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Corrigé des exercices - Série 8

Exercice 1

Montrez que dans le modèle à deux fluides, les équations de Maxwell ∇ · E⃗ = ρel/ϵ0 et ∇ · B⃗ = 0
sont automatiquement satisfaites si elles le sont à t = 0. Ici ρel est la densité de charge électrique.

Corrigé

Divergence du champ électrique

On applique la dérivée temporelle :

∂

∂t
∇ · E⃗ = ∇ ·

(
∂

∂t
E⃗

)
. (1)

On utilise ensuite la loi d’Ampère :

∇ ·
(

∂

∂t
E⃗

)
= ∇ ·

(
−c2µ0j⃗ + c2∇× B⃗

)
= − 1

ϵ0
∇ · j⃗. (2)

Car par propriété de la divergence du rotationel le deuxième terme est nul. On utilise ensuite l’équation
de continuité pour les ions et les électrons. En multipliant chacune de ces équations par la charge et
en les ajoutant, on obtient :

∂

∂t

∑
α

qαnα +∇ ·
(∑

α

qαnαu⃗

)
=

∂

∂t
ρel +∇ · j⃗ = 0 (3)

et donc

1

ϵ0

∂

∂t
ρel = − 1

ϵ0
∇ · j⃗ = ∂

∂t
∇ · E⃗. (4)

Finalement :

∂

∂t
∇ · E⃗ =

1

ϵ0

∂

∂t
ρel. (5)

Ainsi si ∇ · E⃗ = ρel/ϵ0 au temps initial alors ∇ · E⃗ = ρel/ϵ0 à n’importe quel temps.

Divergence du champ magnétique

On commence par appliquer la dérivée temporelle.

∂

∂t
∇ · B⃗ = ∇ ·

(
∂

∂t
B⃗

)
. (6)

On utilise ensuite la loi de Faraday :

∇ ·
(

∂

∂t
B⃗

)
= ∇ ·

(
−∇× E⃗

)
. (7)
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Par propriété de la divergence du rotationnel :

∂

∂t
∇ · B⃗ = −∇ ·

(
∇× E⃗

)
= 0. (8)

Ainsi si ∇ · B⃗ = 0 au temps initial alors ∇ · B⃗ = 0 à n’importe quel temps.

Exercice 2

Dans le modèle de la MHD, l’expression de l’énergie totale du plasma EMHD peut s’écrire
comme

EMHD =

∫
V

(
1

2
ρu2 +

p

γ − 1
+

B2

2µ0

)
dV. (9)

où V est le volume total du plasma. On peut identifier le premier terme comme l’énergie ciné-
tique, le deuxième comme l’énergie thermique et le troisième comme l’énergie magnétique du
plasma.

On cherche à montrer que cette énergie est conservée au cours du temps dans la limite de la
MHD idéale (η = 0) et en supposant que le bord du plasma est un conducteur parfait, c’est
dire B⃗ · n⃗ = 0 et E⃗ × n⃗ = 0 au bord du plasma, avec n⃗ le vecteur normal à ce bord.

a) En utilisant l’équation de Newton, montrez que :

∂

∂t

(
1

2
ρu2

)
=

1

2
u2∂ρ

∂t
+
(⃗
j × B⃗

)
· u⃗− u⃗ ·∇p− 1

2
ρ (u⃗ ·∇)u2. (10)

b) En partant de l’équation d’état, montrez que :

1

γ − 1

∂p

∂t
= u⃗ ·∇p− γ

γ − 1
∇ · (pu⃗). (11)

c) Montrez que :
∂

∂t

(
B2

2

)
= −µ0

(⃗
j × B⃗

)
· u⃗−∇ ·

(
E⃗ × B⃗

)
, (12)

en partant du terme de force de Lorentz magnétique (premier terme à droite de l’équation) et
en utilisant la loi d’Ampère, d’Ohm et de Faraday.

d) Combinez les expressions obtenues en a), b) et c) pour obtenir une équation de continuité
pour l’énergie du plasma, et montrez que cette quantité est conservée au cours du temps.

Corrigé

On considère la dérivée temporelle de chaque terme un à un.
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a) Energie cinétique

On commence avec la dérivée temporelle de l’énergie cinétique. Pour cela on multiplie l’équa-
tion de Newton par u⃗

ρ
du⃗

dt
· u⃗ =

(⃗
j × B⃗

)
· u⃗− u⃗ ·∇p. (13)

On utilise les propriétés de la dérivée temporelle totale et de la dérivée de produits de fonctions

∂

∂t

(
1

2
ρu2

)
=

1

2
u2∂ρ

∂t
+ ρu⃗ · ∂u⃗

∂t
=

1

2
u2∂ρ

∂t
+ ρu⃗ · du⃗

dt
− 1

2
ρ (u⃗ ·∇)u2. (14)

