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Semestre Printemps 2025 Cassandre Contré

Corrigé des exercices - Série 12

Exercice 1

Dans la MHD, prouver que la force de Lorentz peut s’écrire comme :

- o - B? B2
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et la

[s/leoi

avec V| =V — 6”, 6\\ = 5(5 : ﬁ) le gradient orthogonal au champ, le vecteur unitaire b=
b

courbure magnétique 7 = (b- V)b.

Corrigé

On remarque que :

B
=-V (BQ) + (BB ?

En utilisant la définition du vecteur unitaire b et de la courbure de champ £, le deuxiéme terme peut
se réécrire :

(B-V)B=B(b-V)Bb=B*{b-V)b—b(b-V) (3)

Ce qui donne finalement :
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Nous avons ainsi exprimé la force de Lorentz comme la somme d’un gradient de la pression magnétique
et d’une force de tension due & la courbure de champ.

Exercice 2

Dans le cadre de la MHD idéale, on considére un plasma & 1’équi-
libre de densité

Ptop six <0 y
po(x) = .
Prot stz >0, Ptop
0 R
plongé dans un champ magnétique constant By = B.Z + By, By ‘Vg
et soumis au champ gravitationel terrestre d’accélération § = g B, ot

(dans un tore, la courbure < ferait office de champ ¢, sachant que  x
la gravitation y est négligeable). On suppose de plus que dans
cette configuration, il existe un équilibre statique (@y = 0).



On étudie alors la stabilité de ce plasma par rapport a une perturbation imposée par un vecteur
déplacement de la forme

€ = & (2) exp(iky — iwt)d + &y(z) exp(iky — iwt)y.

En considérant des modes incompressibles, V - 5 =0,

1. écrivez ’équation de continuité, du mouvement et d’Ohm-Faraday linéarisées, ainsi que I’équa-
tion d’incompressibilité V : £ = 0, qui forment un systéme complet,
2. exprimez les quantités perturbées El, fl et p1 en fonction de E,

3. en projetant puis en intégrant I’équation du mouvement linéarisée selon ¢, trouver une expression
a l'ordre 1 de la perturbation en pression, p;. On imposera pour cela (p1)y =0 = 0.

4. en projetant 'équation du mouvement linéarisée selon Z, réduisez le systéme d’équations & une
équation différentielle pour £ = £, (x),
5. trouvez la solution pour {(z) pour z < 0 et z > 0 en supposant que £ est continu et que

6. en intégrant I’équation différentielle dans R, trouvez la relation de dispersion :

2 k’B?
kpbot Ptop + = Y (5)

wi=yg .
Pbot + Ptop 0 Ptop =+ Pbot

Montrez que B a un effet stabilisant quand la perturbation déforme les lignes de é, et que si
kE-B =0, et ppot < prop, alors on a toujours instabilité. Cette instabilité est l'instabilité¢ de
Rayleigh-Taylor.

Corrigé

1.

L’équation de continuité linéarisée s’obtient en faisant le développement a l'ordre 1

Opo + p1 o
— 4+ V. V-
o T [d1(po + p1)] = 8t -+ (t1p0)
_Op | O ¢
L2y V.= 6
ot + ot VPO + po BN (6)
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— +—=-Vpy=0.
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Comme {p1,{} ~ exp(iky — iwt), on peut éliminer la dérivée temporelle :
pL+E-Vpy=0. (7)
L’équation du mouvement linéarisée s’obtient de la méme maniére :
Oty S - . .
(po+ p1)—- ==V (po + p1) +j1 X (Bo + B1) + (po + p1)7, (8)

ot

et en supprimant les termes d’ordre 0 et d’ordre 2 et ils nous reste les termes d’ordre 1 :

3 - .3 B
P05 = ~V(p1) + j1 X (Bo) + (p1)7- (9)



L’équation d’Ohm-Faraday linéarisée s’écrit quant & elle :

B =V X (Ex §0>

. - (10)
=(Bo- V)¢
L’équation d’incompressibilité nous permet finalement de lier &; et §, :
o 8§x
V.= +ik&y | exp(iky — iwt), (11)
donc o¢
aT: = —ik&,. (12)
2.
Le champ magnétique perturbé s’obtient directement & partir de ’équation [10)] :
5 . . 0&
By = |ik&,Byd — e —= B,y | exp(ikyiwt). (13)

La densité de courant perturbée se calcule ensuite en prenant le rotationel du champ magnétique
perturbé :

0 (14)
= 0 exp(iky — iwt).
lu’o (9 fTB + k2§$

On en déduit ensuite :
. - B 9%
j1 X By = YL exp(iky — iwt)(—=—=
o 2

Enfin, on exprime la densité perturbée p; a ’aide de I’équation de continuité linéarisée :

- kQ&x) (15)

= —g Vo = §$ exp(zky — iwt). (16)

3.

L’équation du mouvement linéarisée dans la direction y nous donne :
— w?po&, exp(iky — iwt) = ———. (17)

Cette équation peut étre intégrée selon y, et en utilisant (p;),+—0 = 0 (constante d’intégration nulle),
on trouve 'expression

w2p0 . . N W2P0 . N
= —= .

P = Wﬁy exp(iky — iwt) exp(iky — zwt)% (18)



4.

En projetant cette fois I’équation du mouvement dans la direction x, puis en réinjectant les expressions

[15] [L6] et [I8] on trouve :

2 2 92
2 w* 0 8§x By 0 fz 2 apo . .
r— 57— | po=— — — k%) — 9p—— ky —iwt) = 0. 19
[w Po&a = 135 (Po 8x> + o (5,2 €a) = 9&a | exp(iky —iwt) (19)
On peut ainsi supprimer ’exponentielle et obtenir
o ( 9\ s KBy 9%, k2 dpo
—(po== | — k — — —k —&— =0. 20
a <Po m«) e = B(TE 120 +g e (20)
5.
Selon I’équilibre considéré : % 0= 0. L’équation différentielle devient alors :
0% KBy 0%
e — T2y 9E e 21
£0 o2 Pof N0w2 (8{[}2 5) ) ( )
dont la solution générale a pour forme
¢ = Aexp(ax) + Bexp(—azx). (22)

On cherche une solution physique et continue en z = 0 ce qui impose

Aexp(kx) sixz <0,
§(x) = : (23)
Aexp(—kz) siz > 0.
6.
Par le choix de densité d’équilibre, la dérive de la densité d’équilibre par rapport a x peut s’exprimer :
0
% = (pbot - ptop)(;(x)- (24)

On intégre ’équation différentielle dans R
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0 —00 0 How w
k*B2 k2
= _k(ptop + pbot)A + 2k M0w2 A + QEA(pbot - ptop) =0.

(25)
En réarrangeant les termes, on trouve alors la relation de dispersion

o = gelit i 2 KBy (26)

Pbot T Ptop Ko Ptop + Poot
Cette relation de dispersion montre que, dans le cas ol pyor < prop, le premier terme est négatif et
donc déstabilisant. Le terme proportionnel & B, est toujours positif et donc stabilisant. Ceci peut
s’expliquer intuitivement par le fait que, dans ce cas, la perturbation doit déformer les lignes de
champs magnétiques paralléles & k ce qui consomme de I'énergie. Ainsi si By est nul, et si ppor < prop,

il y a toujours instabilité. Cette instabilité est appelée instabilité de "Rayleigh-Taylor".



