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Corrigé des exercices - Série 12

Exercice 1

Dans la MHD, prouver que la force de Lorentz peut s’écrire comme :

j⃗ × B⃗ = −∇⃗⊥

(
B2

2µ0

)
+

B2

µ0
κ⃗ (1)

avec ∇⃗⊥ = ∇⃗ − ∇⃗∥, ∇⃗∥ = b⃗(⃗b · ∇⃗) le gradient orthogonal au champ, le vecteur unitaire b⃗ = B⃗
B et la

courbure magnétique κ⃗ = (⃗b · ∇⃗)⃗b.

Corrigé

On remarque que :

j⃗ × B⃗ = − 1

µ0
(∇⃗ × B⃗)× B⃗

= −∇⃗
(
B2

2µ0

)
+

1

µ0
(B⃗ · ∇⃗)B⃗

(2)

En utilisant la définition du vecteur unitaire b⃗ et de la courbure de champ κ⃗, le deuxième terme peut
se réécrire :

(B⃗ · ∇⃗)B⃗ = B(⃗b · ∇⃗)Bb⃗ = B2 (⃗b · ∇⃗)⃗b︸ ︷︷ ︸
κ⃗

− b⃗(⃗b · ∇⃗)︸ ︷︷ ︸
∇⃗∥

B2

2
(3)

Ce qui donne finalement :

j⃗ × B⃗ = −∇⃗⊥

(
B2

2µ0

)
+

B2

µ0
κ⃗ (4)

Nous avons ainsi exprimé la force de Lorentz comme la somme d’un gradient de la pression magnétique
et d’une force de tension due à la courbure de champ.

Exercice 2

Dans le cadre de la MHD idéale, on considère un plasma à l’équi-
libre de densité

ρ0(x) =

{
ρtop si x ≤ 0

ρbot si x > 0,

plongé dans un champ magnétique constant B⃗0 = Bz ẑ + Byŷ,
et soumis au champ gravitationel terrestre d’accélération g⃗ = gx̂
(dans un tore, la courbure κ⃗ ferait office de champ g⃗, sachant que
la gravitation y est négligeable). On suppose de plus que dans
cette configuration, il existe un équilibre statique (u⃗0 = 0).
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On étudie alors la stabilité de ce plasma par rapport à une perturbation imposée par un vecteur
déplacement de la forme

ξ⃗ = ξx(x) exp(iky − iωt)x̂+ ξy(x) exp(iky − iωt)ŷ.

En considérant des modes incompressibles, ∇ · ξ⃗ = 0,

1. écrivez l’équation de continuité, du mouvement et d’Ohm-Faraday linéarisées, ainsi que l’équa-
tion d’incompressibilité ∇ · ξ⃗ = 0, qui forment un système complet,

2. exprimez les quantités perturbées B⃗1, j⃗1 et ρ1 en fonction de ξ⃗,

3. en projetant puis en intégrant l’équation du mouvement linéarisée selon ŷ, trouver une expression
à l’ordre 1 de la perturbation en pression, p1. On imposera pour cela ⟨p1⟩y,t=0 = 0.

4. en projetant l’équation du mouvement linéarisée selon x̂, réduisez le système d’équations à une
équation différentielle pour ξ ≡ ξx(x),

5. trouvez la solution pour ξ(x) pour x < 0 et x > 0 en supposant que ξ est continu et que
lim|x|→∞ ξ = 0.

6. en intégrant l’équation différentielle dans R, trouvez la relation de dispersion :

ω2 = gk
ρbot − ρtop
ρbot + ρtop

+
2

µ0

k2B2
y

ρtop + ρbot
. (5)

Montrez que B⃗ a un effet stabilisant quand la perturbation déforme les lignes de B⃗, et que si
k⃗ · B⃗ = 0, et ρbot < ρtop, alors on a toujours instabilité. Cette instabilité est l’instabilité de
Rayleigh-Taylor.

Corrigé

1.

L’équation de continuité linéarisée s’obtient en faisant le développement à l’ordre 1

∂ρ0 + ρ1
∂t

+∇ · [u⃗1(ρ0 + ρ1)] =
∂ρ1
∂t

+∇ · (u⃗1ρ0)

=
∂ρ1
∂t

+
∂ξ⃗

∂t
·∇ρ0 + ρ0∇ · ∂ξ⃗

∂t

=
∂ρ1
∂t

+
∂ξ⃗

∂t
·∇ρ0 = 0.

(6)

Comme {ρ1, ξ} ∼ exp(iky − iωt), on peut éliminer la dérivée temporelle :

ρ1 + ξ⃗ ·∇ρ0 = 0. (7)

L’équation du mouvement linéarisée s’obtient de la même manière :

(ρ0 + ρ1)
∂u⃗1
∂t

= −∇(p0 + p1) + j⃗1 × (B⃗0 + B⃗1) + (ρ0 + ρ1)g⃗, (8)

et en supprimant les termes d’ordre 0 et d’ordre 2 et ils nous reste les termes d’ordre 1 :

ρ0
∂2ξ⃗

∂t2
= −∇(p1) + j⃗1 × (B⃗0) + (ρ1)g⃗. (9)
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L’équation d’Ohm-Faraday linéarisée s’écrit quant à elle :

B⃗1 =∇×
(
ξ⃗ × B⃗0

)
=(B⃗0 ·∇)ξ⃗

(10)

L’équation d’incompressibilité nous permet finalement de lier ξx et ξy :

∇ · ξ⃗ =

[
∂ξx
∂x

+ ikξy

]
exp(iky − iωt), (11)

donc
∂ξx
∂x

= −ikξy. (12)

2.

