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Problem 1 : Degenerate Perturbation Theory for a 3-State System

We consider the following Hamiltonian acting on a spin 1 :

Ĥ = −DŜ2
z + λBŜx (1)

This is a model that can be realistic in certain materials. The first term represents an anisotropy,
and the second a magnetic field along the x direction. We propose to diagonalize this Hamiltonian by
considering the term λBŜx as a perturbation. Subsequently, we assume that B and D are non-zero.

1. Under what condition does the Hamiltonian commute with Ŝz ? In this case, give the eigenva-
lues and eigenvectors of Ĥ.

By definition of the angular momentum operators, the commutator of H with Ŝz yields

[H, Ŝz] = −D[Ŝ2
z , Ŝz] + λB[Ŝx, Ŝz] = −iℏλBŜy (2)

Assuming B is non-zero, [H, Ŝz] = 0 only if λ = 0. In this case, the eigenstates of Ŝz are also
eigenstates of H, and applying H to them gives their energy. We have Ŝ2

z |m⟩ = ℏmŜz|m⟩ =
ℏ2m2|m⟩, hence the eigenstates and eigenenergies of H are :

|0⟩ ≡ |m = 0⟩ : E = 0 (3)∣∣1̄〉 ≡ |m = −1⟩ : E = −Dℏ2 (4)
|1⟩ ≡ |m = +1⟩ : E = −Dℏ2 (5)

The eigenenergy −Dℏ2 is thus two-fold degenerate.

2. Subsequently, we consider λ ̸= 0. Write down the matrix of the Hamiltonian in the basis of
eigenstates of Ŝz. Using second order perturbation theory, compute the energy correction for
the state |m = 0⟩. Calculate the correction to the associated eigenvector, to first order in
perturbation theory.

We write the Hamiltonian in the basis B1 = {|1̄⟩, |0⟩, |1⟩}. To determine the matrix of the
operator Ŝx, we use the formula Ŝx = 1

2(Ŝ+ + Ŝ−) and (for a spin-s) :

Ŝ± |s, m⟩ = ℏ
√

s(s + 1) − m(m ± 1) |s, m ± 1⟩ . (6)
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It is then easy to apply Ŝx on the basis states :

Ŝx|1̄⟩ = ℏ
2

√
2|0⟩ = ℏ√

2
|0⟩ (7)

Ŝx|0⟩ = ℏ
2
[√

2|1⟩ +
√

2|1̄⟩
]

= ℏ√
2
[
|1̄⟩ + |1⟩

]
(8)

Ŝx|1⟩ = ℏ
2

√
2|0⟩ = ℏ√

2
|0⟩ (9)

The action of Ŝ2
z is simply Ŝ2

z |1̄⟩ = ℏ2|1̄⟩, Ŝ2
z |0⟩ = 0, and Ŝ2

z |1⟩ = ℏ2|1⟩. The matrix of the
Hamiltonian is then equal to

H =


−Dℏ2 λB ℏ√

2 0
λB ℏ√

2 0 λB ℏ√
2

0 λB ℏ√
2 −Dℏ2

 (10)

Since the energy level ϵ1 = 0 is non-degenerate, for λ = 0, we can use non-degenerate pertur-
bation theory. According to the course, the first-order correction is (Eq. 6.8)

E
(1)
1 = B⟨0|Ŝx|0⟩ = 0 (11)

At second order, in the Rayleigh-Schrödinger formalism (Eq. 6.22) :

E
(2)
1 = |⟨1̄|BŜx|0⟩|2

0 − (−Dℏ2) + |⟨1|BŜx|0⟩|2

0 − (−Dℏ2) = B2/D (12)

Notice that in this calculation, λ does not appear. It is introduced in the energy correction
(Eq. 6.3) :

E1 = ϵ0︸︷︷︸
=0

+λ E
(1)
1︸︷︷︸

=0

+λ2E
(2)
1 + O(λ3), (13)

so
E1 = λ2B2/D + O(λ3) (14)

