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Exercice 1

Dans le cadre de la MHD résistive, on considère un plasma de résistivité η et de vitesse fluide

u⃗ = ω(xx̂− yŷ),

supposée maintenue ainsi à tout moment, avec ω = const. Le mouvement du plasma est donc dans le
plan (x, y). Le plasma est immergé initialement dans un champ magnétique

B⃗(x⃗, t = 0) = B0 cos(k0y)x̂.

avec k0 et B0 des constantes. On va montrer comment ce champ est amplifié (effet dynamo) puis
dissipé (effet resistif).

a) En partant de l’expression pour la dérivée temporelle du champ magnétique de la MHD :

∂B⃗

∂t
= ∇×

(
u⃗× B⃗

)
+

η

µ0
∇2B⃗. (1)

montrez que celle-ci peut s’écrire sous la forme

∂B

∂t
= ωB + ωy

∂B

∂y
+

η

µ0

∂2B

∂y2
(2)

en remarquant que, pour tout t > 0, B⃗ = B(y, t)x̂.
b) En utilisant l’ansatz B(y, t) = B̂(t) cos(k(t)y), trouvez l’expression de k(t) et B̂(t).
c) A partir de l’expression de B̂(t) de la question précédente, calculez le temps t∗ pour lequel le

champ magnétique est maximum.

Corrigé

a) On remarque d’abord que, puisque B⃗(t = 0) est dirigé selon x̂ et que ∂B⃗
∂x |t=0 = ∂B⃗

∂z |t=0 = 0, alors
l’équation 1 est linéaire en B⃗ (pas de terme de source), de sorte que ces propriétés restent vraies pour
sa dérivée temporelle ∂B⃗

∂t |t=0. Ainsi, en supposant toujours que seul le couplage avec le plasma (Eq. 1)
agit sur la composante du champ Bx, nous pouvons en déduire que ces symétries se propagent dans
le temps, de sorte que pour tout t > 0, B⃗ = B(y, t)x̂. Il ne reste plus qu’à prouver que dans ce cas
l’équation 2 se vérifie.

Calculons le produit vectoriel entre la vitesse fluide et le champ magnétique

u⃗× B⃗ = ωyB(y, t)ẑ, (3)

puis son rotationnel

∇×
(
u⃗× B⃗

)
= ω

∂yB(y, t)

∂y
x̂ = ωB(y, t)x̂+ ωy

∂B(y, t)

∂y
x̂. (4)
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De plus comme le champ magnétique ne dépend que de y, on obtient pour l’équation 1

∂B⃗(y, t)

∂t
= ωB(y, t)x̂+ ωy

∂B(y, t)

∂y
x̂+

η

µ0

∂2B(y, t)

∂y2
x̂. (5)

On peut alors projeter cette équation dans la direction x̂ et on trouve l’expression de la donnée

∂B

∂t
= ωB + ωy

∂B

∂y
+

η

µ0

∂2B

∂y2
. (6)

Figure 1 – Évolution temporelle de l’amplitude du champ magnétique du aux effets dynamo puis à
la dissipation Ohmique.

b) On utilise ici l’ansatz dans l’équation 6

cos(k(t)y)
∂B̂(t)

∂t
−B̂(t)y sin(k(t)y)

∂k(t)

∂t
= ωB̂(t) cos(k(t)y)−ωy sin(k(t)y)k(t)B̂(t)− η

µ0
B̂(t)k2(t) cos(k(t)y).

(7)
Pour que cette équation soit vérifiée quel que soit y et quel que soit t, il faut que les termes propor-
tionnels à cos(k(t)y) s’annulent entre eux. De même pour les termes proportionnels à sin(k(t)y). Ces
termes sont linéairement indépendants, et on peut donc séparer cette équation entre les termes en
sinus et les termes en cosinus.
Prenons d’abord les termes en sinus :

B̂(t)y sin(k(t)y)
∂k(t)

∂t
= ωB̂(t)y sin(k(t)y)k(t), (8)

ce qui donne
∂k(t)

∂t
= ωk(t). (9)

La solution de cette équation différentielle en appliquant les conditions initiales devient

k(t) = k0 exp(ωt). (10)

On considère ensuite les termes en cos(k(t)y) de l’équation 7 en utilisant la solution pour k(t)

∂B̂(t)

∂t
= ωB̂(t)− η

µ0
B̂(t)k20 exp(2ωt). (11)
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En appliquant les conditions initiales la solution de cette équation est

B̂(t) = B0 exp

(
ωt− k20η

2ωµ0
(exp(2ωt)− 1)

)
. (12)

L’amplitude du champ magnétique va donc avoir une croissance exponentielle jusqu’à atteindre un
maximum, puis va décroître à cause de la dissipation Ohmique pour devenir nul. Ce comportement
est représenté à la figure 1. De plus, à cause de la dépendance temporelle de k, les lignes de champ
magnétique vont se comprimer comme représenté à la figure 2.

