3. Introduction a la relativité
spéciale

Ces notes sont inspirées par les notes de mon collegue André Chatelain
que je remercie chaleureusement de les avoir partagées avec moi.

3.1 Le groupe de Galilée et le principe de re-
lativité en mécanique classique

Considérons deux référentiels d’inertie ou Galiléens R; et R caracteri-
sés par une translation de vitesse v = cste. Sans limiter la généralité de la
discussion, on peut les munir de reperes Ozxyz et Ox'y'z’ en translation de
vitesse v selon les axes Oz || Oz’. On choisit ainsi Oy et Oz paralleles a O’y
et O'7.

» '

La deuxieme loi de Newton affirme que
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F =ma

m est une constante qui ne dépend pas du référentiel. Le mouvement de R
par rapport a R; étant de translation, a =a’ et F = F.

Par conséquent, les lois auxquelles obéissent les expériences de mécanique
faites dans R; sont identiques a celles faites en R;. Il est impossible par des
expériences de mécanique faites dans un référentiel inertial R de mettre en
évidence un mouvement de translation rectiligne et uniforme de R;.

Tous les référentiels d’inertie tels R;et R, sont équivalents pour formuler les
lois de la mécanique. C’est le principe de relativité. Exprimons encore
les relations entre systemes de coordonnées en posant qu’en t = 0, les deux
systemes de coordonnées sont confondus (conditions initiales) :

x 1 00 —v/c x v =x—vt
d 01 0 0 =

Vol v | ) v=y

Z 0 0 1 0 z 2=z

ct’ 000 1 ct ct' =ct

Si v = (vg, vy,v,) nest pas dirigé selon z la matrice de passage s’écrit

1 00 —vu/c
010 —u/c
00 1 —v/c
0 0O 1

Cette transformation est appelée transformation de Galilée. L’ensemble des
référentiels d’inertie munis de la transformation de Galilée s’appelle le groupe
de Galilée.

On vérifie cette proposition en effectuant le produit de deux matrices de
transformation avec vy et v, par exemple.
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3.2 Recherche du mouvement absolu, expé-
rience de Michelson

A la fin du 19®™¢ siecle, les physiciens ne se rendaient pas compte de
I'importance du principe de relativité. En général, on essayait de mettre en
évidence, par des phénomenes optiques entre autres, le mouvement absolu
de la terre dans I’espace.

On attribuait a ’espace, vide de matiere, une propriété dite d’éther. La ques-
tion était de savoir comment les corps se déplacaient dans ce milieu. On
pensait que la lumiere se propageait dans I’éther en créant des vibrations
analogues aux vibrations d’amplitudes ou de pressions existant dans la pro-
pagation des sons dans l'air. Si I'on suppose l'éther fixe et la vitesse de la
lumiere valant ¢ dans I’éther, le mouvement de la terre produit un “vent
d’éther” et donne lieu a des effets d’anisotropie des phénomenes optiques.
Ainsi, si ¢ est la vitesse absolue de la lumiére par rapport a ’éther, et v la
vitesse absolue de la terre par rapport a I’éther (vitesse d’entrainement), la
vitesse relative de la lumiere par rapport a la terre s’écrit v, = ¢ — v. Pour
un observateur situé sur la terre, en amplitude, la vitesse de propagation
de la lumiere devrait etre de ¢ — v dans la direction de déplacement de la
terre, de ¢ + v dans la direction contraire, et de v/c?> — v? dans une direction
perpendiculaire.

En 1881, Michelson et Morley tenterent précisément une expérience devant
faire connaitre la vitesse du vent d’éther, c¢’est-a-dire v. Pour réaliser cette
expérience, Michelson s’est servi d’'un interférometre dont le principe est le
suivant.

