
3. Introduction à la relativité
spéciale

Ces notes sont inspirées par les notes de mon collègue André Châtelain
que je remercie chaleureusement de les avoir partagées avec moi.

3.1 Le groupe de Galilée et le principe de re-

lativité en mécanique classique

Considérons deux référentiels d’inertie ou Galiléens Ri et R′i caracteri-
sés par une translation de vitesse v = cste. Sans limiter la généralité de la
discussion, on peut les munir de repères Oxyz et Ox′y′z′ en translation de
vitesse v selon les axes Ox ‖ Ox′. On choisit ainsi Oy et Oz parallèles à O′y′

et O′z′.

vi
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La deuxième loi de Newton affirme que

1



2

F = ma

m est une constante qui ne dépend pas du référentiel. Le mouvement de R′i
par rapport à Ri étant de translation, a = a′ et F = F′.

Par conséquent, les lois auxquelles obéissent les expériences de mécanique
faites dans Ri sont identiques à celles faites en R′i. Il est impossible par des
expériences de mécanique faites dans un référentiel inertial R′i de mettre en
évidence un mouvement de translation rectiligne et uniforme de R′i.

Tous les référentiels d’inertie tels RietR
′
i sont équivalents pour formuler les

lois de la mécanique. C’est le principe de relativité. Exprimons encore
les relations entre systèmes de coordonnées en posant qu’en t = 0, les deux
systèmes de coordonnées sont confondus (conditions initiales) :
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x′ = x− vt
y′ = y
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Si v = (vx, vy, vz) n’est pas dirigé selon x la matrice de passage s’écrit
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

Cette transformation est appelée transformation de Galilée. L’ensemble des
référentiels d’inertie munis de la transformation de Galilée s’appelle le groupe
de Galilée.

On vérifie cette proposition en effectuant le produit de deux matrices de
transformation avec v1 et v2 par exemple.
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3.2 Recherche du mouvement absolu, expé-

rience de Michelson

A la fin du 19ième siècle, les physiciens ne se rendaient pas compte de
l’importance du principe de relativité. En général, on essayait de mettre en
évidence, par des phénomènes optiques entre autres, le mouvement absolu
de la terre dans l’espace.

On attribuait à l’espace, vide de matière, une propriété dite d’éther. La ques-
tion était de savoir comment les corps se déplaçaient dans ce milieu. On
pensait que la lumière se propageait dans l’éther en créant des vibrations
analogues aux vibrations d’amplitudes ou de pressions existant dans la pro-
pagation des sons dans l’air. Si l’on suppose l’éther fixe et la vitesse de la
lumière valant c dans l’éther, le mouvement de la terre produit un “vent
d’éther” et donne lieu à des effets d’anisotropie des phénomènes optiques.
Ainsi, si c est la vitesse absolue de la lumière par rapport à l’éther, et v la
vitesse absolue de la terre par rapport à l’éther (vitesse d’entrâınement), la
vitesse relative de la lumière par rapport à la terre s’écrit vr = c − v. Pour
un observateur situé sur la terre, en amplitude, la vitesse de propagation
de la lumière devrait être de c − v dans la direction de déplacement de la
terre, de c+ v dans la direction contraire, et de

√
c2 − v2 dans une direction

perpendiculaire.

En 1881, Michelson et Morley tentèrent précisément une expérience devant
faire connâıtre la vitesse du vent d’éther, c’est-à-dire v. Pour réaliser cette
expérience, Michelson s’est servi d’un interféromètre dont le principe est le
suivant.

Une lame semi-argentée L sépare un rayon incident SP en deux rayons
lumineux PM1 et PM2. Ces rayons sont réfléchis sur les miroirs M1 et M2

respectivement et se superposent à nouveau en P pour atteindre l’obser-
vateur O′. Si PM1 = PM2 et que la vitesse de la lumière est la même dans
les deux directions, les 2 rayons arrivent exactement en phase. Dans le cas
contraire, soit que PM1 6= PM2, ou que la vitesse de propagation ne soit
pas la même dans les deux directions, les deux rayons arrivent en P avec
un déphasage dont le résultat est un phénomène d’interférence. Ces inter-
férences se manifestent sur un écran par une alternance de régions sombres
et claires, et elles se prêtent à des mesures d’une extraordinaire sensibilité.
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Dans l’expérience de Michelson et avec l’hypothèse du vent d’éther, la durée
du trajet PM1 et retour dépend de l’orientation de l’appareil par rapport au
mouvement de la terre. De même pour PM2. Il en résulte qu’en modifiant
progressivement l’orientation de tout l’appareil (à cet effet, Michelson l’avait
placé sur une dalle flottant sur un bain de mercure), on devrait observer
un déplacement progressif des franges d’interférences. Ce déplacement serait
maximum pour une rotation de π/2. Faisons le calcul en supposant que les
deux bras ont exactement la même longueur `′, hypothèse qui n’est d’ailleurs
pas essentielle et qui n’a pas d’influence sensible sur le résultat.

