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Corrigé des exercices - Série 11

Exercice 1

On considère un plasma de type Z-pinch à l’équilibre dans une chambre cylindrique de rayon a et dont
les parois sont parfaitement conductrices. On considère un champ magnétique purement azimuthal
B⃗ = Bθ(r)θ̂ et on suppose que le profil de pression est de la forme p = p0(1− r2/a2).

a) Trouvez l’expression de Bθ(r) et de jz(r). en fonction de p0 et de a Indication : supposez que
le champ magnétique est de la forme Bθ(r) = B0r

α et explicitez B0 et α.

b) Montrez que p0 est proportionnel au carré du courant total induit dans le plasma.

c) Prouvez que < β >= 2µ0<p>
B2

θ (a)
= 1 avec < . > la moyenne sur le volume du plasma.

Corrigé

a)

On part de l’équation d’équilibre du cours (6.8) et on utilise le profil de pression de la donnée
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En remplaçant l’expression donnée en indication dans l’équation (1), on écrit :
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On identifie alors :
α = 1 et B0 =

√
p0µ0

a
(3)

On obtient donc la solution Bθ = B0r. La densité de courant se calcule en prenant le rotationnel du
champ magnétique
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On vérifie bien que la densité de courant est une constante.

b)

Le courant total induit dans le plasma se calcule simplement en prenant l’intégrale de surface de la
densité de courant
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0

∫ 2π

0
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√
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. (5)

La pression au coeur du plasma est alors

p0 =
I2µ0

4π2a2
. (6)
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c)

En connaissant l’expression de p(r) et Bθ(r), on peut calculer
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Exercice 2

On considère un équilibre de type θ-pinch, de section cylindrique et confiné magnétiquement par un
champ magnétique axial B⃗ = Bz(r)ẑ. On va montrer que dans cette configuration (mais le résultat
est général) le courant perpendiculaire à B⃗ est constitué d’un courant de dérive magnétique et d’un
courant de magnétisation.

a) Montrer que la densité de courant totale dans la direction perpendiculaire à B⃗, j⃗dia (courant
diamagnétique) est

j⃗dia =
1

Bz(r)

∂p

∂r
θ̂.

b) En considérant que ce plasma est à l’équilibre thermodynamique, calculez la densité de courant
j⃗∇B due à la dérive magnétique v∇B moyennée sur toutes les vitesses des particules.

c) Montrez que j⃗dia − j⃗∇B = ∂
∂r

(
p
Bz

)
θ̂ = ∇× (Mẑ), puis identifiez et interprétez M .

Corrigé

a)

Comme vu en cours le courant à l’équilibre dans un θ-pinch est uniquement selon θ donc j⃗dia = jθθ̂.
En partant de l’équation de Newton à l’équilibre de la MHD

j⃗ × B⃗ = ∇p (8)

on obtient
j⃗dia = jθθ̂ =

1

Bz(r)

∂p

∂r
θ̂. (9)

b)

Le courant de dérive magnétique se calcule pour chaque espèce d’après la définition de la vitesse de
dérive d’une charge dans un champ magnétique non-uniforme

v⃗∇B =
µ

q

B⃗ ×∇B

B2
(10)

2



puis le courant total s’obtient en prenant la somme des contributions pour chaque espèce

j⃗∇B =
∑
α

qαnαu⃗∇B,α =
∑
α

qαnα
< µα >

qα

B⃗ ×∇B

B2
. (11)

Avec u⃗∇B,α =< v⃗∇B,α > la vitesse moyenne de chaque espèce. Pour une distribution Maxwellienne
de vitesses,

< µα >=
1

2
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< v2⊥,α >

B
=

kBTα

B
=

pα
nαB

. (12)

Le courant de dérive magnétique devient

j⃗∇B =
∑
α

pα
B

B⃗ ×∇B

B2
=

p

B

B⃗ ×∇B

B2
, (13)

où p =
∑

α pα. Comme le champ magnétique est purement axial, ce courant s’écrit finalement

j⃗∇B =
p

B2

∂Bz

∂r
θ̂. (14)

c)

On calcule finalement le courant ne provenant pas de la dérive magnétique :

j⃗dia − j⃗∇B =

(
1

Bz

∂p

∂r
− p(r)

B2

∂Bz

∂r

)
θ̂ (15)

et on identifie une dérivée de produit de fonctions

j⃗dia − j⃗∇B =
∂

∂r

(
p

Bz

)
θ̂. (16)

De même, on peut identifier à droite de l’égalité, le rotationel de pB⃗/B2

j⃗dia − j⃗∇B = −∇× pB⃗

B2
z

= −∇× βB⃗

2µ0
. (17)

On peut finalement identifier à l’aide de l’équation (12) M = − p
Bz

= n < µ > la densité de moments
magnétiques soit la magnétisation du plasma. Cette dernière induit un courant qui ne provient pas
d’un déplacement de charge (dérive magnétique), mais d’un effet collectif du plasma (petits moments
magnétiques combinés) dû à un gradient de densité ou de température dans le fluide. Ce phénomène
est représenté à la figure 1.
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Figure 1 – Création du courant diamagnétique dans le cas d’un gradient de température. On voit que
c’est la différence de vitesse des particules entre deux orbites qui en est la cause. Un tel phénomène
existe aussi pour un gradient de densité et comme p = nT , ceci explique bien le courant du à
l’inhomogénéité de pression.
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