Le champ magnétique perturbé s’obtient directement à partir de l’équation 10 :

B⃗1 =

[
ikξxByx̂− ∂ξx

∂x
Byŷ

]
exp(ikyiωt). (13)

La densité de courant perturbée se calcule ensuite en prenant le rotationel du champ magnétique
perturbé :

j⃗1 =
1

µ0
∇×

(
B⃗1

)
=

1

µ0

 0
0

−∂2ξx
∂x2 By + k2ξxBy

 exp(iky − iωt).

(14)

On en déduit ensuite :

j⃗1 × B⃗0 =
B2

y

µ0
exp(iky − iωt)(

∂2ξx
∂x2

− k2ξx)x̂. (15)

Enfin, on exprime la densité perturbée ρ1 à l’aide de l’équation de continuité linéarisée :

ρ1 = −ξ⃗ ·∇ρ0 = ξx
∂ρ0
∂x

exp(iky − iωt). (16)

3.

L’équation du mouvement linéarisée dans la direction y nous donne :

− ω2ρ0ξy exp(iky − iωt) = −∂p1
∂y

. (17)

Cette équation peut être intégrée selon y, et en utilisant ⟨p1⟩y,t=0 = 0 (constante d’intégration nulle),
on trouve l’expression

p1 =
ω2ρ0
ik

ξy exp(iky − iωt) =
ω2ρ0
k2

exp(iky − iωt)
∂ξx
∂x

. (18)
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4.

En projetant cette fois l’équation du mouvement dans la direction x, puis en réinjectant les expressions
15, 16 et 18, on trouve :[

ω2ρ0ξx −
ω2

k2
∂

∂x

(
ρ0

∂ξx
∂x

)
+

B2
y

µ0
(
∂2ξx
∂x2

− k2ξx)− gξx
∂ρ0
∂x

]
exp(iky − iωt) = 0. (19)

On peut ainsi supprimer l’exponentielle et obtenir

∂

∂x

(
ρ0

∂ξ

∂x

)
− k2ρ0ξ −

k2B2
y

µ0ω2
(
∂2ξ

∂x2
− k2ξ) + g

k2

ω2
ξ
∂ρ0
∂x

= 0. (20)

5.

Selon l’équilibre considéré : ∂ρ0
∂x

∣∣∣
x ̸=0

= 0. L’équation différentielle devient alors :

ρ0
∂2ξ

∂x2
− k2ρ0ξ −

k2B2
y

µ0ω2
(
∂2ξ

∂x2
− k2ξ) = 0, (21)

dont la solution générale a pour forme

ξ = A exp(αx) +B exp(−αx). (22)

On cherche une solution physique et continue en x = 0 ce qui impose

ξ(x) =

{
A exp(kx) si x ≤ 0,

A exp(−kx) si x > 0.
(23)

6.

Par le choix de densité d’équilibre, la dérive de la densité d’équilibre par rapport à x peut s’exprimer :
∂ρ0
∂x

= (ρbot − ρtop)δ(x). (24)

On intègre l’équation différentielle dans R∫ ∞

−∞

∂

∂x

(
ρ0

∂ξ

∂x

)
− k2ρ0ξ −

k2B2
y

µ0ω2
(
∂2ξ

∂x2
− k2ξ) + g

k2

ω2
ξ
∂ρ0
∂x

dx

=

∫ ∞

−∞
−k2ρ0ξ + k2

k2B2
y

µ0ω2
ξ + g

k2

ω2
ξ
∂ρ0
∂x

dx

=

∫ ∞

0
−k2ρbotA exp(−kx)dx+

∫ 0

−∞
−k2ρtopA exp(kx)dx+ 2

∫ ∞

0
k2

k2B2
y

µ0ω2
ξdx+ g

k2

ω2
A(ρbot − ρtop)

= −k(ρtop + ρbot)A+ 2k
k2B2

y

µ0ω2
A+ g

k2

ω2
A(ρbot − ρtop) = 0.

(25)

En réarrangeant les termes, on trouve alors la relation de dispersion

ω2 = gk
ρbot − ρtop
ρbot + ρtop

+
2

µ0

k2B2
y

ρtop + ρbot
. (26)

Cette relation de dispersion montre que, dans le cas où ρbot < ρtop, le premier terme est négatif et
donc déstabilisant. Le terme proportionnel à By est toujours positif et donc stabilisant. Ceci peut
s’expliquer intuitivement par le fait que, dans ce cas, la perturbation doit déformer les lignes de
champs magnétiques parallèles à k ce qui consomme de l’énergie. Ainsi si By est nul, et si ρbot < ρtop,
il y a toujours instabilité. Cette instabilité est appelée instabilité de "Rayleigh-Taylor".
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