Dans le cas de figure donné :

t′‖ = temps pour que la lumière parcoure PM1P

t′⊥ = temps pour que la lumière parcoure PM2P

}
temps mesuré parO′

t′‖ =
`′

c− v
+

`′

c+ v
=

2`′/c

1− v2/c2

t′⊥ =
2`′/c√

1− v2/c2

On remarque que t′‖ 6= t′⊥ ; soit ∆t′ = t′‖ − t′⊥.

Dans la position perpendiculaire, les deux bras ont permuté leurs rôles d’où,
pour la différence des temps de parcours, la valeur −∆t′.

Avec surprise, les expérimentateurs n’ont observé aucune modification des
franges d’interférences et ont donc conclu que ∆t′ = 0. Des expériences utili-
sant d’autres méthodes ont été entreprises, plus récemment, toujours dans le
but de mettre en évidence la vitesse d’entrâınement de la terre. Les conclu-
sions sont en accord avec celles de l’expérience de Michelson.

On proposa d’abord que l’absence d’effets pouvait être expliquée par un en-
trâınement partiel de l’éther par les milieux transparents en mouvement. Une
explication alternative due à Lorentz et Fitzgerald est que tous les objets se
déplaçant dans l’éther subissent une contraction “réelle” dans la direction
du mouvement et que cette contraction est précisément celle qui entrâıne
t′‖ = t′⊥. Cela signifie que perpendiculairement à la direction du mouvement
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de la terre, la longueur est inchangée tandis que parallèlement il y a contrac-
tion.

Au lieu de `′, écrivons ` dans l’expression de t′‖ et égalons t′‖ et t′⊥ . Il vient :

2`/c

1− v2/c2
=

2`′/c√
1− v2/c2

−→ ` =
√

1− v2/c2 `′

Cette relation relie les longueurs PM1 et PM2 vues par un observateur O
dans l’éther. L’observateur O′ ne peut pas observer cette contraction car sa
règle étalon de mesure se contracte avec la même proportion lorsqu’il mesure
dans la direction parallèle. Par conséquent, pour O′, ` = `′.

Une autre explication de l’expérience de Michelson a été celle qui consistait
à admettre que la vitesse de la lumière est la même dans toutes les directions
quel que soit l’état de mouvement de O′. Dans ce cas, t′‖ = t′⊥ = 2`′/c.
Cette opinion était celle d’Albert Einstein lorsqu’il formula son principe de
relativité.

3.3 Postulats d’Einstein

Einstein pose donc en principe qu’un observateur Galiléen ne peut
mettre en évidence, par des expériences de physique, un mouvement absolu
de son référentiel et que, par conséquent, tous les référentiels galiléens
sont équivalents pour formuler les lois de la Nature. Pour tous
les observateurs, ces lois doivent s’exprimer par des équations de
même forme.

A ce principe de relativité spéciale, Einstein ajouta les deux principes
suivants, qui en résultent d’ailleurs de manière inéluctable, mais qu’il est bon
d’énoncer explicitement :

1. Dans tout référentiel galiléen, la vitesse de la lumière est indépendante
de la direction (isotropie).

2. La vitesse de la lumière a la même valeur dans tous les référentiels
galiléens (invariance).
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3.4 Le temps physique

Une idée fondamentale d’Einstein est qu’une grandeur n’est physiquement
définie que si l’on peut décrire un processus opératoire qui permet, au moins
en principe, de la mesurer.

Pour la longueur, sa définition est, comme en physique newtonienne, celle
de la géométrie euclidienne, basée sur la notion de solide indéformable. Pour
la mesure, on utilise une règle.

En ce qui concerne le temps, la notion que s’en fait le sens commun n’est
pas suffisante. En effet, la notion d’intervalles de temps égaux et celle de
simultanéité de deux évènements en deux lieux distincts ne sont pas des
notions claires.

Le temps, en un point donné d’un système galiléen, doit être défini au moyen
d’une horloge et, selon Einstein, l’horloge théoriquement parfaite est la“bôıte
à lumière” : elle se compose d’un tube de longueur L connue, fermée aux deux
bouts par des miroirs M1 et M2 parallèles entre lesquels chemine indéfiniment
un signal lumineux :

1 2

L’intervalle de temps qui sépare deux évènements, au point où se trouve
le miroir M1 de l’horloge, est mesuré par le nombre de réflexions du signal
lumineux ayant eu lieu en M1 entre les deux évènements considérés.