Une lame semi-argentée L sépare un rayon incident SP en deux rayons
lumineux PM; et PM,. Ces rayons sont réfléchis sur les miroirs M; et M,
respectivement et se superposent a nouveau en P pour atteindre 1'obser-
vateur O'. Si PM, = PM, et que la vitesse de la lumiere est la méme dans
les deux directions, les 2 rayons arrivent exactement en phase. Dans le cas
contraire, soit que PM; # PM,, ou que la vitesse de propagation ne soit
pas la méme dans les deux directions, les deux rayons arrivent en P avec
un déphasage dont le résultat est un phénomene d’interférence. Ces inter-
férences se manifestent sur un écran par une alternance de régions sombres
et claires, et elles se prétent a des mesures d’'une extraordinaire sensibilité.
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Dans 'expérience de Michelson et avec I’hypothese du vent d’éther, la durée
du trajet PM; et retour dépend de l'orientation de ’appareil par rapport au
mouvement de la terre. De méme pour PMs. Il en résulte qu’en modifiant
progressivement 'orientation de tout 'appareil (a cet effet, Michelson 1'avait
placé sur une dalle flottant sur un bain de mercure), on devrait observer
un déplacement progressif des franges d’interférences. Ce déplacement serait
maximum pour une rotation de 7/2. Faisons le calcul en supposant que les
deux bras ont exactement la méme longueur ¢, hypothese qui n’est d’ailleurs
pas essentielle et qui n’a pas d’influence sensible sur le résultat.

Dans le cas de figure donné :

t’H = temps pour que la lumiere parcoure PM;P
temps mesuré par O’
' = temps pour que la lumiere parcoure PM;P
;o 4 N 4 _ 20 [c
I e—v ctv 1—02/e
, 20' /¢

v —v?/c?

On remarque que t’H #t' 5 soit At = til —t).

Dans la position perpendiculaire, les deux bras ont permuté leurs roles d’ou,
pour la différence des temps de parcours, la valeur —At’.

Avec surprise, les expérimentateurs n’ont observé aucune modification des
franges d’interférences et ont donc conclu que At’ = 0. Des expériences utili-
sant d’autres méthodes ont été entreprises, plus récemment, toujours dans le
but de mettre en évidence la vitesse d’entrainement de la terre. Les conclu-
sions sont en accord avec celles de I'expérience de Michelson.

On proposa d’abord que ’absence d’effets pouvait étre expliquée par un en-
trainement partiel de I’éther par les milieux transparents en mouvement. Une
explication alternative due a Lorentz et Fitzgerald est que tous les objets se
déplacant dans I’éther subissent une contraction “réelle” dans la direction
du mouvement et que cette contraction est précisément celle qui entraine

/H = t/,. Cela signifie que perpendiculairement a la direction du mouvement



de la terre, la longueur est inchangée tandis que parallelement il y a contrac-
tion.

Au lieu de ¢, écrivons ¢ dans 'expression de t’H et égalons th et t/, . Il vient :

20/c 20' /¢
- — ST =2/
1—0v2/c? 1—0v2/c? ¢ et

Cette relation relie les longueurs PM; et PM, vues par un observateur O
dans I'éther. L’observateur O’ ne peut pas observer cette contraction car sa
regle étalon de mesure se contracte avec la méme proportion lorsqu’il mesure
dans la direction parallele. Par conséquent, pour O, £ = ¢'.

Une autre explication de I'expérience de Michelson a été celle qui consistait
a admettre que la vitesse de la lumiere est la méme dans toutes les directions
quel que soit I'état de mouvement de O'. Dans ce cas, th =t = 20]ec
Cette opinion était celle d’Albert Einstein lorsqu’il formula son principe de
relativité.

3.3 Postulats d’Einstein

Einstein pose donc en principe qu’'un observateur Galiléen ne peut
mettre en évidence, par des expériences de physique, un mouvement absolu
de son référentiel et que, par conséquent, tous les référentiels galiléens
sont équivalents pour formuler les lois de la Nature. Pour tous
les observateurs, ces lois doivent s’exprimer par des équations de
méme forme.

A ce principe de relativité spéciale, Einstein ajouta les deux principes
suivants, qui en résultent d’ailleurs de maniere inéluctable, mais qu’il est bon
d’énoncer explicitement :

1. Dans tout référentiel galiléen, la vitesse de la lumiére est indépendante
de la direction (isotropie).

2. La wvitesse de la lumiere a la méme valeur dans tous les référentiels
galiléens (invariance).
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3.4 Le temps physique

Une idée fondamentale d’Einstein est qu’'une grandeur n’est physiquement
définie que si I’on peut décrire un processus opératoire qui permet, au moins
en principe, de la mesurer.

Pour la longueur, sa définition est, comme en physique newtonienne, celle
de la géométrie euclidienne, basée sur la notion de solide indéformable. Pour
la mesure, on utilise une regle.

En ce qui concerne le temps, la notion que s’en fait le sens commun n’est
pas suffisante. En effet, la notion d’intervalles de temps égaux et celle de
simultanéité de deux évenements en deux lieux distincts ne sont pas des
notions claires.

