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Particules et interactions 
fondamentales

Prof. Olivier Schneider
Laboratoire de physique des hautes énergies

Bienvenue au cours de ...

Site web du cours:
http://moodle.epfl.ch/course/view.php?id=5661
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Organisation
• Toutes les infos toujours à jour sur le site Moodle
• Mercredi 19 mars 2025: visite au CERN
• Tous les autres mercredis, en salle INJ 218

– cours: 13h15–15h00
– exercices: 15h15–17h00

• assistants:
– Eliot Bornand
– Dimitris Kaminaris
– Anni Kauniskangas
– Tobias Monnard
– Rita Silva

• Forum de questions/réponses
– pour toutes questions sur le cours et les exercices

OS, 19 février 2025 3

Dimensions 
et énergies 
(échelles)
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Atome
(forces é.m.)
Å = 10–10 m

eV

Noyau
(forces nucléaires)

10–14 m
MeV

Nucléon
(forces de couleur)

fm = 10–15 m
GeV

Les électrons et les 
quarks ont une taille 
< 10–19 m et sont 
considérés comme 
des constituants 
fondamentaux de la 
matière 

à savoir 
par coeur



Constantes et unités
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à savoir 
par coeur

 α = e2

4πε0hc
≅ 1

137
 

constante de structure fine

 hc ≅197 MeV fm 
constante de Plank réduite

 mpc
2 ≅ 938 MeV 

masse du proton

 mec
2 ≅ 0.511 MeV 

masse de l’électron

1 keV =103 eV 
 1 MeV =106 eV

1 GeV =109 eV 
1 TeV =1012 eV

 1 fm =10−15 m
Fermi (= femtomètre)

 1 eV =1.602 ⋅10−19 J 
électron-volt

Sondes
• Aujourd’hui comme au temps de Rutherford

• Condition sur la longueur d’onde de De Broglie du projectile

• Projectiles (sondes) les plus énergétiques:
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étude expérimentale d’un petit objet 
=

étude de collisions entre un projectile et cet objet

λ  =  h/p  ⪝  dimension objet à étudier

Accélérateur Projectiles Energie de faisceau λ
LEP 2 @ CERN e–, e+ ~100 GeV ~ 10–17 m
Tevatron @ Fermilab p, p ~900 GeV ~ 10–18 m
LHC @ CERN, 2024 p 6.8 TeV ~ 10–19 m

– 



Large Hadron Collider (2009–2041 ?)
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Constituants fondamentaux de la 
matière (fermions de spin ½)

Charge 
électrique 

[e]

Charge 
de 

couleur

Leptons
électron e muon µ tau t –1

non
neutrino ne neutrino nµ neutrino nt 0

Quarks
up u charm  c top t +2/3

oui
down d strange s bottom b –1/3

u
ud

10-15 m

• Toute la matière connue est formée de 
combinaisons de 6 leptons et 6 quarks

• Pour chacune de ces 12 particules,
il existe une anti-particule de charge 
électrique opposée (anti-matière)

• Ces constituants élémentaires 
n’ont pas de structure connue

• La matière courante (stable) est formée seulement 
de trois types de particules élémentaires: e, u, d

– Chaque atome contient des électrons et un noyau
– Les noyau est fait de protons et de neutrons
– Un proton est une combinaison de quarks u, u et d
– Un neutron est une combinaison de quarks u, d et d ud

d



Particules-forces
• Les forces entre particules de matière 

et d’antimatière s’exercent par l’échange 
de particules-forces (bosons de spin entier)

– Bosons W et Z découverts en 1983
– Boson de Higgs découvert en 2012
– Ondes gravitationnelles découvertes en 2016
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Interaction Bosons 
d’échange Particules sensibles

Force de couleur
[ → force forte]

8 gluons

[mésons π]

seulement quarks & gluons

[neutrons, protons, …]

Electromagnétisme photon g particules chargées électriquement

Force faible W+,W–, Z0 toutes

Interaction de Higgs H particules massives

Gravitation graviton toutes
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Modèle Standard
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Principes de relativité

• Relativité de Galilée

• Relativité (restreinte) d’Einstein, 1905
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1. Les lois de la mécanique sont les mêmes 
dans tous les référentiels d’inertie