Une telle horloge est indépendante de son orientation (principe d’isotropie).
Pour que le temps soit partout défini à l’intérieur d’un référentiel galiléen,
il faut synchroniser les horloges se trouvant en des points différents. Soit un
observateur en A et un autre en B. A envoie un signal lumineux en direction
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de B en tA1 . B reçoit le signal en tB1 ; B possède un miroir qui renvoie le
signal en A. A reçoit ce signal en tA2 . Les deux horloges sont synchronisées
d’après le principe d’isotropie, si :

tB1 =
tA1 + tA2

2

Il est bien clair que la vitesse c intervient dans la définition.

3.5 L’intervalle

Le temps étant défini de la même manière dans tous les référentiels ga-
liléens, avec la même valeur c pour la vitesse de la lumière, un problème
fondamental se pose : étant donné un évènement ayant lieu pour un obser-
vateur de Ri à l’instant t en x, y, z, et ayant lieu pour un observateur de R′i
à l’instant t′ en x′, y′, z′, exprimer x′, y′, z′ et t′ en fonction de x, y, z et t et
inversement.

Considérons Ri et R′i munis de repères O, x, y, z et O′, x′, y′, z′ avec les axes
parallèles. Comme nous l’avons déjà dit, cette manière de choisir les repères
ne limite pas la généralité. Soit v = (v, 0, 0) la vitesse des points de R′i par
rapport à Ri. Réciproquement, un observateur de R′i voit les points de Ri

animés d’une vitesse −v = (−v, 0, 0) (voir Figure ci-après).

' ''=( 0, 0, 0) =( 0, 0, 0)'

' ''=( 0, 0, 0) =( 0, 0, 0)'

point de vue
de i en < 0' '

point de vue
de i en < 0

' '

'

'

' '

'

'

'
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Considérons un point P ′ = (x′0, y
′
0, z
′
0) fixe dans R′i. Par rapport à Ri, il

se déplace horizontalement à vitesse v. Soit P = (x0, y0, z0) fixe dans Ri.
En t0, on suppose que P ′ = P et qu’une impulsion électromagnétique est
émise (flash lumineux). Pour l’observateur de R′i, P se déplace horizonta-
lement à vitesse −v. Le flash est émis en t′0 lorsque P ′ ≡ P (voir Figure
ci-après).

' ''=( 0, 0, 0)'=( 0, 0, 0)

'
point de vue
de i en 0' '

point de vue
de i en 0

' '

'

'

' '

'

'

La propagation des ondes électromagnétiques obéit aux équations de Max-
well. Les équations de Maxwell sont des lois de la nature qui doivent avoir la
même forme dans tous les référentiels d’inertie en vertu des postulats
d’Einstein. En particulier, pour le flash lumineux envisagé, la solution est
une onde sphérique.

Au temps t > t0, l’observateur de Ri observera que le signal lumineux se
trouve aux points de coordonnées (x, y, z) tels que ces points sont sur une
sphère centrée en P = (x0, y0, z0) et de rayon valant c(t− t0). Pour l’observa-
teur de R′i, en t′ > t′0, le signal lumineux se trouve aux points de coordonnées
(x′, y′, z′) tels que ces points sont sur une sphère centrée en P ′ = (x′0, y

′
0, z
′
0)

et de rayon valant c(t′ − t′0) (voir Figure ci-après).
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'' ''=( 0, 0, 0)=( 0, 0, 0)

'' ''=( 0, 0, 0)=( 0, 0, 0)

( '- 0)'

(
-

0 )'

( - 0)

point de vue
de i en > 0' ''

point de vue
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' '

'

'

' '

'

'

( -
0 )

Dans Ri : (x− x0)2 + (y − y0)2 + (z − z0)2 = c2 (t− t0)2

Dans R′i : (x′ − x′0)2 + (y′ − y′0)2 + (z′ − z′0)2 = c2 (t′ − t′0)2

Il faut qu’en remplaçant x, y, z et t dans la 1ère équation par leurs valeurs en
fonction de x′, y′, z′ et t′, on obtienne la deuxième équation et inversement.
Ce ne serait pas le cas si l’on utilisait les formules de la transformation de
Galilée. On définit alors l’intervalle ∆s ou ∆s′ par :

∆s2 = c2∆t2 −∆x2 −∆y2 −∆z2

∆s′2 = c2∆t′2 −∆x′2 −∆y′2 −∆z′2

La double condition énoncée ci-dessus revient à dire que les relations qui
existent entre x, y, z, t et x′, y′, z′, t′ doivent être telles que ∆s2 et ∆s′2 soient
nuls simultanément. Autrement dit, deux évènements caractérisés par ∆s = 0
pour un personnage appartenant à Ri sont caractérisés par ∆s′ = 0 pour un
personnage appartenant à R′i.