Le temps, en un point donné d’un systeme galiléen, doit étre défini au moyen
d’une horloge et, selon Einstein, 'horloge théoriquement parfaite est la “boite
a lumiere” : elle se compose d'un tube de longueur L connue, fermée aux deux
bouts par des miroirs M; et My paralleles entre lesquels chemine indéfiniment
un signal lumineux :

My My

A
\J

L’intervalle de temps qui sépare deux évenements, au point ou se trouve
le miroir M; de I'horloge, est mesuré par le nombre de réflexions du signal
lumineux ayant eu lieu en M; entre les deux évenements considérés.

Une telle horloge est indépendante de son orientation (principe d’isotropie).
Pour que le temps soit partout défini a l'intérieur d’un référentiel galiléen,
il faut synchroniser les horloges se trouvant en des points différents. Soit un
observateur en A et un autre en B. A envoie un signal lumineux en direction



de B en ty,. B recoit le signal en tp, ; B possede un miroir qui renvoie le
signal en A. A recoit ce signal en t,4,. Les deux horloges sont synchronisées
d’apres le principe d’isotropie, si :

ta, +ta,
2

Il est bien clair que la vitesse c intervient dans la définition.

tp, =

3.5 L’intervalle

Le temps étant défini de la méme maniere dans tous les référentiels ga-
liléens, avec la meéme valeur ¢ pour la vitesse de la lumiere, un probleme
fondamental se pose : étant donné un évenement ayant lieu pour un obser-
vateur de R; a l'instant ¢ en x,y, 2, et ayant lieu pour un observateur de R,
a l'instant ¢ en 2,4/, 2/, exprimer 2/,v, 2’ et ¢’ en fonction de z,y, z et t et
inversement.

Considérons R; et R, munis de reperes O, x,y,z et O',2',y/, 2’ avec les axes
paralleles. Comme nous 'avons déja dit, cette maniere de choisir les reperes
ne limite pas la généralité. Soit v = (v,0,0) la vitesse des points de R, par
rapport a R;. Réciproquement, un observateur de R, voit les points de R;
animés d’une vitesse —v = (—v,0,0) (voir Figure ci-apres).

74 P=(oyoz) P=(xoy0.20) g z'
point de vue
de Rjen 1<t

(xO:)’OlZO) pP= (xo Y0:20) A 2’
point de vue
de R en 7 <t
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Considérons un point P’ = (xy,y), 2,) fixe dans R.. Par rapport a R;, il
se déplace horizontalement a vitesse v. Soit P = (x¢,yo, 20) fixe dans R;.
En ty, on suppose que P’ = P et qu'une impulsion électromagnétique est
émise (flash lumineux). Pour l'observateur de R}, P se déplace horizonta-
lement a vitesse —v. Le flash est émis en t{, lorsque P’ = P (voir Figure
ci-apres).

point de vue
de Rjent,
z P'=P z
-~ point de vue
-~ . de Rjen ¢,
y y
0 X ‘ x'

La propagation des ondes électromagnétiques obéit aux équations de Max-
well. Les équations de Maxwell sont des lois de la nature qui doivent avoir la
méme forme dans tous les référentiels d’inertie en vertu des postulats
d’Einstein. En particulier, pour le flash lumineux envisagé, la solution est
une onde sphérique.

Au temps t > tg, 'observateur de R; observera que le signal lumineux se
trouve aux points de coordonnées (x,y, z) tels que ces points sont sur une
sphére centrée en P = (zg, Yo, 20) et de rayon valant c(t —to). Pour I'observa-
teur de R}, en t’ > t{, le signal lumineux se trouve aux points de coordonnées
(x',y', 2) tels que ces points sont sur une sphere centrée en P’ = (z(, ¥, )
et de rayon valant ¢(t' — t;) (voir Figure ci-apres).
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point de vue
de R;en >t

point de vue
de R} en >,

v(t'-10)

Dans R;: (v —x0)" +(y—w0)’ + (2 — 20)° = &2 (t — tp)°

Dans R (o —a)? + (yf — 4 + (= %) = @ (¢ — 1))’

Il faut qu’en remplacant z, 7, z et ¢t dans la 1% équation par leurs valeurs en
fonction de 2/,1/, 2’ et t/, on obtienne la deuxiéme équation et inversement.
Ce ne serait pas le cas si 'on utilisait les formules de la transformation de
Galilée. On définit alors I'intervalle As ou As’ par :

As? = A2 — Ax? — Ay? — A2
ASIQ — CZAtIQ _ A.T’Q _ AyIQ _ AZ’2

La double condition énoncée ci-dessus revient a dire que les relations qui
existent entre x,y, z,t et 2’, 1/, 2, t' doivent étre telles que As? et As™ soient
nuls simultanément. Autrement dit, deux éveénements caractérisés par As = 0
pour un personnage appartenant a R; sont caractérisés par As’ = 0 pour un
personnage appartenant a R;.

