
Problem Set 11: Molecular spectroscopy

For questions contact: hanning.zhang@epfl.ch

Exercise 1: Rotational and vibrational modes

We start our analysis with the pure vibrational spectrum. The energies are given by the

Schrödinger equation

where  is the radial part of the wavefunction,  is the reduced mass and  is the

energy of the system with fixed nuclei position. We have seen two approximations of 

- the harmonic potential

and the Morse potential

The spectrum is given by

a.) Show that  is minimal at . Expand the potential up to second order at

the minimum and express  as a function of  and . Show that this approximation
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recovers exactly the harmonic term of the Morse potential spectrum (i.e. the anharmonicity

term with  is excluded).

b.) Taking  eV and Ang and  as typical orders of magnitudes,

estimate the energy scale of the vibrational spectrum. Express the characteristic energy in

the units of temperature, photon wavelength and photon frequency.

The rotational spectrum in the rigid rotor estimation is given by the series

c.) Using that  Ang and , estimate the energy scale of the rotational

spectrum, as well as the corresponding temperature, photon wavelength and frequency.

Since the rotational energy scale is much smaller than the vibrational energy scale one

might add the rotational energy as a first order perturbation in the full Hamiltonian:

d.) Show that the total energy can be written as

where  is the pure vibrational energy of the -th state, and express  in terms of

. Further express the emission spectrum of the  transition in terms

of  and  and .

We will now turn our attention to a qualitative analysis of ,  and .

e.) Which approximation of  was used in the rigid rotor assumption to get

?

f.) Assume we go beyond the rigid rotor assumption, such that  is not only defined by

the position of the potential minimum  but requires information of the entire potential

. Order the energies ,  and  for a parabolic potential .

g.) Sketch a potential characterized by .
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In the last part we address the information that can be obtained from the emission

spectrum. This is often used in astrophysics e.g. to study the composition and temperature

of interstallar medium (see Figure 1). The following spectrum (Figure 2) is obtained from a

diatomic molecule in this cloud, and the transition in question is . The rigid rotor

approximation is used.

Figure 1: The interstellar medium (ISM) is the matter and radiation that exists

in the space between the star systems in a galaxy. This matter includes gas in

ionic, atomic, and molecular form, as well as dust and cosmic rays. It fills

interstellar space and blends smoothly into the surrounding intergalactic

medium.

n = 1 → 0

\newline



Figure 2: Model emission spectrum of a diatomic molecule in the ISM.

h) Plot the emission spectrum in the provided file 'fs.txt'. Use the provided code to plot its

Fourier Transform.

:

Imagine we want to calculate , where  is the usual

Fourier Transform of . Numerically this is obtained as

where we have dropped the normalization for the sake of simplicity. Writing 

we see that defining  ensures consistency between the numerical and

analytical result. Here  (the number of data points) was the length of the arrays  and  ,

and  is the spacing between the -values.

With regards to the following code we have:

Remark: Since the file is rather large, the operation can take 5-10 seconds.
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 is written using the variable fs (the photon count)

 is written using the variable vs (the photon frequency in GHz)

 is written using the variable F (the numerical Fourier Transform of fs)

 is written using the variable freq

import numpy as np

import matplotlib.pyplot as plt

from scipy.fft import fft, fftfreq, fftshift

#Constants in SI units

hbar = 1.05457182*10**(-34) #hbar

u = 1.66054*10**(-27)       #unit mass

k_B =  1.380649*10**(-23)   #Boltzmann constant

####################################################################

vs = np.linspace(30000, 98000, 2*680000)  #Photon frequencies in GHz

fs = np.loadtxt('fs.txt')  #emission spectrum

###################################################################

dv = vs[1] - vs[0]

N = len(vs)

# Compute FFT

F = fft(fs)

freq = fftfreq(N, dv)

# Shift zero freq to center

F_shifted = fftshift(F)          #fourier transform ready to plot (y-axis da

freq_shifted = fftshift(freq)    #x-axis data

i) A close up of the Fourier Transform shows 4 fundamental frequencies (all around 

GHz ) corresponding to 4 dominant rotational modes. Determine their relative strength

and the corresponding photon frequency.

plt.figure(figsize=(8, 4))

plt.plot(freq_shifted, np.abs(F_shifted), 'r')

plt.title('Close up of the Fourier Transform |F(ν)|')

plt.xlabel('Time [1/GHz]')

plt.ylabel('Magnitude')

plt.xlim(0, 0.1) 

plt.grid(True)

plt.show()
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Remark: We recommend analyzing the higher harmonics, where the signal is more sp
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data = np.abs(F_shifted)

h1 = np.max(data[(freq_shifted > 0.06)*(freq_shifted < 0.061)])     #The fir

h2 = np.max(data[(freq_shifted > 0.0615)*(freq_shifted < 0.0625)])  #The sec

h3 = np.max(data[(freq_shifted > ##)*(freq_shifted < ##)])          #The thi

h4 = np.max(data[(freq_shifted > ##)*(freq_shifted < ##)])          #The fou

hs = np.array([h1, h2, h3, h4])

print('The peak magnitudes are', h1, h2, h3, h4)

p1 = np.argmax(data[(freq_shifted > 0.06)*(freq_shifted < 0.061)])         

p2 = np.argmax(data[(freq_shifted > 0.0615)*(freq_shifted < 0.0625)])