2. Le temps et l’espace sont des absolus

relativité = invariance par 
changement de 
référentiel, donc 
d’observateur

1. Les lois de la physique sont les mêmes 
dans tous les référentiels d’inertie

2. La vitesse de la lumière dans le vide est 
une constante (c)

Et donc pas seulement 
celles de la mécanique 
(comme énoncé par 
Galilée), mais aussi celles 
de l’électromagnétisme, …

c = constante, 
indépendamment de 
l’observateur 
(référentiel) et du 
mouvement de la 
source

Les intervalles de temps et 
d’espace (=distance) 
séparant deux événements 
sont les mêmes pour tous 
les observateurs

c = 299’792’458 m/s (exactement) ~3×108 m/s

Transformation de Lorentz
• Référentiel d’inertie !
• Référentiel d’inertie !’ en 

« saut de vitesse standard V » selon x 
par rapport au référentiel d’inertie !:
– Oxyz et O′x′y′z′ coincident à t = t! = 0

• Même événement E vu 
dans les deux référentiels:

– position x, y, z et temps t mesurés dans *
– position x’, y’, z’ et temps t’ mesurés dans *’
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se démontre à partir des 
postulats de la relativité 

d’Einstein

y’

O’
x’z’

V

 t’

y

O
xz t

€ 

E(t,x,y,z)
E(t',x',y',z')

 
ct '
x '
y'
z '

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
=

γ −βγ 0 0
−βγ γ 0 0
0 0 1 0
0 0 0 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

ct
x
y
z

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
    ⇔     

ct
x
y
z

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
=

γ +βγ 0 0
+βγ γ 0 0

0 0 1 0
0 0 0 1

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

ct '
x '
y'
z '

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
 

Transformation de Lorentz Transformation de Lorentz inverse 

 β = V
c

 ∈ −1, +1⎡⎣ ⎤⎦,        γ = 1
1−β2

 ≥  1 

r
V =

V
0
0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟



Invariant relativiste
• Deux événements séparés par (cDt, Dx, Dy, Dz) = (cDt, Dx)

– par linéarité de la transformation de Lorentz

– intervalle d’espace-temps (définition)

• (Δs)2 prend la même valeur dans tous les 
référentiels d’inertie, c’est un invariant relativiste

• Conséquence de c = constante
– deux événements simultanés dans une référentiel (Δt = 0) ne sont 

pas nécessairement simultanés dans un autre référentiel (Δt’≠ 0)
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relativité de Galilée Û Dt et |Dx| invariants Û temps et espace absolus
relativité d’Einstein Û (Ds)2 = c2(Dt)2–|Dx|2 invariant Û c = constante

 β= u
c

 , β ≤1 

 γ= 1
1−β2

 , γ ≥1 
avec: 

cΔt '
Δx '
Δy '
Δz '

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
=

γ −βγ   0   0
−βγ γ   0   0
0 0   1   0
0 0   0   1

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

cΔt
Δx
Δy
Δz

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
  

 (Δs)2 = (cΔt)2 − (Δx
u ru

)2 >0, <0, ou =0

 (Δs')2 = (Δs)2

à démontrer 
en exercice

Contraction des longueurs et dilatation du temps
• Règle de longueur L en 

mouvement longitudinal 
de vitesse V

• Horloge de période Dt
en mouvement de vitesse V
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y

O
xz

O’

V
R R’

L

x 'x '1 x '2z '

y '

x '1 = γ x 1−βct( )
x '2 = γ x2 −βct( )

⎫
⎬
⎪

⎭⎪
   où les positions x1 et x2 sont définies au même temps t dans R

⇒  L=x '2− x '1=γ x2 − x 1( )  ⇒  Δx= L
γ
< L 

La dimension d’un corps dans la 
direction de sa vitesse est contractée

y

O
xz

O’

V
R R’

x 'z '

y '

x '


t '1, t '2 , t '3 , ...
Dt

ct 1 = γ ct '1+βx '( )
ct2 = γ ct '2 +βx '( )

⎫
⎬
⎪

⎭⎪
 ⇒   t2 − t1 = γ t '2− t1 '( ) = γΔτ  ⇒   Δt = γΔτ > Δτ

Une horloge en 
mouvement retarde



Muons cosmiques
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exemple concret et réel 
de la dilatation du temps

• Des muons sont produits dans la haute atmosphère, à 15–20 km 
d’altitude, par les rayons cosmiques (protons de haute énergie)