Cette remarque permet d’écrire As = K(v)As’ o K(v) est un coeflicient qui
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dépend a priori de la vitesse. L’équivalence des référentiels R; et R, entraine
la relation As’ = K(—v)As. De ces deux relations, on tire :

K(WV)K(-v)=1

D’autre part, la fonction K (v) est nécessairement symétrique, car 'intervalle
reste inchangé dans la transformation v — —x; y — —y; 2z — —z. Et donc :

K (v)=K(-v)

11 résulte :

K*(v)=1— K (v) =+l

Comme K(v) doit se réduire a +1 pour v = 0, seule la solution K =
1 convient. Finalement, les formules de transformation qui font passer de
x,y,z,tax,y, 2, t' doivent étre telles que :

As = As'

L’intervalle est un invariant relativiste pour des référentiels gali-
léens.

Revenons a la notion générale d’intervalle. Un évenement F;, pour un
observateur de R; est caractérisé par xi,y, 21, t1. Soit un autre événement
E5 caractérisé par xs, ys, 29, to. L'intervalle entre les deux évenements vaudra :

S19 = \/02 tr—t1)" — (w2 —21)" — (2 — ) — (22— 2)?

Si les deux évenements sont reliés entre eux par une onde électromagnétique
(onde lumineuse), 'intervalle est nul. Dans le cas ou les deux évenements sont
séparés par une distance plus petite que celle que la lumiere peut parcourir
durant le temps (ty — 1), U'intervalle est réel et est appelé intervalle du
genre temps. Dans le cas contraire, c’est un intervalle du genre espace
(s12 est imaginaire).
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Pour rendre compte de l'invariance de l'intervalle dans les référentiels
d’inertie, il est possible de dessiner des diagrammes. Par exemple, le dia-
gramme de Brehme :

ct'A ct
FE, et £y = évenements
Ay’
N E,
S A+ 2 = AR + 22
3 A 1 1 1 1
E;| Ax 242 2 2412 2
o ! c°ty +xy =ty + 15
1
I
/ AL + Ax? = AAL? + Ax?
1
’ > X
0] I a

AAL? — Ax? = AAY? — Ax?

Etant donné que la translation de R, par rapport a R; se fait selon 'axe Oz,
il est naturel de poser :

/ / /
Yi=Mu Z1 =2 et Yy = Yo 2y = 22

Ainsi, on a bien As’ = As.

Remarquons que le mouvement de 'origine O’ est repéré par la ligne 56,(0/) =0
dans R; et x(o) = vt dans R;, si en t = 0, les reperes sont confondus. Cela
nous permet de trouver une expression pour « :

ct" ct

x'0")=0 V¢t
Iﬂ/
|

<

sina = —
o) . ¢
| x(O' aprest)
' - X
o

vt
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3.6 La transformation de Lorentz

Le groupe de transformation qui relie les coordonnées d’espace et de temps
de deux référentiels galiléens est appelé “groupe propre de Lorentz” (c’est
un sous-groupe d’une transformation plus générale). On trouve facilement
les éléments de la matrice de transformation en exprimant l'invariance de
I'intervalle.

i) Approche par diagramme de Brehme

cr'A ct
Le diagramme de Brehme
fournit les relations géomé-
triques suivantes
E
a b
ct/ ler o tano o tano
a - ' = (x — a) cosa
o 2 /p
ct’ = (ct — b) cosa
o

Avec un peu d’algebre on élimine a et b :

¥ = (x — a) cosa

= x cosa — ct’ sina

=z cosa — (ct — b) cosar sina

= g cosa — ct cosa sina + 2 sin’a

1 :
2" = ———— (x cosa — ct cosv sina)
1 —sin“o
1 :
= —— (zcosa — ctcosa sina)
cos?a
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Et donc
1
= (x — ctsina)
cos a

De facon similaire on obtient ’expression pour ct’ :

ct' = !