The correction to the eigenvector to first order is given by (Eq. 6.13) :

⟨1̄|Ψ(1)
1 ⟩ = ⟨1̄|BŜx|0⟩

Dℏ2 = B√
2Dℏ

(15)

⟨1|Ψ(1)
1 ⟩ = ⟨1|BŜx|0⟩

Dℏ2 = B√
2Dℏ

(16)

Therefore, to first order in λ, the eigenvector associated with the energy E1 = λ2B2/D is (Eq.
6.19) :

|Ψ1⟩ = |0⟩ + λ
(
⟨1̄|Ψ(1)

1 ⟩|1̄⟩ + ⟨1|Ψ(1)
1 ⟩|1⟩

)
+ O(λ2)

Finally,
|Ψ1⟩ = |0⟩ + 1√

2
Bλ

Dℏ

(
|1̄⟩ + |1⟩

)
+ O(λ2) (17)
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3. To calculate the effect of the perturbation on the other two states, it is necessary to use dege-
nerate perturbation theory. What is the matrix of the operator Ŝx in the degenerate subspace ?
Deduce that the first-order correction is zero.

According to degenerate perturbation theory, the first-order correction to the energy is given
by the eigenvalues of the restriction Ṽ of V = λBŜx to the subspace {|1̄⟩, |1⟩} (Chapter 6.2).
This matrix is written as :

Ṽ =
(〈

1̄
∣∣V ∣∣1̄〉 〈

1̄
∣∣V |1⟩

⟨1| V
∣∣1̄〉 ⟨1| V |1⟩

)
=
(

0 0
0 0

)
(18)

Here, the eigenvalues of Ṽ are 0, and therefore the first-order correction to the energy is zero.
Remarque
In the general case where the matrix Ṽ has two different eigenvalues, it lifts the degeneracy
and allows us to find the eigenvectors

∣∣∣Ψ(0)
2,3

〉
which will be the starting point for the

perturbation expansion of the vectors |Ψ2,3⟩. Here, we are in the particular case where the
degenerate subspace for H0 is also degenerate for Ṽ . Therefore, we will need to go to the
next order to find the desired eigenvectors.

Problem 2 : Hydrogen atom in an external magnetic field

The Hamiltonian of a hydrogen atom under a weak uniform magnetic field directed along the z
axis can be expressed as

H = (p + eA)2

2m
− e2

|r|
− µ · B . (19)

Here µ = 2µes, with µe the electron magnetic moment and s the electron spin. Using the radial
gauge A = 1

2(−By, Bx, 0) = 1
2B×r, and neglecting, for small B, terms of order B2, the Hamiltonian

can then be rewritten as

H = p2

2m
− e2

|r|
+ e

2m
(p · A + A · p) − 2µes · B

= H0 + e

4m
(p · (B × r) + (B × r) · p) − 2µes · B

= H0 + eℏ
2m

B · L − 2µes · B

(20)

where H0 = H|B=0.
Calculate the splitting of the hydrogen energy levels to first order in B.
Hint. By rotational invariance, the spectrum cannot depend on the direction of the magnetic

field. This invariance can be used to simplify the calculations.
The unperturbed Hamiltonian H0 in this case is the Hamiltonian of the hydrogen atom, for which

the spectrum and the eigenstates are exactly known. In order to calculate the splitting induced by
the magnetic field, we need to use degenerate perturbation theory, because the spectrum of H0 is
degenerate : the energy level n has degeneracy gn = 2n2.

To find the energy eigenstates to zero order, we have to diagonalize for each degenerate level the
matrix ⟨α|V |β⟩, where V = eℏ(B · L)/(2m) − 2µe(s · B) is the perturbation operator and |α⟩, |β⟩
range over a complete set of states forming a basis of the degenerate level. For the hydrogen case,
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the basis for the energy level n can be chosen in a standard way as the set of states |n, ℓ, M, sz⟩ with
ℓ = 0, .., n − 1, M = −ℓ, .., ℓ, sz = ±1/2.