Cette remarque permet d’écrire ∆s = K(v)∆s′ où K(v) est un coefficient qui
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dépend à priori de la vitesse. L’équivalence des référentiels Ri et R′i entrâıne
la relation ∆s′ = K(−v)∆s. De ces deux relations, on tire :

K (v)K (−v) = 1

D’autre part, la fonction K(v) est nécessairement symétrique, car l’intervalle
reste inchangé dans la transformation x→ −x ; y → −y ; z → −z. Et donc :

K (v) = K (−v)

Il résulte :

K2 (v) = 1 −→ K (v) = ±1

Comme K(v) doit se réduire à +1 pour v = 0, seule la solution K =
1 convient. Finalement, les formules de transformation qui font passer de
x, y, z, t à x′, y′, z′, t′ doivent être telles que :

∆s = ∆s′

L’intervalle est un invariant relativiste pour des référentiels gali-
léens.

Revenons à la notion générale d’intervalle. Un évènement E1, pour un
observateur de Ri est caractérisé par x1, y1, z1, t1. Soit un autre évènement
E2 caractérisé par x2, y2, z2, t2. L’intervalle entre les deux évènements vaudra :

s12 =

√
c2 (t2 − t1)2 − (x2 − x1)2 − (y2 − y1)2 − (z2 − z1)2

Si les deux évènements sont reliés entre eux par une onde électromagnétique
(onde lumineuse), l’intervalle est nul. Dans le cas où les deux évènements sont
séparés par une distance plus petite que celle que la lumière peut parcourir
durant le temps (t2 − t1), l’intervalle est réel et est appelé intervalle du
genre temps. Dans le cas contraire, c’est un intervalle du genre espace
(s12 est imaginaire).
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Pour rendre compte de l’invariance de l’intervalle dans les référentiels
d’inertie, il est possible de dessiner des diagrammes. Par exemple, le dia-
gramme de Brehme :

( )
1

(c 2

E1 et E2 = évènements

c2t21 + x′21 = c2t′21 + x2
1

c2t22 + x′22 = c2t′22 + x2
2

c2∆t2 + ∆x′2 = c2∆t′2 + ∆x2

c2∆t2 −∆x2 = c2∆t′2 −∆x′2

Etant donné que la translation de R′i par rapport à Ri se fait selon l’axe Ox,
il est naturel de poser :

y′1 = y1 z′1 = z1 et y′2 = y2 z′2 = z2

Ainsi, on a bien ∆s′ = ∆s.

Remarquons que le mouvement de l’origine O′ est repéré par la ligne x′(O′) = 0
dans R′i et x(O′) = vt dans Ri, si en t = 0, les repères sont confondus. Cela
nous permet de trouver une expression pour α :

'( ') = 0  ∀

( '  après  )

sinα =
v

c



3.6. LA TRANSFORMATION DE LORENTZ 13

3.6 La transformation de Lorentz

Le groupe de transformation qui relie les coordonnées d’espace et de temps
de deux référentiels galiléens est appelé“groupe propre de Lorentz” (c’est
un sous-groupe d’une transformation plus générale). On trouve facilement
les éléments de la matrice de transformation en exprimant l’invariance de
l’intervalle.

i) Approche par diagramme de Brehme

'

c ' c

c

Le diagramme de Brehme
fournit les relations géomé-
triques suivantes

a

ct′
= tanα

b

x′
= tanα

x′ = (x− a) cosα

ct′ = (ct− b) cosα

Avec un peu d’algèbre on élimine a et b :

x′ = (x− a) cosα

= x cosα− ct′ sinα

= x cosα− (ct− b) cosα sinα

= x cosα− ct cosα sinα + x′ sin2α

x′ =
1

1− sin2α
(x cosα− ct cosα sinα)

=
1

cos2α
(x cosα− ct cosα sinα)
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Et donc

x′ =
1

cosα
(x− ct sinα)

De façon similaire on obtient l’expression pour ct′ :

ct′ =
1

cosα
(ct− x sinα)

En introduisant
v

c
= sinα et en utilisant cos2 α = 1− sin2 α, on trouve :

x′ =
1√

1− v2/c2

(
x− ct

(v
c

))

ct′ =
1√

1− v2/c2

(
ct− x

(v
c

))