• Temps de vie moyen d’un muon: t = 2.2 µs
• Distance d que peut parcourir

une particule en un temps t: 
d = v t ≤ c t ≈ (3´108 m/s) ´ (2´10–6 s) = 600 m

• Et pourtant, on observe des muons qui arrivent jusqu’au sol
® effet de la dilatation relativiste du temps

Transformation des vitesses
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• Particule de vitesse v dans R; quelle est sa vitesse v’ dans R’ ?
y

O
xz 

y’

O’
x’z’

V

t t’

vR R’

 

v 'x = vx −V
1− Vvx

c2

v'y = vy

γ 1− Vvx
c2

⎛
⎝
⎜

⎞
⎠
⎟

v'z = vz

γ 1− Vvx
c2

⎛
⎝
⎜

⎞
⎠
⎟

 

– Si V<c:

  

€ 

 
r v < c  ⇔   r v ' < c
r v = c  ⇔   r v ' = c  

à démontrer 
en exercice
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Composition des vitesses
• Deux sauts de vitesse standards consécutifs, de vitesses v1 et v2, 

sont équivalents à un saut de vitesse standard v3
– les sauts de vitesse standards forment un groupe

t’

O’
x’

!’
t’’

O’’
x’’

!’’
t

O
x

! particule 
au repos 
dans R’’

saut de vitesse v1 saut de vitesse v2

saut de vitesse v3

V = v1 ,   vx = v3 ,   ʹvx = v2On applique la transformation des vitesses avec 

 ou bien  ξ3 = ξ1+ ξ2  avec  ξi = arctanhβi = ln 1+βi

1−βi

v 'x = vx −V

1− Vvx

c2

   ⇒    v2=
v3− v1

1− v1v3

c2

   ⇒    v3=
v1+ v2

1+ v1v2

c2

    ou    β3=
β1+β2

1+β1β2

Quantité de mouvement
• Quelle est la quantité de mouvement p d’une particule de 

vitesse v et de masse m ?
• Hypothèses:

– p est colinéaire à v
– si v ≪ c, alors p = mv (limite non-relativiste)
– p est une fonction monotone croissante de v
– F = dp/dt, et on particulier la conservation de la quantité de 

mouvement totale d’un système isolé est une loi physique 
(donc vraie dans tous les référentiels d’inertie)

• Conclusion: 

– si v ≪c: 
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  rp =  m
 
γ
rv = mrv

1− v2

c2

  

  p = mγβc = mcβ

1−β2
= mcβ 1+ 1

2
β2 + ...

⎛

⎝
⎜

⎞

⎠
⎟= mcβ+O(β3)  

à démontrer 
en exercice
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Energie cinétique

y

O
xz t

$
vA=0
gA=1, TA=0

FA B vB=v

gB= g, TB=T

trajectoire

T = mc2 1−
r
β2( )

−1/2
−1

⎡
⎣⎢

⎤
⎦⎥
= mc2 1+ 1

2

r
β2 +O

r
β4( )−1⎡

⎣
⎤
⎦=

1
2 mc2

r
β2

1
2
mrv2

1234
+O

r
β4( )   

• Limite non-relativiste (b = v/c ≪ 1):

• Une particule au repos dans $ se déplace sur l’axe x de A à B
sous l’effet d’une force F, en acquérant une énergie cinétique T:

dp
dβ

= d
dβ
(mγβc) =mγc+mβc dγ

dβ
=mcγ+mβc βγ3 =mcγ 1+β2γ2( ) =mcγ3

 T = mc2(γ−1)  

• Théorème de l’énergie cinétique entre A et B:
T = TB−TA =

r
F ⋅d

r
x

A

B
∫ = d

r
p
dt
⋅
r
vdt

A

B
∫ = vdp

A

B
∫ = βc dp

dβ
dβ

A

B
∫

T = TB−TA =mc
2 βγ3dβ
A

B
∫ =mc2 γ⎡⎣ ⎤⎦A

B
=mc2(γ−1)

Quantité de mouvement et énergie 
cinétique en fonction de la vitesse
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0

1

2

3

4

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
b=v/c

p/mc Quantité de mouvement relativiste:
p = mgbc= mgv

Quantité de mouvement newtonienne:
p = mbc = mv

0

1

2

3

4

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
b=v/c

T/mc2
Energie cinétique relativiste:
T = mc2(g–1)

Energie cinétique newtonienne:
T = mv2/2

Remarques:
– on retrouve la 

mécanique 
newtonienne si
v ≪ c (b≪ 1)

– en relativité, 
v est bornée
(par c) 
mais p et T ne 
sont par bornées



Référentiel ! du centre de masse

repos
v–v m m

M

après

avant

Energie potentielle de masse
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• Soit a la constante de proportionnalité 
entre masse et énergie interne de masse.