= (et — zsin «)
cos «

. . v . .1s .
En introduisant — = sin « et en utilisant cos? @ = 1 — sin? «, on trouve :
c

v :ﬁ(“d@)

ct’ = \/%2/02 (ct—x (%))

Ensuite, avec z = 2/, y = ¢/ on obtient :

1 —v/c
x’ T 0 0 T x
V1—v?/c? V1—v?/c?
Y 0 1 0 0 Yy
y 0 0 1 0 .
—v/c 1

/ _— 0 0 -
“ NS Vi—vjE )\

La transformation peut aussi s’écrire sous une forme générale :

'k = E;‘? (v) 27

ou z! =z, 22 =y, 2® = 2, et 2* = ct. Le déterminant de la matrice £ vaut
125} = 1.
J
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Il est facile d’exprimer la transformation inverse £7!. On trouve naturelle-
ment :

Ce qui entraine

Pour vérifier la structure de groupe de cet ensemble de transformations, on
est amené a calculer le produit de deux matrices du type L et vérifier que
I’on obtient encore une matrice de ce type. On vérifie que :

L (v (1)) - £ (vs(2)) = £ (vs (1))

avec

v3 (2) + vg (1)
(1) vs(2)

V2
1+ 2

vs (1) =

ou v;(k) est la vitesse du référentiel ¢ mesuré dans le référentiel k.

On remarque que la loi de composition des vitesses n’est plus la méme en
relativité que dans la mécanique de Galilée (dans ce cas, on aurait eu v3(1) =

v2(1) + v3(2)).

On remarque que si I'une des vitesses, v9(1) par exemple, vaut ¢, v3(1) vaudra
c quelle que soit la valeur de 'autre vitesse (v3(2) dans notre cas). ¢ apparait
donc comme une vitesse limite.

La transformation de Lorentz se réduit a celle de Galilée si I’on attribue a ¢
une valeur infinie. Cependant, cette conception n’est pas physique et il est
préférable de considérer le cas particulier ou v < c.
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ii) Approche par calcul

On suppose que la relation 2/ — x est de la forme :

/

= (x — vt)

avec 7 = y(c,v) et liII(l) v = 1. L’équivalence des référentiels R; et R. permet
v—

d’écrire

x =z + ot

r=7(y(z—vt) +vt")

ywt' =z — 42 (z — vt)
1

t = o (z (1 =~%) +~7*t)

1—~%x
t = t —
7(+ 7 v)

L conserve As, en particulier As =0 :

RSy L L M
implique
2 +y’ + 2 =P
La premiere équation s’écrit en appliquant les transformations obtenues jus-
qu’a présent :
2

1_ 2
V2 (x —vt)? +y? 4 22 = P (t+ 27 z)
Y2 ow

Vu qu’elle doit étre identique a la deuxieme équation, on peut faire les consi-
dérations suivantes :



3.7. TRANSFORMATION DE LA VITESSE

i) terme devant z? doit étre 1
i) terme devant ¢* doit étre c?
iii) terme xt doit étre 0

Selon 1)
2\2
s a2 (1= 1
v =y Tﬁ_l
212
> (1=77) _ 2
T a ]
1 — 2
_02( 7):1
V202
B Ry
72(02 v2):c2
2
2 vty
. . 1
Donc on trouve bien |'expression v = -
v
bt

3.7 Transformation de la vitesse

Considérons une particule en mouvement par rapport a R; et R :

AC A° P

17
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P est repéré par r = (x,y, z) par rapport a R;
P est repéré par v’ = (2/,y/, 2') par rapport aR;
La vitesse de R} est v = (v,0,0) par rapport a R;

Par définition, la vitesse de P vaut :

d
u= d_; dans R;
/
u = % dans R;

On peut exprimer z, ¥, z et t en fonction de 2’3/, 2’ et t' :

( 1 v ( 1

x:—[z’—i—ct’(—)] =
V1—=v?/c? c V1—=v2/c?

y=y Y=y

I 17

Z:Z/ Z/:Z

¢ ! [t’+ ’(Uﬂ ¢ ! ¢

t=———|ct' +2' (- cf = ——|c
V1—0v2/c? c V1—0v2/c?

Différencions le 1 groupe d’équations et calculons

dx dy ‘ dz
Uy = — Uy = — e U, = —
dt Yoode dt
Apres calcul, on trouve
( uly, 4 v
e = ul,v
!
1+ 3”2
C u, ;) =
X
U,/ 1 —v?/c?
Uy = 7 /
UV avec uy, =
1+ 5
c
ro_
ul\/1—v2/c? Uy =
U= ul v
/
1+ x2
( c
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Ces relations contiennent la relation de composition de vitesses déja trouvée.

En plus, on a des relations entre u,, u. et ul,,u,,, u,, et v.

On remarque a nouveau que la composition des vitesses n’est plus la méme
en relativité que dans la mécanique de Galilée.

Pour obtenir les composantes u,, u;,, ., en fonction de u,, u,, u, et v, il suffit
de permuter les indices et de changer v en (—v).

3.8 Contraction de la longueur et dilatation
de la durée

y y

©

~

> x 0
R, R, —

1) Contraction de longueur

Un barreau est placé sur 'axe Oz’ du référentiel d’inertie R;. On associe deux
événements A’ et B’ aux deux extrémités du barreau. La distance entre A’
et B’ et Az’ = Ly, qui correspond a la longueur du barreau mesurée dans
R, & At' = 0 (ce qui signifie que les deux événements sont mesurés en méme
temps, & un instant ¢ donné).

Pour prévoir la valeur de la longueur L de ce méme barreau mesurée a un
instant ¢ donné par un observateur lié a R;, il faut utiliser I’équation de
transformation :

, 1 v
= (x—ct—)
V1—v?/c? c
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En effet, cette relation permet de calculer Az en fonction de Ax’ lorsque
At = 0 (pour déterminer la longueur, il faut que les deux événements soient
mesurés en méme temps aussi dans R;).

On obtient : Ax’ = \/1:2/2 Az, qui devient dans notre cas :
—v?/c
2
L=Lo\/1—= (A2 =Ly, Ar=1L)
c

Diagramme de Brehme

Ligne d’univers de I’extrémité B'

Ligne d’univers de I’extrémité A'

,02

L = Lycosa = Ly 1——2
c

2) Dilatation de la durée
Considérons deux évenements A’ et B’ qui ont lieu au méme endroit xf, dans
R! & deux temps différents ¢, — ¢/, = A’

Pour exprimer l'intervalle de temps At entre ces deux évenements dans R;
en fonction de At' en tenant compte de la condition Az’ = 0, il faut utiliser
I’équation de transformation :

1 , ,U
ct:—<ct +x—>

V1—0v%/c? c



3.8. CONTRACTION DE LA LONGUEUR ET DILATATION DE LA DUREE

il vient alors :
AV

At =

Diagramme de Brehme

ct' ct

cAt' = cosa cAt

At At

At = =

cosq V2

Exemple :

+

durée de vie d'un pion 7% au repos : 7 = 2.6-107% s

vitesse du pion par rapport a la Terre : v = 0.99999999 ¢
/

durée de vie dans R; de la Terre : 7 = S 70717

distance parcourue : 56 km, donc on peut les observer sur la Terre.

En résumé, on a :

’U2

L="L\1-—; (L=Az, Ly=Ax)
¢
At

At =

21
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La signification physique de ces résultats fait 'objet de nombreuses dis-
cussions. En particulier, la dilatation de la durée a donné lieu a un paradoxe
fameux : le paradoxe des jumeaux. D’apres la deuxieme relation, il apparait
que deux personnages “équivalents” (jumeaux), placés respectivement dans le
référentiel R; et dans le référentiel R, vieillissent de maniere différente. Des
lors, en imaginant que R est une fusée qui part de R; et y revient apres avoir
suivi une tres longue trajectoire a une vitesse assez voisine de ¢, on est amené
a envisager que les jumeaux pourront comparer leur age physique apres 1’ex-
périence. A premiere vue, chacun des personnages connaissant les équations
de dilatation de la durée (et de contraction de la longueur) est en droit de se
considérer comme plus a4gé que ’autre (équivalence des référentiels)
ce qui constitue le fait paradoxal. En réalité, les référentiels ne sont pas
équivalents, car il est impossible que R suive la trajectoire qui a été décrite
en restant toujours galiléen. Il n’y a donc pas vraiment de paradoxe et I’étude
correcte d’une telle expérience doit se faire dans le cadre d’une théorie moins
restrictive que la relativité spéciale (relativité générale).

