completely in the yz-plane as shown in Fig. 1. It belongs to the  symmetry point group,
which includes the identity element , a  degree rotation around the z-axis , and the two mirror planes  and .
Complete the character table below, showing the four irreducible representations of this symmetry group.

Figure 1: Water molecule and its symmetries.

b.) Following the lecture, define ,  as the mass weighted diplacement coordinates. More concretely

with  being the mass of molecule  and  and  being its position and equilibrium position
respectively.

Write the character table for the physical 9 dimensional representation (H O) acting on the .

c.) Divide (H O) into irreducible representations.
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In this exercise, we investigate the vibrations of the water molecule.
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Hint: Again use that the rows corresponding to the irreducible representations are orthogonal and normalized with respect to the usual scalar pr



d.) To which irreducible representation do the translations in  direction belong.

e.) To which irreducible representation do the rotations around the -axes belong.

The remaining three irreducible representations will correspond to the three normal vibrational modes, which we will study
next. Departing from general symmetry considerations (which work for any potential energy ) we choose the following
explicit potential energy

where ,  and  is the angle between the H O and OH  bonds. The interatomic distance  as
well as the radial and angular force constants  and  are assumed to be constant.

f.) Show that the Hessian matrix can be written as

g.) Numerically determine the Hessian matrix, by using a second order finite difference method for the derivative.

##H20 molecule info 

import numpy as np

kr = 450 #kcal/mol/Ang^2

kt = 55 #kcal/mol/rad^2

re = 0.958 #Ang

thetae = 104.5 #degrees

uH = 1 #mass of hydrogen in atomic units

uO = 16 #mass of oxygen in atomic units

#We can leave out the analysis of the x-components. Why?

#dy, dz are used as the WEIGHTED displacment coordinates (to keep the notation simple)  

def r1(dyH1, dzH1, dyO, dzO, dyH2, dzH2):

#takes the weighted displacements as input and outputs r1

phi = thetae/2/360*2*np.pi #half the opening angle

yH1 = -np.sin(phi)*re + dyH1/##      #y-coordinate of H1

zH1 = -np.cos(phi)*re + dzH1/##      #z-coordinate of H1

yO = dyO/##                         #y-coordinate of O

zO = dzO/##                         #z-coordinate of O

yH2 = np.sin(phi)*re +dyH2/##       #y-coordinate of H2

zH2 = -np.cos(phi)*re +dzH2/##       #z-coordinate of H2

return np.sqrt((yH1-yO)**2 + (zH1-zO)**2)

def r2(dyH1, dzH1, dyO, dzO, dyH2, dzH2):

#takes the weighted displacements as input and outputs r2

phi = thetae/2/360*2*np.pi #half the opening angle

yH1 = -np.sin(phi)*re + dyH1/##      #y-coordinate of H1

zH1 = -np.cos(phi)*re + dzH1/##      #z-coordinate of H1

yO = dyO/##                         #y-coordinate of O

zO = dzO/##                         #z-coordinate of O

yH2 = np.sin(phi)*re +dyH2/##       #y-coordinate of H2

zH2 = -np.cos(phi)*re +dzH2/##       #z-coordinate of H2

return np.sqrt((yH2-yO)**2 + (zH2-zO)**2)

    

def theta(dyH1, dzH1, dyO, dzO, dyH2, dzH2):

#takes the weighted displacements as input and outputs theta

return 

H = np.zeros([6, 6]) #Hessian, we arrange the entries as yH1, zH1, yO, zO, yH2, zH2

delta = 0.01 #Small displacement step for the finite difference method

##Calculate Hessian here

h.) Determine the vibrational frequencies (in wavenumber cm ) for the three vibrational modes.