p3 = np.argmax(data[(freq_shifted > ##)*(freq_shifted < ##)])

p4 = np.argmax(data[(freq_shifted > ##)*(freq_shifted < ##)])

f1 = freq_shifted[p1+ len(freq_shifted[(freq_shifted < 0.06)])]          #Th

f2 = freq_shifted[p2+ len(freq_shifted[(freq_shifted < 0.0615)])]        #Th

f3 = freq_shifted[p3+ len(freq_shifted[(freq_shifted < ##)])]            #Th

f4 = freq_shifted[p4+ len(freq_shifted[(freq_shifted < ##)])]            #Th

rot_fs = np.array([7/f1, 7/f2, 7/f3, 7/f4])

print('The dominant photon frequencies are', 7/f1, 7/f2, 7/f3, 7/f4, 'GHz')

j) Assume that the interstellar medium only contains two of the four elements in the table.

Deduce from the ratio of the photon frequencies in the emission spectrum what these two

elements are. What are the relative abundances of the isotopes in the interstellar medium.

In [ ]:

Hint: Use that in the rigid rotor approximation the reduced mass is proportional to th

of the (fundamental or) higher harmonics directly reflects the isotope abundance.



import numpy as np

m_H = np.array([1, 2])     #hyrdogen atom mass in units 

m_C = np.array([12, 13])   #carbon atom mass in units 

m_N = np.array([14, 15])   #nitrogen atom mass in units 

m_O = np.array([16, 17])   #oxygen atom mass in units 

def redm(m_1s, m_2s):

    #formula that calculates the reduced masses

    return m_s

redms = redm(#, #)  #reduced masses for the 4 isotop combinations

ratio = np.average(redms*rot_fs)

#Compare np.sort(1/rot_fs) and np.sort(redms)/ratio with a method of your li

print('The abundance ratio of the first element is')  #Deduce using h1/h2, h

print('The abundance ratio of the second element is') #Deduce using h1/h2, h

k) Calculate the equilibrium bond length  of the diatomic molecule.

l) At last we are intersted in the temperature of the ISM. To deduce it we will concentrate

solely on the R-branch of the diatomic molecule using the most abundant isotope

combination.

maxs = np.max(fs)

ys = fs[(fs > maxs/2)*(vs>##)]  #The factor 2 insures that only signals from

xs = vs[(fs > maxs/2)*(vs>##)]  #The factor 2 insures that only signals from

## Extracting solely the peaks of the signal 

ymax = ys[0]

mys = []

mxs = []

for i in np.arange(len(ys)-2):

    if  ys[i+1] > ys[i] and ys[i+1] > ys[i+2]:

        mys.append(ys[i+1])

        mxs.append(xs[i+1])

        

def myT(xs, T, vm, A):

Element Isotope Mass (u)

H 1

H 2

C 12

C 13

N 14

N 15

O 16

O 17
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    # Fitting function 

    #T is the temperature

    #vm is the pure vibrational energy

    #A is a normalization constant

    m = #Input reduced mass

    J = #input the J quantum number 

    myexp = #Define the correct energy*T

    return A*(2*J+1)*np.e**(-myexp*J*(J+1)/T)  

from scipy.optimize import curve_fit

coeffs = curve_fit(myT, mxs, mys, p0 = [1000, 60000, 1])[0]

plt.title('Emission spectrum')

plt.plot(mxs, mys, '.', label = 'data', color = 'k')  

plt.plot(mxs, myT(mxs, coeffs[0], coeffs[1], coeffs[2]), label = 'fit', colo

plt.xlabel('photon frequency [GHz]')

plt.ylabel('Photon count')

plt.legend()

print('The temperature in the ISM is', coeffs[0], 'K')

m) Assuming a harmonic potential, calculate the spring constant . Using the data from l.)

k = ##

print('The spring constant k is', k, 'N/m')

Exercise 2: Raman spectroscopy

We start with a time dependent electrical field

The induced dipole moment of the diatomic molecule can be written as

where  is the polarizability. We furthermore assume that the interatomic distance

oscillates like

with the vibratonal frequency .

k

In [ ]:

The equilibrium distance Re and the spring constant k used in this exercise are both r

Furthermore, while the temperature of the ISM is realistic, the isotope ratios are not,

This exercise shows a semiclassical view on Raman spectroscopy

E(t) = E0 cos(2πνt).

μ(t) = αE0 cos(2πνt)

α

x(t) = xe + Δx cos(2πνvibt)

νvib



a.) Assume that the polarizability  is a function of the interatomic distance. Use a first

order expansion and show that the dipole moment oscillates with 3 different frequencies,

,  and .

We will now follow the same logic for the rotational spectrum.

b.) We write the polarizability matrix in the principle coordinates as

where the  point along the axis connecting the two atoms. Express the induced dipole

moment  collinear to the incident electrical field. What is the corresponding .

c.) Assume now that the molecule turns such that

Show that  oscillates with 3 different frequencies ,  and .

 

α(x)

ν ν + νvib ν − νvib

Remark: Picking up these frequency using a detector allows the measurement of νvib. 
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Use spherical coordinates and express everything in terms of θ, defined as the angle be

θ(t) = 2πνrott.

μE ν ν + 2νvib ν − 2νvib

In [ ]:


