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Exercice 1

La relation de dispersion d’une onde électromagnétique transverse dans un plasma

ω2 = ω2
pe + k2c2, (1)

nous indique que pour une fréquence ω donnée, le vecteur d’onde dans le plasma dépend de la fréquence
plasma ωpe et donc de sa densité. Cette propriété peut être utilisée pour mesurer la densité d’un plasma
de laboratoire en faisant de l’interférométrie. Ce procédé est illustré dans le schéma ci-dessous.

Exemple de montage expérimental utilisé pour mesurer la densité de plasma par interférométrie.

En effet en mesurant le déphasage entre une onde traversant une longueur L de plasma et une onde
de référence il est possible de calculer la densité de ce plasma. Pour comprendre ce résultat, calculez :

a) le vecteur d’onde k en fonction de la fréquence de l’onde ω et de la densité électronique du
plasma n0,

b) le déphasage ∆Φ entre l’onde traversant une longueur L de plasma et l’onde traversant une
longueur L de vide en fonction de L et n0.

Dans ce calcul, l’effet des ions a été négligé car ils apportent une faible correction.
c) Montrez que les ions ajoutent une contribution ω2

pi à la relation de dispersion, et que cette
contribution peut être négligée. Pour cela linéarisez les équations du modèle à deux fluides (sans
collision) pour une onde électromagnétique transverse (k⃗ · E⃗ = 0) en conservant la contribution
ionique.

Corrigé

a) Le vecteur d’onde k peut-être obtenu directement de la relation de dispersion :

k =
1

c

√
ω2 − ω2

pe =
1

c

√
ω2 − e2n0

ϵ0me
(2)
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b) Le déphasage devient alors

∆Φ = kplasma(ω)L− kvideL = kplasma(ω)L− ωL

c
=

L

c

√
ω2 − e2n0

ϵ0me
− ω

 (3)

c) Pour prendre en compte les ions, on part des équations pour le modèle à deux fluides, en conservant
la contribution ionique et en négligeant les effets de pression. On suppose ici un plasma d’hydrogème
(Z = 1).

∂nl

∂t
+∇ · (nlu⃗l) = 0, (4)

nlml

[
∂u⃗l
∂t

+ (u⃗l ·∇)u⃗l

]
= nlql(E⃗ + u⃗l × B⃗), (5)

∇× E⃗ = −∂B⃗

∂t
, (6)

∇× B⃗ = µ0j⃗ +
1

c2
∂E⃗

∂t
. (7)

Avec l = i, e représentant respectivement les ions et les électrons.
On linéarise les équations autour d’un équilibre avec une perturbation telle que :

ne = ne,0 + ne,1 (8)
ni = ni,0 + ni,1 (9)
u⃗e = 0⃗ + u⃗e,1 (10)
u⃗i = 0⃗ + u⃗i,1 (11)

E⃗ = 0⃗ + E⃗1 (12)
B⃗ = 0⃗ + B⃗1 (13)

On peut ainsi réécrire les équations fluides comme suit :

∂ne,1

∂t
+ ne,0∇ · u⃗e,1 = 0, (14)

∂ni,1

∂t
+ ni,0∇ · u⃗i,1 = 0, (15)

ne,0me
∂u⃗e,1
∂t

= −ene,0E⃗1, (16)

ni,0mi
∂u⃗i,1
∂t

= eni,0E⃗1, (17)

∇× E⃗1 = −∂B⃗1

∂t
, (18)

∇× B⃗1 = µ0e (ni,0u⃗i,1 − ne,0u⃗e,1) +
1

c2
∂E⃗1

∂t
. (19)

2



En passant dans l’espace de Fourier ces équations deviennent :

−iωne,1 + ne,0ik⃗ · u⃗e,1 = 0, (20)

−iωni,1 + ni,0ik⃗ · u⃗i,1 = 0, (21)

−iωne,0meu⃗e,1 = −ene,0E⃗1, (22)

−iωni,0miu⃗i,1 = eni,0E⃗1, (23)

ik⃗ × E⃗1 = iωB⃗1, (24)

ik⃗ × B⃗1 = µ0e (ni,0u⃗i,1 − ne,0u⃗e,1)− iω
1

c2
E⃗1. (25)

Comme l’onde est transverse, k⃗ · E⃗1 = 0, par l’équation des forces k⃗ · u⃗l,1 = 0, et par l’équation de
continuité nl,1 = 0. Le set d’équations se réduit alors à :

u⃗e,1 = −i
e

meω
E⃗1, (26)

u⃗i,1 = i
e

miω
E⃗1, (27)

ik⃗ × E⃗1 = iωB⃗1, (28)

ik⃗ × B⃗1 = µ0e (ni,0u⃗i,1 − ne,0u⃗e,1)− iω
1

c2
E⃗1. (29)

On multiplie alors vectoriellement la loi de Faraday par ik⃗, et on remplace l’expression des vitesses
ioniques et électroniques dans la loi d’Ampère.

k⃗ × (k⃗ × E⃗1) = k⃗ × (ωB⃗1)

= ω(k⃗ × B⃗1)

= ω

(
−iµ0e

(
i
eni,0

miω
E⃗1 + i

ene,0

meω
E⃗1

)
− ω

1

c2
E⃗1

)
=

(
µ0e

2ni,0

mi
E⃗1 +

µ0e
2ne,0

me
E⃗1

)
− ω2

c2
E⃗1

(30)

Le membre de gauche peut se réécrire en utilisant une identité vectorielle

k⃗ × (k⃗ × E⃗1) = (k⃗ · E⃗1)k⃗ − k2E⃗1. (31)

On passe tous les termes à gauche de l’égalité et on factorise finalement par E⃗1(
ω2 − ω2

pi − ω2
pe − k2c2

)
E⃗1 = 0, (32)

avec ω2
pe =

e2ne,0

ϵ0me
et ω2

pi =
e2ni,0

ϵ0mi
. La condition d’existence d’une onde impose finalement la relation

de dispersion
ω2 = ω2

pi + ω2
pe + k2c2. (33)

Du fait du rapport des masses entre électrons et ions, nous avons ω2
pi/ω

2
pe = me/mi ≪ 1. La contri-

bution ionique n’apporte donc qu’une faible correction ce qui justifie de considérer uniquement les
électrons dans la dérivation du cours.

Exercice 2 : Facultatif

Un pulsar émet un large spectre de radiation électromagnétique que l’on détecte depuis la Terre. La
dispersion en vitesse de groupe causée par le plasma interstellaire fait que chaque impulsion d’onde
EM détectée a un glissement en fréquence df/dt, où f est la fréquence mesurée au temps t.
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a) En supposant ω2 ≫ ω2
pe et en négligeant le champ magnétique dans l’espace interstellaire,

calculer le temps que mets une impulsion à atteindre la terre en fonction de sa fréquence t(ω).
b) Montrer que :

df

dt
≈ − c

L

f3

f2
pe

(34)

où fpe =
ωpe

2π et L est la distance entre le pulsar et la terre.
On suppose que le pulsar est détecté sur Terre par une antenne accordée autour de 80MHz. Le
glissement en fréquence mesuré dans la bande passante vaut df/dt = −5 MHz/s. Comme cette
valeur est négative, cela veut dire que les hautes fréquences arriveront plus vite sur terre que
les basses fréquences.

c) En supposant la densité moyenne de l’espace interstellaire ne0 = 2 · 106 m−3, à quelle distance
se trouve le pulsar ?
(Exprimer la distance en parsec : 1 parsec = 3 · 1016 m)

Corrigé

Figure 1 – Un pulsar est une étoile à neutron fortement magnétisée et dont l’axe magnétique ne
correspond pas à l’axe de rotation. C’est de cela que viennent ces émissions pulsées.

a) Une schéma du problème est illustré dans la Figure 1. L’espace interstellaire peut être modélisé
par un plasma de faible densité où l’onde électromagnétique a une relation de dispersion du type :

ω(k) = (ω2
pe + k2c2)1/2 (35)

et une vitesse de groupe égale à :

vg =
∂ω

∂k
= c

[
1−

ω2
pe

ω2

]1/2

(36)

Une impulsion émise par un pulsar à distance L de la terre arrive après un temps :

t(ω) =
L

vg(ω)
=

L

c
(
1− ω2

pe

ω2

)1/2
≈ L

c

1

2

[
1 +

ω2
pe

ω2

]
(37)

si ω ≫ ωpe. En inversant cette équation, ω(t), on remarque que les fréquences les plus basses seront
retardées par rapport aux fréquences élevées. Ceci est illustré dans la figure 2.
b) À partir de l’équation 37, on obtient le glissement en fréquence :

df

dt
=

1

2π

(
dt

dω

)−1

≈ − c

L

f3

f2
pe

(38)
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Figure 2 – Représentation qualitative du spectre émis par le pulsar (T=0) et reçu par l’observateur
à T = t+ t0. On voit bien que comme le signal est dispersif, on ne reçoit pas les différentes fréquences
d’un même signal au même moment.

Le décalage temporel du signal mesuré avec deux filtres passe-bande différents est montré dans les
figures 3 et 4.

c) Si on suppose la densité moyenne de l’espace interstellaire ne = 2 · 106m−3, on obtient :

L ≈ 1.9 · 1017m ≈ 6 parsec ≈ 20 années lumières (39)
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Figure 3 – Exemple de réception du signal émis par un pulsar où l’on peut observer la variation de
la fréquence selon le temps.

Figure 4 – Exemple d’enregistement d’émissions pulsées du pulsar CP 0328 au fréquences de 151 et
408 MHz.
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