Ceci donne en remplaçant l’équation 13 dans 14

∂

∂t

(
1

2
ρu2

)
=

1

2
u2∂ρ

∂t
+
(⃗
j × B⃗

)
· u⃗− u⃗ ·∇p− 1

2
ρ (u⃗ ·∇)u2. (15)

b) Energie thermique

Pour ce terme on part de l’équation d’état :

d

dt

(
p

ργ

)
= −pγρ−γ−1dρ

dt
+ ρ−γ ∂p

∂t
+ ρ−γu⃗ ·∇p = 0. (16)

Ce qui donne en développant la dérivée temporelle totale et en utilisant l’équation de continuité

u⃗ ·∇p− pγρ−1dρ

dt
+

∂p

∂t
= u⃗ ·∇p− pγρ−1(−∇ · (ρu⃗) + u⃗ ·∇ρ) +

∂p

∂t

= u⃗ ·∇p+ pγ∇ · u⃗+
∂p

∂t

= u⃗ ·∇p+ γ(∇ · (pu⃗)− u⃗ ·∇p) +
∂p

∂t
= 0

(17)

Donc
1

γ − 1

∂p

∂t
= u⃗ ·∇p− γ

γ − 1
∇ · (pu⃗). (18)

c) Energie magnétique

On part ici du terme de force de Lorentz magnétique obtenu à l’équation 15 et on utilise
Ampère puis une identité de produits vectoriels :

µ0

(⃗
j × B⃗

)
· u⃗ =

[(
∇× B⃗

)
× B⃗

]
· u⃗ =

(
B⃗ × u⃗

)
·
(
∇× B⃗

)
. (19)

On utilise ensuite la loi d’Ohm puis encore une identité vectorielle :

µ0

(⃗
j × B⃗

)
· u⃗ =E⃗ ·

(
∇× B⃗

)
=B⃗ · (∇× E⃗)−∇ ·

(
E⃗ × B⃗

) (20)

On applique Faraday

µ0

(⃗
j × B⃗

)
· u⃗ =− B⃗ · ∂B⃗

∂t
−∇ ·

(
E⃗ × B⃗

)
=− ∂

∂t

(
B2

2

)
−∇ ·

(
E⃗ × B⃗

)
.

(21)
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Au final :
∂

∂t

(
B2

2

)
= −µ0

(⃗
j × B⃗

)
· u⃗−∇ ·

(
E⃗ × B⃗

)
(22)

d) Combinaison des termes

On combine les trois termes obtenu précédemment :

∂

∂t

(
1

2
ρu2

)
+

1

γ − 1

∂p

∂t
+

∂

∂t

(
B2

2µ0

)
=
1

2
u2∂ρ

∂t
+�������
(⃗
j × B⃗

)
· u⃗−����u⃗ ·∇p− 1

2
ρ (u⃗ ·∇)u2

+����u⃗ ·∇p− γ

γ − 1
∇ · (pu⃗)

−�������
(⃗
j × B⃗

)
· u⃗− 1

µ0

∇ ·
(
E⃗ × B⃗

)
.

(23)

On utilise ensuite l’équation de continuité de masse

∂ρ

∂t
+∇ · (ρu⃗) = 0 (24)

pour obtenir une expression de ∂ρ
∂t

:

∂ρ

∂t
= −∇ · (ρu⃗) . (25)

On peut aussi identifier à partir des termes dépendant de ρ une divergence de produit :

∇ ·
(
ρ
u2

2
u⃗

)
=

1

2
u2∇ · (ρu⃗) + 1

2
ρu⃗ ·∇u2. (26)

On remplace dans l’équation 23 les expressions des dérivées temporelles de la densité de masse
et l’équation 26

∂

∂t

(
1

2
ρu2

)
+

1

γ − 1

∂p

∂t
+

∂

∂t

(
B2

2µ0

)
= −∇ ·

(
ρ
u2

2
u⃗

)
− γ

γ − 1
∇ · (pu⃗)− 1

µ0

∇ ·
(
E⃗ × B⃗

)
.

(27)

On peut finalement prendre l’intégrale volumique de chaque côté de l’égalité, utiliser le théo-
rème de la divergence et appliquer les conditions aux bords :

∂

∂t

∫
V

[
1

2
ρu2 +

p

γ − 1
+

B2

2µ0

]
dV =

∫
S

[
−
(
ρ
u2

2
u⃗ · n⃗

)
− γpu⃗ · n⃗

γ − 1
− 1

µ0

(E⃗ × B⃗) · n⃗
]
dS = 0.

(28)

où la deuxième intégrale est nulle car le bord du plasma est un conducteur parfait, et donc
B⃗ · n⃗ = 0 et E⃗ × n⃗ = 0, ce qui implique que (E⃗ × B⃗) · n⃗ = 0 et, par la loi d’Ohm idéale,
u⃗ · n⃗ = 0. On vient de prouver que ∂

∂t
EMHD = 0.

4