from scipy.linalg import eigh

evs, evecs = eigh(H)

c = 2.99*10**8

kcal = 4.18*10**6 #kcal/g to J/kg conversion

phl = ## photon wavelength vector, choose the three eigenmodes which correspond to the vibrations
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print('The photon wavelength are', 1/phl ,'cm^{-1}')

i.) Sketch the eigenmodes of the hydrogen molecule. Are the corresponding irreducible representations in accordance with
exercises c.), d.) and e.)

import matplotlib.pyplot as plt

phi = thetae/2/360*2*np.pi

posy = np.array([-np.sin(phi)*re, 0,np.sin(phi)*re]) #y-positions of the atoms

posz = np.array([-np.cos(phi)*re, 0,-np.cos(phi)*re]) #z-positions of the atoms 

sym =[] #Fill the irrep. tag

fig, ax = plt.subplots(1, 3, figsize = (12, 4))

# Create a figure and axis

for i in np.arange(3):

ax[i].set_title(r'wave number{:.2f} cm$^-$$^1$, irrep. '.format(1/phl[i]*10**(-2)) + sym[i])

ax[i].scatter(posy[::2], posz[::2], color = 'k', s = 50) #plot hydrogens

ax[i].scatter(posy[1], posz[1], color = 'r', s = 100) #plot oxygen

ax[i].plot(posy[0:2], posz[0:2], color = 'k', linestyle= '--') #HO bond

ax[i].plot(posy[1:3], posz[1:3], color = 'k', linestyle= '--') #HO bond

    

dy = evecs[::2,##]/4  #displacements y-direction (the division by four is simply to make the arrows smaller) 

dz = evecs[1::2,##]/4 #displacements z-direction (the division by four is simply to make the arrows smaller) 

ax[i].arrow(posy[0], posz[0], dy[0], dz[0], head_width=0.05) #plot the arrows showing the vibrational motion

ax[i].arrow(posy[2], posz[2], dy[2], dz[2], head_width=0.05) #plot the arrows showing the vibrational motion

plt.show()

Exercise 2: Electronic spectroscopy of azulene

In the 1950s, azulene drew significant interest from the scientific community. As one of the first examples, theoretical (computer-
assisted) calculations succeeded to quantitatively determine the excited state energies (1956, Pariser) and allowed for a reasonable
assignment of the transitions measured by electronic spectroscopy. In this exercise, we’ll follow a simplified version of that early
research and use the (basic) Hückel model to calculate the electronic states.

a) Using the Hückel model (Serie 7, ex 3), numerically calculate the electronic states and energies of azulene. What is the
HOMO-LUMO gap and the corresponding photon wavelength? 

Figure 2: Azulene molecule.

Figure 3: Experimental absorption spectrum of an azulene derivative.
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Remark: You can use your old code.



import numpy as np

from scipy.linalg import eigh

import matplotlib.pyplot as plt

ue = 1.602*10**(-19) #unit charge in [C]

hbar = 6.626*10**(-34) #hbar in [Js]

c = 3.0*10**8 #speed of light [m/s]

def azulene():

#Calculate the spectrum in eV and eigenfunctions

t = -2.5 # hopping in eV

mat = np.zeros([10, 10])

### Set the hoppings by hand mat[i, j] = t

evs, evecs = eigh(mat)

return evs, evecs

evs, evecs = azulene()

Egap = #band gap

lgap = #corresponding wavelength 

print('The band gap of azulene is',Egap , 'eV')

print('The corresponding wavelength', lgap, 'nm')

b) Use the code below to generate the color corresponding to the photon wavelength. Which color do you think azulene will
have? Compare to a quick web search.

Figure 4: Complementary colors.

import matplotlib.pyplot as plt

def wavelength_to_rgb(wavelength, gamma=0.2):

''' taken from http://www.noah.org/wiki/Wavelength_to_RGB_in_Python

    This converts a given wavelength of light to an 

    approximate RGB color value. The wavelength must be given

    in nanometers in the range from 380 nm through 750 nm

    (789 THz through 400 THz).

    Based on code by Dan Bruton

    http://www.physics.sfasu.edu/astro/color/spectra.html

    Additionally alpha value set to 0.5 outside range

    '''

wavelength = float(wavelength)

if wavelength >= 380 and wavelength <= 750:

A = 1.

else:

A=0.5

if wavelength < 380:

wavelength = 380.

if wavelength >750:

wavelength = 750.

if wavelength >= 380 and wavelength <= 440:

attenuation = 0.3 + 0.7 * (wavelength - 380) / (440 - 380)

R = ((-(wavelength - 440) / (440 - 380)) * attenuation) ** gamma

G = 0.0

In [1]:

In [ ]:

The wavelength calculated in a.) is the adsorbed one. The color seen is the transmitted/reflected part of the spectrum that manifests as the comp

Remark: For those interested you may look up Lactarius indigo, a surprsingly edible mushroom containing the azulene pigment.

In [17]:



B = (1.0 * attenuation) ** gamma

elif wavelength >= 440 and wavelength <= 490:

R = 0.0

G = ((wavelength - 440) / (490 - 440)) ** gamma

B = 1.0

elif wavelength >= 490 and wavelength <= 510:

R = 0.0

G = 1.0

B = (-(wavelength - 510) / (510 - 490)) ** gamma

elif wavelength >= 510 and wavelength <= 580:

R = ((wavelength - 510) / (580 - 510)) ** gamma

G = 1.0

B = 0.0

elif wavelength >= 580 and wavelength <= 645:

R = 1.0

G = (-(wavelength - 645) / (645 - 580)) ** gamma

B = 0.0

elif wavelength >= 645 and wavelength <= 750:

attenuation = 0.3 + 0.7 * (750 - wavelength) / (750 - 645)

R = (1.0 * attenuation) ** gamma

G = 0.0

B = 0.0

else:

R = 0.0

G = 0.0

B = 0.0

return (R,G,B,A)

rgb = wavelength_to_rgb(lgap)

fig, ax = plt.subplots()

square = plt.Rectangle((0, 0), 1, 1, color= rgb, label = 'azulene') 

ax.add_patch(square)

ax.text(0.5, 0.5, "{:.2f}nm".format(lgap), fontsize=14, ha="center", va="center", color="black")

ax.set_xlim(-0.5, 1.5)

ax.set_ylim(-0.5, 1.5)

ax.set_aspect('equal') 

ax.set_xticks([])

ax.set_yticks([])

ax.set_frame_on(False)

plt.legend()

plt.show()

c.) The transitions calculated in a.) corresponds to the  (ground state to first excited state) absorption. Find the energy
and photon wavelength corresponding to the  absorption.

Egap_2 = 

lgap_2 = 

print('The transition in question is from orbital1 -> orbital2 with energy', Egap_2, 'eV')

print('The wavelength are,' lgap_2, 'nm')

In the following we will verify our results using symmetry considerations.

Assume that the azulene molecule lies in the -plane, with  pointing along the long axis of the molecule. We first note that
the symmetry group of azulene is  (see exercise 1) and recall that it consists of four elements  (the identity),  (
rotation around the z-axis),  (reflection with respect to the -plane) and  (reflection with respect to the  plane).

d) To which representation do the molecular orbitals belong, which you obtained using the Hückel model.

e) We know from experiment that the first excited state  has  symmetry, while the second excited stated  has 
symmetry. Do you arrive at the same result using the Hückel model?

 Generally the representation of  electrons is given as , where  are the representations of electron . The
characters of a tensor representation are the products of the characters of the individual representations.

 

In [ ]:

S0 → S1

S0 → S2

Hint: The 4 molecular orbitals that normally need to be considered are the two below and two above the Fermi energy.

They are named HOMO-1, HOMO, LUMO and LUMO + 1 with ascending energy.

Remark: The actual photon wavelength of the S0 → S2 transition is slightly smaller than calculated (around 350 nm) and hence does not have an
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