Figure 2 – Evolution de l’amplitude du champ magnétique entre le temps initial et un temps t
positif.

c) Le champ magnétique est maximum au temps t∗ quand

∂B̂

∂t

∣∣∣∣∣
t=t∗

= 0. (13)

Ceci peut être calculé à partir de l’équation 11

ω − η

µ0
k20 exp(2ωt

∗) = 0, (14)

ce qui donne

t∗ =
1

2ω
log

(
ωµ0

ηk20

)
(15)

Exercice 2

On considère deux éléments infinitésimaux de plasma
positionnés sur la même ligne de champ magnétique
dans le cadre de la MHD idéale. Si la distance entre
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ces deux éléments est ∆⃗l, initialement le long de la
ligne de champ magnétique, montrez que

d

dt

(
∆⃗l× B⃗

)
= 0 (16)

avec d
dt la dérivée totale. Aidez-vous pour cela du des-

sin ci-contre et de la relation

u⃗(x⃗+ ∆⃗l) ≃ u⃗(x⃗) + (∆⃗l ·∇)u⃗.

Corrigé

On commence par développer la dérivée temporelle 16

d

dt

(
∆⃗l× B⃗

)
= ∆⃗l× d

dt
B⃗ −B × d

dt
∆⃗l. (17)

La dérivée temporelle du champ magnétique peut se calculer en appliquant Faraday

∂B⃗

∂t
= −∇× E⃗ (18)

et la loi d’Ohm
E⃗ = −u⃗× B⃗ (19)

pour donner

∂

∂t
B⃗ = ∇×

(
u⃗× B⃗

)
= u⃗(∇ · B⃗)︸ ︷︷ ︸

=0

−B⃗(∇ · u⃗) + (B⃗ ·∇)u⃗− (u⃗ ·∇)B⃗. (20)

Où on a appliqué une identité du rotationnel d’un produit vectoriel (voir NRL). On peut compléter
cette dérivée partielle pour obtenir la dérivée totale du champ magnétique en suivant le mouvement
du plasma

dB⃗

dt
=

∂B⃗

∂t
+ (u⃗ ·∇)B⃗

= −B⃗(∇ · u⃗) + (B⃗ ·∇)u⃗− (u⃗ ·∇)B⃗ + (u⃗ ·∇)B⃗

= (B⃗ ·∇)u⃗− B⃗(∇ · u⃗).

(21)

Pour calculer la dérivée temporelle de ∆⃗l, on utilise le dessin de la donnée en remarquant que

u⃗(x⃗)dt+ ∆⃗l + d(∆⃗l) = ∆⃗l + u⃗(x⃗+ ∆⃗l)dt. (22)

En utilisant de plus l’indication, on trouve

u⃗(x⃗)dt+ d(∆⃗l) = [u⃗(x⃗) + (∆⃗l ·∇)u⃗]dt, (23)

ce qui donne
d

dt
∆⃗l = (∆⃗l ·∇)u⃗. (24)

On peut finalement combiner les deux dérivées temporelles totales dans l’équation 17

d

dt

(
∆⃗l× B⃗

)
= ∆⃗l× [(B⃗ ·∇)u⃗− B⃗(∇ · u⃗)]− B⃗ × [(∆⃗l ·∇)u⃗], (25)
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et en utilisant le fait que ∆⃗l ∥ B⃗, c’est à dire ∆⃗l = αB⃗, on trouve

d

dt

(
∆⃗l× B⃗

)
= ∆⃗l× [−B⃗(∇ · u⃗)︸ ︷︷ ︸

=0

+(B⃗ ·∇)u⃗]− B⃗ × [(∆⃗l ·∇)u⃗]

= αB⃗ × [(B⃗ ·∇)u⃗]− B⃗ × [(αB⃗ ·∇)u⃗]

= αB⃗ × [(B⃗ ·∇)u⃗]− αB⃗ × [(B⃗ ·∇)u⃗]

= 0

(26)
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