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Semestre Printemps 2023 Guillaume Le Bars

Corrigé des exercices - Série 5

Exercice 1

Cet exercice est en lien avec 'application COMSOL disponible a ’adresse suivante :
http://sbcomsol.epfl.ch:2036 /app/magnetic bottle app vbHb mph.

On considére une particule chargée dans un mirroir magnétique produit par deux bobines circulaires
C4 et Cy de rayon R, = 0.05 m, disposées de maniére paralléle et séparées d’'une distance L = 0.2 m.
Les bobines ont N = 100 tours et sont traversées par un courant I = 100 A. Sur l'axe z passant par
le centre des bobines, on libére un proton de masse m = 1.67 - 10~2"kg de maniére équidistante aux
deux bobines, avec une énergie Ey = 5 €V et un rapport de vitesse v |/|v] = a.

a) Calculez le rapport miroir R,, de cette configuration en utilisant ’expression du champ magné-
tique a l'axe, généré par une bobine idéale.
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b) Calculez le rapport de vitesse critique minimum a l’axe a, pour lequel une particule chargée est
piégée.

c¢) Utilisez ’application pour tracer la trajectoire de trois protons de rapport vitesse initial a; = 0.3,
as = 0.43 et ag = 0.9.

d) Utilisez 'application pour tracer la trajectoire d’un proton avec Ey = 1 eV et a = 0.9. Expliquez
qualitativement la raison de la dérive azimutale de la particule générée initialement loin de I’axe.

Corrigé

a) Le champ magnétique généré a I’axe par les deux bobines est :
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Le champ magnétique est maximum en z = 21 et z = 29
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et est minimum en z =0
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Le rapport miroir & I’axe est donc
B
R, = BZ’““"X = 5.67 (5)
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b) Le rapport critique est défini comme :
Qe = =0.42 (6)
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http://sbcomsol.epfl.ch:2036/app/magnetic_bottle_app_v5b_mph

c) (Voir les résultats de Papplication) On peut observer que la particule 1 n’est pas confinée. La
particule 2 est piégée et ses points de rebroussement sont proche des bobines. La particule 3 est aussi
piégée mais I'amplitude des oscillations axialles sont beaucoup plus faibles.

d) Comme le champ magnétique B= B, (r,z)é, + B,(r, z)é, est non uniforme radialement et axiale-
ment, les particules subissent une dérive due au gradient de champ magnétique 75 o« VB X B qui est
dirigée selon 6.

Exercice 2

En coordonnées sphériques, le champ magnétique terrestre peut étre approximé par celui d’un dipole :
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B, (r,0) = —2 TSRT sin(0)
T
BrR3,
By (r,0) = —5— cos(0)
T

Nord magnétique

ot Ry et Br sont le rayon terrestre (Rp = 6.5 x 105 m) et le champ magnétique & la surface de la
terre Ry (Br = 0.32 x 107* T). Notez que # n’est pas I’angle polaire usuel ' mais § = T —0 (0 est
la latitude magnétique, voir figure ci-dessous).

a) Calculez B = |B| et VB en fonction de r et ¢/

Indication : En coordonnées sphériques (r,60’, ¢), le gradient est donné par :
= . Of. 10f . 1 of.
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b) Les ions piégés dans le champ magnétique terrestre sont des protons dont ’énergie peut atteindre
1 MeV. Montrer que pour ces protons la condition d’adiabaticité :
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est vérifiée et donc qu’elle 'est & fortiori pour les électrons de méme énergie.
Les particules piégées dans le champ magnétique terrestre suivent trois mouvements périodiques.

Discutez qualitativement de leur nature et de leur origine.

Calculez la vitesse de dérive vy g due & I'inhomogénéité de B. Estimez sa valeur et sa direction
pour un proton a ’équateur sur une ligne de champ telle que 7(6 = 0) = Ry = 4Rr. Une ligne de
—
champ (c’est-a-dire une ligne qui en tout point est tangente & B) est donnée par r = R cos?(6),
ot Ry est la valeur de r a I'équateur (6 = 0). On considére v = v et une énergie de 1 keV.
Pour des électrons et des protons de 1 keV sur les lignes de champ magnétiques définies par
Ry = 4Ry, estimez les quantités suivantes :
1. la période cyclotronique;
Ry

2. le temps mis pour en allez-retour pour les particules piégées ~ ek

3. le temps mis pour dériver autour de la terre.

On supposera que a 'équateur v ~ vy ~ vgp.