Ensuite, avec z = z′, y = y′ on obtient :



x′

y′

z′

ct′


=



1√
1− v2/c2

0 0
−v/c√

1− v2/c2

0 1 0 0

0 0 1 0

−v/c√
1− v2/c2

0 0
1√

1− v2/c2





x

y

z

ct



La transformation peut aussi s’écrire sous une forme générale :

x′ k = Lkj (v)xj

où x1 = x, x2 = y, x3 = z, et x4 = ct. Le déterminant de la matrice L vaut∥∥Lkj∥∥ = 1.
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Il est facile d’exprimer la transformation inverse L−1. On trouve naturelle-
ment :

L−1 (v) = L (−v)

Ce qui entrâıne

xk = Lkj (−v)x′j

Pour vérifier la structure de groupe de cet ensemble de transformations, on
est amené à calculer le produit de deux matrices du type L et vérifier que
l’on obtient encore une matrice de ce type. On vérifie que :

L (v2 (1)) · L (v3 (2)) = L (v3 (1))

avec

v3 (1) =
v3 (2) + v2 (1)

1 +
v2 (1) v3 (2)

c2

où vi(k) est la vitesse du référentiel i mesuré dans le référentiel k.

On remarque que la loi de composition des vitesses n’est plus la même en
relativité que dans la mécanique de Galilée (dans ce cas, on aurait eu v3(1) =
v2(1) + v3(2)).

On remarque que si l’une des vitesses, v2(1) par exemple, vaut c, v3(1) vaudra
c quelle que soit la valeur de l’autre vitesse (v3(2) dans notre cas). c apparâıt
donc comme une vitesse limite.

La transformation de Lorentz se réduit à celle de Galilée si l’on attribue à c
une valeur infinie. Cependant, cette conception n’est pas physique et il est
préférable de considérer le cas particulier où v ≪ c.
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ii) Approche par calcul

On suppose que la relation x′ 7−→ x est de la forme :

x′ = γ (x− vt)

avec γ = γ(c, v) et lim
v→0

γ = 1. L’équivalence des référentiels Ri et R′i permet

d’écrire

x = γ (x′ + vt′)

x = γ (γ (x− vt) + vt′)

γvt′ = x− γ2 (x− vt)

t′ =
1

γv

(
x
(
1− γ2

)
+ γ2vt

)
t′ = γ

(
t+

1− γ2

γ2

x

v

)

L conserve ∆s, en particulier ∆s = 0 :

x′ 2 + y′ 2 + z′ 2 = c2t′ 2

implique

x2 + y2 + z2 = c2t2

La première équation s’écrit en appliquant les transformations obtenues jus-
qu’à présent :

γ2 (x− vt)2 + y2 + z2 = c2γ2

(
t+

1− γ2

γ2

x

v

)2

Vu qu’elle doit être identique à la deuxième équation, on peut faire les consi-
dérations suivantes :



3.7. TRANSFORMATION DE LA VITESSE 17

i) terme devant x2 doit être 1
ii) terme devant t2 doit être c2

iii) terme xt doit être 0

Selon i)

γ2 − c2γ2 (1− γ2)
2

γ4

1

v2

!
= 1

− c2 (1− γ2)
2

γ2v2
= 1− γ2

− c2 (1− γ2)

γ2v2
= 1

− c2 + c2γ2 = v2γ2

γ2
(
c2 − v2

)
= c2

γ2

(
1− v2

c2

)
= 1

Donc on trouve bien l’expression γ =
1√

1− v2

c2

3.7 Transformation de la vitesse

Considérons une particule en mouvement par rapport à Ri et R′i :

'

'

'

'

r r'
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P est repéré par r = (x, y, z) par rapport à Ri

P est repéré par r′ = (x′, y′, z′) par rapport àR′i

La vitesse de R′i est v = (v, 0, 0) par rapport à Ri

Par définition, la vitesse de P vaut :

u =
dr

dt
dans Ri

u′ =
dr′

dt′
dans R′i

On peut exprimer x, y, z et t en fonction de x′, y′, z′ et t′ :

I



x =
1√

1− v2/c2

[
x′ + ct′

(v
c

)]
y = y′

z = z′

ct =
1√

1− v2/c2

[
ct′ + x′

(v
c

)]
II



x′ =
1√

1− v2/c2

[
x− ct

(v
c

)]
y′ = y

z′ = z

ct′ =
1√

1− v2/c2

[
ct− x

(v
c

)]
Différencions le 1er groupe d’équations et calculons

ux =
dx

dt
uy =

dy

dt
et uz =

dz

dt
Après calcul, on trouve

ux =
u′x′ + v

1 +
u′x′v

c2

uy =
u′y′
√

1− v2/c2

1 +
u′x′v

c2

uz =
u′z′
√

1− v2/c2

1 +
u′x′v

c2

avec

u′x′ =
dx′

dt′

u′y′ =
dy′

dt′

u′z′ =
dz′

dt′
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Ces relations contiennent la relation de composition de vitesses déjà trouvée.
En plus, on a des relations entre uy, uz et u′x′ , u

′
y′ , u

′
z′ et v.

