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Problem Set 11: Molecular spectroscopy

For questions contact: hanning.zhang@epfl.ch

Exercise 1: Rotational and vibrational modes

In this exercise we will study the rotational and vibrational modes of diatomic molecu
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We start our analysis with the pure vibrational spectrum. The energies are given by the
Schroédinger equation
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where 9(R) is the radial part of the wavefunction, p is the reduced mass and V' (R) is the
energy of the system with fixed nuclei position. We have seen two approximations of V(R)
- the harmonic potential

1
Voar(R) = Ek(R — R.)?

and the Morse potential
2
Vinor(R) = D, (1 - e—“<R—Re>)

The spectrum is given by

1
Eyprpn = hw(n + 5), w=

1 / | 1
Emor,n = hw(n + 5) - hwa:e(n + 5)2, w=a 256 , T, = ha 8De,u,

a.) Show that V,,,,.(R) is minimal at R = R,. Expand the potential up to second order at
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the minimum and express k as a function of D, and a. Show that this approximation



recovers exactly the harmonic term of the Morse potential spectrum (i.e. the anharmonicity
term with z, is excluded).

b.) Taking D, ~ 1 eV and a =~ 1/Angand u = 1u as typical orders of magnitudes,
estimate the energy scale of the vibrational spectrum. Express the characteristic energy in
the units of temperature, photon wavelength and photon frequency.

The rotational spectrum in the rigid rotor estimation is given by the series

E(J) = BeJ(J +1) = 5222 J(J +1)

c.) Using that R, =~ 1 Ang and u =~ 1u, estimate the energy scale of the rotational
spectrum, as well as the corresponding temperature, photon wavelength and frequency.

Since the rotational energy scale is much smaller than the vibrational energy scale one
might add the rotational energy as a first order perturbation in the full Hamiltonian:
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d.) Show that the total energy can be written as

E(n,J) = By, + B, J(J +1)
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where E.5, is the pure vibrational energy of the n-th state, and express By, in terms of
<7,bn]% |4h,,). Further express the emission spectrum of the m = 1 — 0 transition in terms
of AEm'b = Evib,l — Em’b,O and B1 and B().

Remark: Recall that only the AJ = +1 transitions are allowed. This means that eve:
mode is lower than the n = 0 vibrational mode) or the R-branch (where the angular m.

We will now turn our attention to a qualitative analysis of B,, By and Bj.

e.) Which approximation of <1,Z)n]% |1,) was used in the rigid rotor assumption to get
B. = By = By?

f.) Assume we go beyond the rigid rotor assumption, such that B, is not only defined by
the position of the potential minimum R, but requires information of the entire potential
V(R). Order the energies Be, By and B for a parabolic potential Vper (R).

g.) Sketch a potential characterized by B, > By > B;.

Hint: The Morse potentialfulfills this condition. Explain which characteristics of the 1
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In the last part we address the information that can be obtained from the emission
spectrum. This is often used in astrophysics e.g. to study the composition and temperature
of interstallar medium (see Figure 1). The following spectrum (Figure 2) is obtained from a
diatomic molecule in this cloud, and the transition in questionism = 1 — 0. The rigid rotor

approximation is used.

Figure 1: The interstellar medium (ISM) is the matter and radiation that exists
in the space between the star systems in a galaxy. This matter includes gas in
ionic, atomic, and molecular form, as well as dust and cosmic rays. It fills
interstellar space and blends smoothly into the surrounding intergalactic
medium.



Emission spectrum from the interstellar medium

80 A

60

Photon count
5
i

20 ~

04

T T T T T T T T
30000 40000 50000 60000 70000 80000 90000 100000
Photon frequency in [GHz]

Figure 2: Model emission spectrum of a diatomic molecule in the ISM.

h) Plot the emission spectrum in the provided file 'fs.txt'. Use the provided code to plot its

Fourier Transform.

Remark: Since the file is rather large, the operation can take 5-10 seconds.