En 1971-1972 une expérience a été tentée pour vérifier I'exactitude du “para-
doxe des jumeaux”. Un avion a été muni d'une horloge extrémement précise
Maser) alors qu’au méme endroit, au sol, une méme horloge a été synchro-
) Y

nisée a celle de I'avion.

A

L’avion a alors tourné autour de la
terre dans un sens le long de ’équa-
teur, puis a rebroussé chemin. A l'ar-
rivée, les horloges marquaient un déca-
lage dans le sens prédit par la théorie
de la relativité spéciale et l'effet était
du bon ordre de grandeur, en dehors
des erreurs possibles. Il faut cependant
noter que les deux référentiels, terre et
avion, ne sont pas galiléens !
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3.9 Dynamique de la particule relativiste

D’apres Einstein, la transformation de Lorentz permet de comparer les
observations d’évenements a partir de référentiels d’inertie galiléens et il faut
que les lois de la nature s’expriment de la méme maniere dans ces référentiels.

Le probleme consiste donc a trouver comment la force, la quantité de mouve-
ment et 1'énergie se transforment lorsqu’on passe d’un référentiel a un autre,
les lois devant garder leur méme forme.

Il est possible, a partir d’arguments tres généraux, de déduire ces transfor-
mations. Nous nous contenterons d’induire ces résultats, en faisant
intervenir ’expérience. En mécanique newtonienne, par rapport a un ré-
férentiel inertiel, on a la loi de Newton F = i—‘; = m‘(ii—‘t’ ou v est la vitesse de
la particule par rapport a R;. La masse m est constante. L’expérience montre
que si v est grand on ne peut plus considérer la masse m constante.

Des électrons sont émis dans

5 des processus de différents
L types, couvrant des gammes
AL o Kaufmann (1901) différentes de vitesse. On ap-
e Bucherer (1909) plique des champs électrique

B X Guye et Lavanchy (1915) et magnétique pour filtrer les

électrons selon leur vitesse et
les dévier ensuite. La trajec-
toire est déterminée grace aux
impacts sur une plaque pho-
tographique. Cette trajectoire
dépend de ¢/m, donnant acces
a m pour une vitesse donnée.
Le graphe montre le rapport

ol 1 1 | )
0 01 02 03 04 05 06 07 08 09 10 ™M/mg en fonction de v/c pour

vic des mesures effectuées par trois
groupes différents.
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En effet, on exerce une force F connue sur une particule et on en déduit
expérimentalement la quantité de mouvement correspondante. En mesurant
encore la vitesse v de la particule par rapport a R;, on constate que la masse
suit la loi suivante (les expériences ont eu lieu au début du 20°™€ siecle déja!) :

Mo
- - @@ - m.
V1—=v?/c? o

ol my est la masse au repos (lorsque la particule est attachée au référentiel
R;) et m est sa masse observée depuis R;. La quantité de mouvement vaudra
donc :

moVv

Il est bien clair qu’il faudra encore vérifier que cette expression satisfasse
au principe de relativité. Avant de faire cela, exprimons ce que deviennent
la force F et I'énergie cinétique FE., d’une particule de vitesse v observée
depuis un référentiel R;.

p=mv= = YmyVv

La relation qui lie la force F et la variation de quantité de mouvement est
valable encore en mécanique relativiste parce que nous choisissons cette dé-
finition de la force :

dp d
F = —_—— = —
dt — dt (ymov)
= myYV + meyv

. 1, 20\ .
=mogyVV+mev|—=7" | —— |V
2 c?

(Y
= MoV + Mgy gvv

Donc dans le cas général et a haute vitesse, la force n’est pas colinéaire avec
I’accélération.
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composantes tangentielles de a et F

trajectoire
composantes normales de a et F

Calculons maintenant le travail de la force F entre deux points 1 et 2 de sa
trajectoire naturelle :

2 2 2
Wm:/F-dr:/%(mv)-dr:/v-d(mv)
1 1 1

Le travail nécessaire a ce que la particule soumise a F acquiert la vitesse v
sera par définition I’énergie cinétique FE;,.