By rotational invariance we are free to choose the z axis in any direction we like, without affecting
the final results. Here, the most natural choice is to choose the z axis in the direction of the external
magnetic field B. Thus, without any loss of generality, we can assume that the field is oriented
along z and that the perturbation Hamiltonian is eℏℓz/(2m) − 2µeBsz. Then the problem simplifies
considerably because the matrix to be diagonalized becomes :

⟨n, ℓ′, M ′, s′
z| (eℏℓz/(2m) − 2µeBsz) |n, ℓ, M, sz⟩ = Bδℓ,ℓ′δMM ′δszs′

z
(eℏM/(2m) − 2µesz) . (21)

The matrix is already diagonal so no explicit diagonalization is necessary. From the diagonal elements
we can read the energy corrections to first order in B, which are

E(1) = B (eℏM/(2m) − 2µesz) ≃ B

(
eℏM

2m
+ eℏ

m
sz

)
= eℏB

2m
(M + 2sz) . (22)

Problem 3 : Perturbed two-dimensional harmonic oscillator

Consider a two-dimensional harmonic oscillator governed by the Hamiltonian

H = H0 + gH1 , H0 = 1
2m

(p2
x + p2

y) + 1
2mω2(x2 + y2) , H1 = x2y2 . (23)

The model, for example, can describe in an approximate way an optical phonon in a two dimen-
sional lattice with square anisotropy.

1. Consider the unperturbed Hamiltonian H0, which describes a two-dimensional harmonic oscil-
lator. Describe the spectrum of H0, expressing the eigenstates and the corresponding energies.

2. Study how the ground state, the first excited level, and the second excited level of the unper-
tubed Hamiltonian are modified by H1, using perturbation theory to first order in g.

1. The unperturbed Hamiltonian is the sum of two independent harmonic oscillators in the x
and the y directions. Thus the energy eigenstates can be expressed as |nx, ny⟩, where nx, ny

are the excitation numbers of the two oscillators. The corresponding energies are E(nx, ny) =
ℏω(2 × 1

2 + nx + ny) = ℏω(1 + nx + ny). The degeneracy of the n-th excited level is n + 1, since
there are n + 1 different ways of dividing n excitations between the x and the y coordinates.
In particular, the ground state is nondegenerate, and corresponds to the state |0, 0⟩. The first
excited state has degeneracy 2. A basis for the states in the first level is |1, 0⟩, |0, 1⟩. The
second excited state has degeneracy 3, and the basis states can be chosen as |2, 0⟩, |1, 1⟩, |0, 2⟩.

2. To study the interaction in perturbation theory it is convenient to represent the coordinates
in terms of creation and annihilation operators, introducing :

x =

√
ℏ

2mω
(ax + a†

x) , y =

√
ℏ

2mω
(ay + a†

y). (24)

The perturbation is thus

V = gℏ2

4m2ω2 (ax + a†
x)2(ay + a†

y)2 . (25)
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For the ground state, which is nondegenerate, we can use the formulas of non-degenerate
perturbation theory. The energy at first order in g is

E1 = ℏω + gℏ2

4m2ω2 ⟨0, 0|(ax + a†
x)2(ay + a†

y)2|0, 0⟩

= ℏω + gℏ2

4m2ω2 ⟨0, 0|axa†
xaya†

y|0, 0⟩

= ℏω + gℏ2

4m2ω2 .