Technical Remark on the numerical Fourier Transform:

Imagine we want to calculate g(k) := f (2rk) = [ e*ke f(z)dz, where § is the usual
Fourier Transform of f. Numerically this is obtained as
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where we have dropped the normalization for the sake of simplicity. Writing z[n] = ndv
m

we see that defining k[m| = ——= ensures consistency between the numerical and

analytical result. Here N (the number of data points) was the length of the arrays fand g,
and dwv is the spacing between the x-values.

With regards to the following code we have:



f is written using the variable fs (the photon count)
x is written using the variable vs (the photon frequency in GHz)
g is written using the variable F (the numerical Fourier Transform of fs)

k is written using the variable freq

import numpy as np
import matplotlib.pyplot as plt
from scipy.fft import fft, fftfreq, fftshift

#Constants in SI units

hbar = 1.05457182*10**(-34) #hbar

u = 1.66054*%10%*(-27) #unit mass

k B = 1.380649*10**(-23)  #Boltzmann constant
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np.linspace (30000, 98000, 2*680000) #Photon frequencies in GHz
np.loadtxt('fs.txt') #emission spectrum
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dv = vs[1] - vs[0]

N = len(vs)
# Compute FFT
F = fft(fs)

freq = fftfreq(N, dv)

# Shift zero freq to center

F shifted = fftshift(F) #fourier transform ready to plot (y-axis de
freq shifted = fftshift(freq) #x-axis data

i) A close up of the Fourier Transform shows 4 fundamental frequencies (all around 0.01
GHz 1) corresponding to 4 dominant rotational modes. Determine their relative strength
and the corresponding photon frequency.

Remark: We recommend analyzing the higher harmonics, where the signal is more sp
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plt.figure(figsize=(8, 4))

plt.plot(freq shifted, np.abs(F shifted), 'r')
plt.title('Close up of the Fourier Transform |[F(v)["')
plt.xlabel('Time [1/GHz]")

plt.ylabel('Magnitude"')

plt.xlim(0, 0.1)

plt.grid(True)

plt.show()



Close up of the Fourier Transform |F(v)|
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data = np.abs(F shifted)
hl = np.max(data[(freq shifted > 0.06)*(freq shifted < 0.061)]) #The fir
h2 = np.max(data[(freq_shifted > 0.0615)*(freq shifted < 0.0625)]) #The sec
h3 = np.max(data[(freq_shifted > ##)*(freq shifted < ##)]) #The thi
h4 = np.max(data[(freq_shifted > ##)*(freq shifted < ##)]) #The foL
hs = np.array([hl, h2, h3, h4])
print('The peak magnitudes are', hl, h2, h3, h4)
pl = np.argmax(data[(freq_shifted > 0.06)*(freq shifted < 0.061)])
p2 = np.argmax(data[(freq shifted > 0.0615)*(freq shifted < 0.0625)])
p3 = np.argmax(data[(freq_shifted > ##)*(freq shifted < ##)])
p4 = np.argmax(data[(freq shifted > ##)*(freq shifted < ##)])
fl = freq shifted[pl+ len(freq shifted[(freq shifted < 0.06)])] #TF
f2 = freq shifted[p2+ len(freq shifted[(freq shifted < 0.0615)])] #TF
f3 = freq_shifted[p3+ len(freq_shifted[(freq shifted < ##)])] #TF
f4 = freq shifted[p4+ len(freq_shifted[(freq shifted < ##)])] #TF
rot fs = np.array([7/f1, 7/f2, 7/f3, 7/f4])
print('The dominant photon frequencies are', 7/fl, 7/f2, 7/f3, 7/f4, 'GHz')

j) Assume that the interstellar medium only contains two of the four elements in the table.
Deduce from the ratio of the photon frequencies in the emission spectrum what these two
elements are. What are the relative abundances of the isotopes in the interstellar medium.