On remarque à nouveau que la composition des vitesses n’est plus la même
en relativité que dans la mécanique de Galilée.

Pour obtenir les composantes u′x′ , u
′
y′ , u

′
z′ en fonction de ux, uy, uz et v, il suffit

de permuter les indices et de changer v en (−v).

3.8 Contraction de la longueur et dilatation

de la durée

'

'

'

'

v

'

i i'

1) Contraction de longueur
Un barreau est placé sur l’axe Ox′ du référentiel d’inertie R′i. On associe deux
événements A′ et B′ aux deux extrémités du barreau. La distance entre A′

et B′ et ∆x′ = L0, qui correspond à la longueur du barreau mesurée dans
R′i à ∆t′ = 0 (ce qui signifie que les deux événements sont mesurés en même
temps, à un instant t′ donné).

Pour prévoir la valeur de la longueur L de ce même barreau mesurée à un
instant t donné par un observateur lié à Ri, il faut utiliser l’équation de
transformation :

x′ =
1√

1− v2/c2

(
x− ctv

c

)



20

En effet, cette relation permet de calculer ∆x en fonction de ∆x′ lorsque
∆t = 0 (pour déterminer la longueur, il faut que les deux événements soient
mesurés en même temps aussi dans Ri).

On obtient : ∆x′ =
1√

1− v2/c2
∆x, qui devient dans notre cas :

L = L0

√
1− v2

c2
(∆x′ = L0, ∆x = L)

Diagramme de Brehme

0

c ' c

'

Ligne d’univers de l’extrêmité

Ligne d’univers de l’extrêmité 

A'

A'

B'

B'

0
L = L0 cosα = L0

√
1− v2

c2

2) Dilatation de la durée
Considérons deux évènements A′ et B′ qui ont lieu au même endroit x′0 dans
R′i à deux temps différents t′B′ − t′A′ = ∆t′

Pour exprimer l’intervalle de temps ∆t entre ces deux évènements dans Ri

en fonction de ∆t′ en tenant compte de la condition ∆x′ = 0, il faut utiliser
l’équation de transformation :

ct =
1√

1− v2/c2

(
ct′ + x′

v

c

)
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il vient alors :

∆t =
∆t′√

1− v2/c2

Diagramme de Brehme

' 0

c ' c

'

c '

c

A'

B'
c ' c

c∆t′ = cosα c∆t

∆t =
∆t′

cosα
=

∆t′√
1− v2

c2

Exemple :

durée de vie d’un pion π± au repos : τ ′ = 2.6 · 10−8 s

vitesse du pion par rapport à la Terre : v = 0.99999999 c

durée de vie dans Ri de la Terre : τ =
τ ′√

1− v2/c2
= 7071 τ ′

distance parcourue : 56 km, donc on peut les observer sur la Terre.

En résumé, on a :

L = L0

√
1− v2

c2
; (L = ∆x, L0 = ∆x′)

∆t =
∆t′√

1− v2/c2
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La signification physique de ces résultats fait l’objet de nombreuses dis-
cussions. En particulier, la dilatation de la durée a donné lieu à un paradoxe
fameux : le paradoxe des jumeaux. D’après la deuxième relation, il apparâıt
que deux personnages “équivalents” (jumeaux), placés respectivement dans le
référentiel Ri et dans le référentiel R′i, vieillissent de manière différente. Dès
lors, en imaginant que R′i est une fusée qui part de Ri et y revient après avoir
suivi une très longue trajectoire à une vitesse assez voisine de c, on est amené
à envisager que les jumeaux pourront comparer leur âge physique après l’ex-
périence. A première vue, chacun des personnages connaissant les équations
de dilatation de la durée (et de contraction de la longueur) est en droit de se
considérer comme plus âgé que l’autre (équivalence des référentiels)
ce qui constitue le fait paradoxal. En réalité, les référentiels ne sont pas
équivalents, car il est impossible que R′i suive la trajectoire qui a été décrite
en restant toujours galiléen. Il n’y a donc pas vraiment de paradoxe et l’étude
correcte d’une telle expérience doit se faire dans le cadre d’une théorie moins
restrictive que la relativité spéciale (relativité générale).

En 1971-1972 une expérience a été tentée pour vérifier l’exactitude du “para-
doxe des jumeaux”. Un avion a été muni d’une horloge extrêmement précise
(Maser) alors qu’au même endroit, au sol, une même horloge a été synchro-
nisée à celle de l’avion.