Corrigé

a) On applique d’abord le changement de coordonnées pour passer de 6 & 6 et retrouver les coordon-
nées sphériques usuelles
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Le champ magnétique,
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On calcule ensuite les grandeurs demandées en utilisant les définitions :

3
B(r,0') = /B2 + B2, = Br <RT) 1+ 3cos?(¢) (10)
T

— 0B

B 3
(¥ B), 3Pl

or rd

1+ 3cos?(¢) (11)

10B _3BTR% cos(#') sin(6")

H
V By =
( Jo r 00’ rd 1+ 3cos?(0)

On remarque que le gradient dans la direction radiale est dominant pour ce champ magnétique.

b) On calcule en premier le terme du au gradient de B :
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On cherche le pire cas, c’est a dire quand V B est maximum ce qui est vrai pour # = 0 et r = Ryp.
Dans ce cas on trouve :
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Ceci implique directement pr, ‘%‘ ~ ]’%—ff < 1. On calcule ensuite le rayon de Larmor
vm; vm;
PL eB 2€BT m ( )

et on suppose que la vitesse paralléle est nulle pour considérer le pire cas. On trouve finalement
I’expression du critére d’adiabaticité :
_>
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En passant aux valeurs numériques, on obtient
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ce qui vérifie largement la condition d’adiabaticité.

c) On peut décomposer la trajectoire de la particule en trois mouvements quasi-périodiques distincts,
auxquels correspondent trois périodes :

1. Le mouvement cyclotronique lié a la rotation de la particule autour des lignes de champ
2. Le mouvement d’aller-retour dans le miroir entre les poles magnétiques

3. Un mouvement de dérive autour de la terre, dt a la courbure du champ

Comme nous 'avons vu précédemment la principale composante du gradient de la norme du champ
est radiale, ce qui fait que la dérive de courbure est azimuthale. Une troisiéme période est associée a
cette révolution. La dérive associée a la force de gravitation est également azimuthale, mais elle est
négligeable.

d) La vitesse de dérive vy p dans un champ magnétique inhomogeéne est :
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FIGURE 1 — Mouvement d’une particule piégée.
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On rappelle ici que py, est le moment magnétique :
2
P, = % = W;UBJ‘ = const (24)
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La seule composante non-nulle de B x(V B?) est selon &.
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Exprimée le long d’une ligne de champ r = Rysin?(¢'), la vitesse de dérive est alors donnée par :
3 sin(¢)[1 26
5>VB (RO7 ‘9/) _ _M_m_Sln( )[ -+ cos ( )] é¢ (26)
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On constate que c’est en général lorsque les particules sont proches de la terre qu’elles ont la plus
grande dérive angulaire. Pour le cas de la donnée, la valeur numérique de la vitesse de dérive est :

vyp(4Ryp,m/2) =~ 115m/s (27)

e) En partant des formules dérivées dans cet exercice, on peut donner une estimation des différentes
échelles de temps qui décrivent le mouvement d’une particule :

1. Période cyclotronique Ty = g)—t

27 Ro

2. Période d’un aller-retour dans le miroir magnétique 17 ~ o

3. Période de dérive autour de la terre Ty ~ %
Pour cela, on suppose que les particules on une énergie de 1 keV, qu’elles sont sur la ligne de champ
Ry = 4Ry et qu’a I'équateur v; ~ v.



Electrons (1 keV) Protons (1 keV)

Bmin BT / 64 BT / 64
Brnaa Bry/4-3 Bryfa-3
Période cyclotronique Tp 6 x 1077(s) 1.1 x 1073(s)
v (1 keV) 1.9 x 107(m/s) 4.4 x 10°(m/s)
vy 1.3 x 107(m/s) 3.1 x 10°(m/s)
VY B 115(m/s) 115(m/s)
Ty 12 (s) 530 (s)
15 400 (heures) 400 (heures)

Dans le tableau ci-dessus, T7 représente le temps d’un aller-retour dans le miroir magnétique et 15
le temps de dérive autour de la terre. Les échelles de temps sont effectivement trés différentes. Notez
bien que les temps ci-dessus ne représentent que des estimations grossiéres. Elles servent cependant
a bien différencier les trois échelles de temps qui gouvernent le mouvement des particules autour de
la terre. Pour plus de détails :

“Physics of Solar System Plasmas”, Thomas E. Cravens, Cambridge University Press, Atmospheric
and Space Science Series (1998), p.64