(26)

In the calculation, we used that a|0⟩ = 0 and ⟨0|a† = 0.
Consider now the first excited level. Since the level is two-fold degenerate, we have in principle
to diagonalize the matrix ∣∣∣∣∣⟨1, 0|V |1, 0⟩ ⟨1, 0|V |0, 1⟩

⟨0, 1|V |1, 0⟩ ⟨0, 1|V |0, 1⟩

∣∣∣∣∣ . (27)

However, it can be seen that the off-diagonal matrix elements are zero. In fact, the perturbation
V has matrix elements only between states for which the number of excitations in the x
direction remain equal or change by ±2. (The same is true for the number of excitations in
the y direction).
As a result, we only need to calculate the diagonal matrix elements. In addition, the two
diagonal elements are equal to each other : ⟨1, 0|V |1, 0⟩ = ⟨0, 1|V |0, 1⟩. As a result, the two-
fold degeneracy of the energy level is not lifted at first order in perturbation theory. The level
remains degenerate and acquires an energy shift at first order equal to :

E2 = 2ℏω + ⟨1, 0|V |1, 0⟩

= 2ℏω + gℏ2

4m2ω2 ⟨1, 0|(ax + a†
x)2(ay + a†

y)2|1, 0⟩

= 2ℏω + gℏ2

4m2ω2 ⟨1, 0|(axa†
x + a†

xax)|1, 0⟩

= 2ℏω + 3gℏ2

4m2ω2 .

(28)

Consider now the second excited level, for which the unperturbed energy is E
(0)
3 = 3ℏω. The

level is three-fold degenerate, with basis states |2, 0⟩, |1, 1⟩, |0, 2⟩, so we need to diagonalize
the 3 × 3 matrix ∣∣∣∣∣∣∣

⟨2, 0|V |2, 0⟩ ⟨2, 0|V |1, 1⟩ ⟨2, 0|V |0, 2⟩
⟨1, 1|V |2, 0⟩ ⟨1, 1|V |1, 1⟩ ⟨1, 1|V |0, 2⟩
⟨0, 2|V |2, 0⟩ ⟨0, 2|V |1, 1⟩ ⟨0, 2|V |0, 2⟩

∣∣∣∣∣∣∣ . (29)

Since the perturbation changes the number of excitations nx, ny by even numbers, the state
|1, 1⟩ does not mix with |2, 0⟩, |0, 2⟩.
By explicit calculation, the nonzero elements of the matrix are :

⟨2, 0|V |2, 0⟩ = ⟨0, 2|V |0, 2⟩ = gℏ2

4m2ω2 ⟨2, 0|(axa†
x + a†

xax)|2, 0⟩

= gℏ2

4m2ω2 ⟨2, 0|(1 + 2a†
xax)|2, 0⟩ = gℏ2

4m2ω2 ⟨2, 0|(1 + 2nx)|2, 0⟩ = 5gℏ2

4m2ω2 ,

(30)

⟨1, 1|V |1, 1⟩ = gℏ2

4m2ω2 ⟨1, 1|(2nx + 1)(2ny + 1)|1, 1⟩ = 9gℏ2

4m2ω2 , (31)
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and the off-diagonal elements

⟨0, 2|V |2, 0⟩ = gℏ2

4m2ω2 ⟨0, 2|(ax + a†
x)2(ay + a†

y)2|2, 0⟩

= gℏ2

4m2ω2 ⟨0, 2|a2
xa†2

y |2, 0⟩ = (
√

2)2gℏ2

4m2ω2 = gℏ2

2m2ω2 .

(32)

In the calculation we used the relations a|n⟩ =
√

n|n − 1⟩ a†|n⟩ =
√

n + 1|n⟩ for the crea-
tion/annihilation operators.
To find the energy corrections, we need therefore to diagonalize the matrix

gℏ2

4m2ω2

∣∣∣∣∣∣∣
5 0 2
0 9 0
2 0 5

∣∣∣∣∣∣∣ (33)

The eigenvalues are (5±2)gℏ2/(4m2ω2) and 9gℏ2/(4m2ω2) and the corresponding eigenvector,
which determine the zero order wavefunctions in perturbation theory are (|2, 0⟩ ± |0, 2⟩)/

√
2,

|1, 1⟩.
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