L’avion a alors tourné autour de la
terre dans un sens le long de l’équa-
teur, puis a rebroussé chemin. A l’ar-
rivée, les horloges marquaient un déca-
lage dans le sens prédit par la théorie
de la relativité spéciale et l’effet était
du bon ordre de grandeur, en dehors
des erreurs possibles. Il faut cependant
noter que les deux référentiels, terre et
avion, ne sont pas galiléens !
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3.9 Dynamique de la particule relativiste

D’après Einstein, la transformation de Lorentz permet de comparer les
observations d’évènements à partir de référentiels d’inertie galiléens et il faut
que les lois de la nature s’expriment de la même manière dans ces référentiels.

Le problème consiste donc à trouver comment la force, la quantité de mouve-
ment et l’énergie se transforment lorsqu’on passe d’un référentiel à un autre,
les lois devant garder leur même forme.

Il est possible, à partir d’arguments très généraux, de déduire ces transfor-
mations. Nous nous contenterons d’induire ces résultats, en faisant
intervenir l’expérience. En mécanique newtonienne, par rapport à un ré-
férentiel inertiel, on a la loi de Newton F = dp

dt
= mdv

dt
où v est la vitesse de

la particule par rapport à Ri. La masse m est constante. L’expérience montre
que si v est grand on ne peut plus considérer la masse m constante.

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
/c

0

1

2

3

4

0
0

Kaufmann (1901)
Bucherer (1909)
Guye et Lavanchy (1915)

Des électrons sont émis dans
des processus de différents
types, couvrant des gammes
différentes de vitesse. On ap-
plique des champs électrique
et magnétique pour filtrer les
électrons selon leur vitesse et
les dévier ensuite. La trajec-
toire est déterminée grâce aux
impacts sur une plaque pho-
tographique. Cette trajectoire
dépend de q/m, donnant accès
à m pour une vitesse donnée.
Le graphe montre le rapport
m/m0 en fonction de v/c pour
des mesures effectuées par trois
groupes différents.
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En effet, on exerce une force F connue sur une particule et on en déduit
expérimentalement la quantité de mouvement correspondante. En mesurant
encore la vitesse v de la particule par rapport à Ri, on constate que la masse
suit la loi suivante (les expériences ont eu lieu au début du 20ième siècle déjà !) :

m = m(v) =
m0√

1− v2/c2
= γm0

où m0 est la masse au repos (lorsque la particule est attachée au référentiel
Ri) et m est sa masse observée depuis Ri. La quantité de mouvement vaudra
donc :

p = mv =
m0v√

1− v2/c2
= γm0v

Il est bien clair qu’il faudra encore vérifier que cette expression satisfasse
au principe de relativité. Avant de faire cela, exprimons ce que deviennent
la force F et l’énergie cinétique Ecin d’une particule de vitesse v observée
depuis un référentiel Ri.

La relation qui lie la force F et la variation de quantité de mouvement est
valable encore en mécanique relativiste parce que nous choisissons cette dé-
finition de la force :

F =
dp

dt
=

d

dt
(γm0v)

= m0γv̇ +m0γ̇v

= m0γv̇ +m0v

(
−1

2
γ3

(
−2v

c2

)
v̇

)
= m0γv̇ +m0γ

3 v

c2
v̇v

Donc dans le cas général et à haute vitesse, la force n’est pas colinéaire avec
l’accélération.
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composantes normales de a et F

a

F

composantes tangentielles de a et F

trajectoire

Calculons maintenant le travail de la force F entre deux points 1 et 2 de sa
trajectoire naturelle :

W12 =

2∫
1

F · dr =

2∫
1

d

dt
(mv) · dr =

2∫
1

v · d(mv)

Le travail nécessaire à ce que la particule soumise à F acquiert la vitesse v
sera par définition l’énergie cinétique Ecin.

Ecin =

v∫
0

F · dr =

v∫
0

v · d(mv) =

v∫
0

v2dm +

v∫
0

m

2
d
(
v2
)

On peut récrire : v2dm =
(
c2 − m2

0c
2

m2

)
dm = d

(
mc2 +

m2
0c

2

m

)
ainsi que : m

2
d(v2) = mv dv = m0γv dv = m0c

2 v

c2
√

1− v2

c2

dv = −d

(
m0c

2
√

1− v2

c2

)
=

−d
(
m0c

2 1
γ

)
= −d

(
m2

0c
2

m

)
Donc pour l’énergie cinétique :

Ecin =

m∫
m0

d

(
mc2 +

m2
0c

2

m

)
−

m∫
m0

d

(
m2

0c
2

m

)
=

m∫
m0

d(mc2) = mc2 −m0c
2



26

Ecin = (m−m0) c2

L’augmentation d’énergie cinétique peut donc être considérée comme due à
l’augmentation de la masse, celle-ci augmentant avec la vitesse. La quantité
m0c

2 est appelée énergie de repos de la particule.