Hint: Use that in the rigid rotor approximation the reduced mass is proportional to th

of the (fundamental or) higher harmonics directly reflects the isotope abundance.
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import numpy as np
m H = np.array([1, 2]) #hyrdogen atom mass in units

m C = np.array([12, 13]) #carbon atom mass in units
m N = np.array([14, 15]) #nitrogen atom mass in units
m 0 = np.array([16, 17]) #oxygen atom mass in units

def redm(m 1s, m 2s):
#formula that calculates the reduced masses
return m_s

redms redm(#, #) #reduced masses for the 4 isotop combinations
ratio = np.average(redms*rot fs)
#Compare np.sort(1/rot fs) and np.sort(redms)/ratio with a method of your 1li

print('The abundance ratio of the first element is') #Deduce using h1l/h2, F
print('The abundance ratio of the second element is') #Deduce using hl/h2, }

k) Calculate the equilibrium bond length R, of the diatomic molecule.

|) At last we are intersted in the temperature of the ISM. To deduce it we will concentrate
solely on the R-branch of the diatomic molecule using the most abundant isotope
combination.

maxs = np.max(fs)
ys fs[(fs > maxs/2)*(vs>##)] #The factor 2 insures that only signals fron
XS vs[(fs > maxs/2)*(vs>##)] #The factor 2 insures that only signals fron

## Extracting solely the peaks of the signal

ymax = ys[0]
mys = []
mxs = []

for i in np.arange(len(ys)-2):
if vys[i+l] > ys[i] and ys[i+1] > ys[i+2]:
mys.append(ys[i+1])
mxs.append(xs[i+1])

def myT(xs, T, vm, A):



# Fitting function

#T 1is the temperature

#vm is the pure vibrational energy

#A is a normalization constant

m = #Input reduced mass

J = #input the J quantum number

myexp = #Define the correct energy*T
return A*(2*J+1)*np.e**(-myexp*J*(J+1)/T)

from scipy.optimize import curve fit

coeffs = curve fit(myT, mxs, mys, p0 = [1000, 60000, 1])[0]

plt.title('Emission spectrum')

plt.plot(mxs, mys, '.', label = 'data', color = 'k')

plt.plot(mxs, myT(mxs, coeffs[0], coeffs[1l], coeffs[2]), label = 'fit', colc
plt.xlabel('photon frequency [GHz]')

plt.ylabel('Photon count"')

plt.legend()

print('The temperature in the ISM is', coeffs[0], 'K')

m) Assuming a harmonic potential, calculate the spring constant k. Using the data from L.)

k = ##
print('The spring constant k is', k, 'N/m")

The equilibrium distance R, and the spring constant k used in this exercise are both r
Furthermore, while the temperature of the ISM is realistic, the isotope ratios are not,
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Exercise 2: Raman spectroscopy

This exercise shows a semiclassical view on Raman spectroscopy

We start with a time dependent electrical field
E(t) = Eycos(2mvt).

The induced dipole moment of the diatomic molecule can be written as
u(t) = aEycos(2mut)

where « is the polarizability. We furthermore assume that the interatomic distance
oscillates like

z(t) = z, + Az cos(2my;t)

with the vibratonal frequency v,



a.) Assume that the polarizability c(x) is a function of the interatomic distance. Use a first
order expansion and show that the dipole moment oscillates with 3 different frequencies,

U,V + Vyip and V — Vyp.

Remark: Picking up these frequency using a detector allows the measurement of V.
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We will now follow the same logic for the rotational spectrum.

b.) We write the polarizability matrix in the principle coordinates as

| 0 0
0 0 Oé”

where the oy point along the axis connecting the two atoms. Express the induced dipole

moment p g collinear to the incident electrical field. What is the corresponding ag.

Use spherical coordinates and express everything in terms of 6, defined as the angle b
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¢.) Assume now that the molecule turns such that
9(t) = 27TV7.Ott.

Show that ug oscillates with 3 different frequencies v, v + 2v,;, and v — 2v,;,.