Ecm:/F-dr:/v-d(mv):/v2dm +/%d(v2)
0 0 0 0
m2c2 m2e2
On peut récrire : v*dm = <02 - > dm=d <m02 + #)
ainsi que : 2 d(v?) = mv dv = mgyvdv = mOCQﬁ dv=—-d (moc2 -5
c 1—2—2

o) =-a(8)

Donc pour I'énergie cinétique :

" 2.2 i 2.2 "
Een = /d<m02+ ot ) - /d(moc ) = /d(mc2) = mc® — moc?
m m

mo mo mo
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Een = (m —myg) ¢

L’augmentation d’énergie cinétique peut donc étre considérée comme due a
I’augmentation de la masse, celle-ci augmentant avec la vitesse. La quantité
moc? est appelée énergie de repos de la particule.

L’énergie totale de la particule vaudra :

2
mocC
E = Euy + moc? = —— = mc?

Jiowje

Il faut remarquer que dans cette expression, il n’y a pas d’énergie potentielle.
Il n’y a que I'énergie cinétique et 1’énergie de repos. En tenant compte de
p = mv, et de E = mc?, on peut écrire

C2

V:Ep

L’équation donnant la quantité E = mc? est équivalente & :

E = cy/mic? + p?

Remarques :

1. A premiere vue, il semble que la valeur de ’énergie cinétique F, =

(m—my)c? soit différente de celle trouvée en mécanique classique, soit

%va. Cependant, si 'on développe la masse en série de puissance :

) p2\ V2 1+1112+3"U4+
m=m - — =m —— = F ...
0 2 0 2¢2 8¢t
En remplacant, on trouve
1 3 vt
Ecin = §m0712 + gmog + ...
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2. Sil’on considere une particule dont la masse de repos est nulle (my =
0), son énergie totale vaut £ = cp.

En tenant compte de la relation v = %p, on obtient v = ¢. Autrement
dit, une particule caractérisée par sa masse de repos my = 0 ne peut se
déplacer qu’a la vitesse de la lumiere et ne peut jamais étre au repos
dans un référentiel inertiel.

Pour v — ¢, v — oo. Cependant, puisque on a aussi que my — 0,
la quantité de mouvement p = ymgv reste finie. En effet, il y a des
nombreuses évidences expérimentales de 1’existence de particules pour
lesquelles moc? = 0, comme par example les photons.

Examinons encore pour terminer comment 1’énergie et la quantité de mouve-
ment se transforment lorsqu’on change de référentiel d’inertie. En vertu du
principe de la relativité, la relation liant 1’énergie et la quantité de mouve-

ment :
E = c\/m3c + p?

doit avoir la méme forme pour des observateurs en mouvement relatif de
translation. Soit v la vitesse de translation de R; par rapport a R;.

2 N .
Pour l'observateur de R; : £ — p? = mdc?, c’est-a-dire :

2
E 22

2 2 2
C2 _pcc_py_pz_moc

Pour 'observateur de R; :

E12
2 12 2 2.2
C2 — Dy _py’ — Dy = MyC

La masse mgq est la méme pour les deux observateurs puisqu’elle correspond
a la masse de repos. Il vient alors :

E?2 E"2
— — W+l = — = @+ oy +02)
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Cette relation a la méme forme que celle définissant 'intervalle s15 :

FAL? — (A + Ay + A2%) = CAP — (A2 + Ay” + AZ?)

a condition de faire la correspondance :

pe — A p,— Ay p,— Az et E/c —ct

Par conséquent, 'invariance de la relation

E = cy/m2c? + p?

entraine une relation de Lorentz entre p,, py, p., E/c et pl., pl, P, E'/c.

Pour v = (v,0,0) il vient :

( o, = —vE/c?
T /1 —0?/c?
Dy =Dy
plz/ = Dz
e~ Ble=p 0/
V1—v?/c?
(

La force agissant sur une particule vaut respectivement pour des observateurs
liés a R; et R;

_dp
Cdt

_

T
¢ ar'

F

La similitude de ces expressions est nécessaire pour satisfaire au principe de
la relativité. La relation entre F et F’ est en général compliquée. Dans le cas
simple ou la particule est temporairement au repos dans R;, F’ est appelée
force propre et on peut montrer que
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F.ZI/E/ :Fx
F/ — Fy

v V1—=v?/c?
F// — Fz

? V1—v?/c?

On remarque que la force ne se transforme pas de la méme maniere que
T, Y, %, ¢t ou pg,py, ps, Efc.

La raison est que les composantes de la force ne sont pas parties d'un quadri-
vecteur. En relativité, la force n’est pas un concept aussi utile et fondamental
que I’énergie et la quantité de mouvement.