L’énergie totale de la particule vaudra :

E = Ecin +m0c
2 =

m0c
2√

1− u2/c2
= mc2

Il faut remarquer que dans cette expression, il n’y a pas d’énergie potentielle.
Il n’y a que l’énergie cinétique et l’énergie de repos. En tenant compte de
p = mv, et de E = mc2, on peut écrire

v =
c2

E
p

L’équation donnant la quantité E = mc2 est équivalente à :

E = c
√
m2

0c
2 + p2

Remarques :

1. A première vue, il semble que la valeur de l’énergie cinétique Ecin =
(m−m0)c2 soit différente de celle trouvée en mécanique classique, soit
1
2
mv2. Cependant, si l’on développe la masse en série de puissance :

m = m0

(
1− v2

c2

)−1/2

= m0

(
1 +

1

2

v2

c2
+

3

8

v4

c4
+ . . . . . .

)
En remplaçant, on trouve

Ecin =
1

2
m0v

2 +
3

8
m0

v4

c2
+ . . . . . .

=
1

2
m0v

2

(
1 +

3

4

v2

c2
+ . . .

)
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2. Si l’on considère une particule dont la masse de repos est nulle (m0 =
0), son énergie totale vaut E = cp.

En tenant compte de la relation v = c2

E
p, on obtient v = c. Autrement

dit, une particule caractérisée par sa masse de repos m0 = 0 ne peut se
déplacer qu’à la vitesse de la lumière et ne peut jamais être au repos
dans un référentiel inertiel.

Pour v → c, γ → ∞. Cependant, puisque on a aussi que m0 → 0,
la quantité de mouvement p = γm0v reste finie. En effet, il y a des
nombreuses évidences expérimentales de l’existence de particules pour
lesquelles m0c

2 = 0, comme par example les photons.

Examinons encore pour terminer comment l’énergie et la quantité de mouve-
ment se transforment lorsqu’on change de référentiel d’inertie. En vertu du
principe de la relativité, la relation liant l’énergie et la quantité de mouve-
ment :

E = c
√
m2

0c
2 + p2

doit avoir la même forme pour des observateurs en mouvement relatif de
translation. Soit v la vitesse de translation de R′i par rapport à Ri.

Pour l’observateur de Ri : E2

c2
− p2 = m2

0c
2, c’est-à-dire :

E2

c2
− p2

x − p2
y − p2

z = m2
0c

2

Pour l’observateur de R′i :

E ′2

c2
− p′2x′ − p′2y′ − p′2z′ = m2

0c
2

La masse m0 est la même pour les deux observateurs puisqu’elle correspond
à la masse de repos. Il vient alors :

E2

c2
−
(
p2
x + p2

y + p2
z

)
=
E ′2

c2
−
(
p′2x′ + p′2y′ + p′2z′

)
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Cette relation a la même forme que celle définissant l’intervalle s12 :

c2∆t2 −
(
∆x2 + ∆y2 + ∆z2

)
= c2∆t2 −

(
∆x′2 + ∆y′2 + ∆z′2

)
à condition de faire la correspondance :

px −→ ∆x py −→ ∆y pz −→ ∆z et E/c −→ ct

Par conséquent, l’invariance de la relation

E = c
√
m2

0c
2 + p2

entrâıne une relation de Lorentz entre px, py, pz, E/c et p′x′ , p
′
y′ , p

′
z′ , E

′/c.

Pour v = (v, 0, 0) il vient :

p′x′ =
px − vE/c2√

1− v2/c2

p′y′ = py

p′z′ = pz

E ′/c =
E/c− px (v/c)√

1− v2/c2

La force agissant sur une particule vaut respectivement pour des observateurs
liés à Ri et R′i

F =
dp

dt
et F′ =

dp′

dt′

La similitude de ces expressions est nécessaire pour satisfaire au principe de
la relativité. La relation entre F et F′ est en général compliquée. Dans le cas
simple où la particule est temporairement au repos dans R′i, F′ est appelée
force propre et on peut montrer que
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

F ′x′ = Fx

F ′y′ =
Fy√

1− v2/c2

F ′z′ =
Fz√

1− v2/c2

On remarque que la force ne se transforme pas de la même manière que
x, y, z, ct ou px, py, pz, E/c.

La raison est que les composantes de la force ne sont pas parties d’un quadri-
vecteur. En relativité, la force n’est pas un concept aussi utile et fondamental
que l’énergie et la quantité de mouvement.