• Désintégration d’une particule de masse M 
en deux particules identiques de masses m:

  

€ 

Conservation de E dans R': T(M,v) +Emasse
pot (M) = T(m,u) +2Emasse

pot (m)
Mc2 γ(v) −1( ) +αM = mc2 γ(u) −1( ) +2αm       (1)

Conservation de r p  dans R': Mγ(v)v = mγ(u)u                           (2)

€ 

(1)
(2)   ⇒   c2 γ(v) −1( ) +α

γ(v)v = c2 γ(u) −1( ) +2α
γ(u)u   où  u = 2v

1+ v2 /c2

à résoudre pour avoir
a en fonction de v Solution:   a = c2 indépendamment de v !

€ 

Emasse
pot (m) =αm  

après

avant
saut de vitesse –v

Référentiel !’ où une masse m est au repos
repos

v

m m

M

u
u = 2v/(1+v2/c2)

Energie, quantité de mouvement, masse

• Energie potentielle de masse (Einstein, 1905):

• Energie totale:

• Vitesse d’une particule:

• Relation entre énergie, quantité de mouvement et masse:

• Masse nulle ⟺ vitesse c:

• Unités:
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 Emasse = mc2 

 p = mγβc  et  E = mγc2  ⇒   β = pc
E

  

 E = T+Emasse = mc2(γ−1)+mc2  ⇒   E = mγc2  

 m = 0  ⇔   E = pc  ⇔   β =1  

E en Gev
pc en GeV ⇒ p en GeV/c
mc2 en GeV ⇒ m en GeV/c2

(on pose parfois c=1)

 1−β2 = 1
γ2   ⇔   E2 −E2β2 = E2

γ2   ⇔     E2 − p2c2 = m2c4



Résumé
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Relativité restreinte
v/c <<1

⎯ →⎯⎯⎯   Mécanique newtonienne

c= constante temps et espace absolus
(cΔt)2 − Δx

u ru
( )

2
 invariant Δt  et Δx

u ru
 invariants

r
β=rv/c,  γ= 1−

r
β2( )

−1/2

rp=mγ
r
βc →

rp=mrv
T=mc2(γ−1) → T= 1

2 mv2

E=mc2 +T =mγc2 → E=Einterne+ 1
2 mv2

r
β=rpc/E → v=2T/p
E2 −

rp2c2=m2c4 → T=rp2 / (2m)
r
F= drp

dt
r
F= drp

dt
conservation de rp
conservation de E

conservation de rp
conservation de E
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Invariants et quadrivecteurs
• Invariant (ou scalaire):

– toute grandeur physique qui a la même valeur dans tous les 
référentiels d’inertie (invariante sous une transformation de 
Lorentz)

• exemples:  c = vitesse de la lumière dans le vide
                  Δs2 = (cΔt)2–(Δx)2 = intervalle d’espace-temps
                  m = masse d’une particule
                  mc2 = énergie interne d’une masse m

• Quadrivecteur:
– ensemble de 4 grandeurs physiques A = (A0, Ax, Ay, Az)

= (A0, A) qui se transforment comme (ct, x) sous une 
transformation de Lorentz

• exemples:  x = (ct, x) = quadrivecteur position (quadri-position)
                  Δx = (cΔt, Δx)
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~

~
~



Tenseur métrique, produit scalaire

• Tenseur métrique de
la relativité restreinte

• Produit scalaire de deux quadrivecteurs:

• Norme au carré d’un quadrivecteur (= scalaire)

– exemple:
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 g=
+1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
 

 A ⋅B= gijAiBj
i, j
∑ = A0B0 –

r
A ⋅

r
B~ ~

 A2 = A ⋅A = A0
2 –

r
A2

~ ~~

 Δx( )2
= cΔt( )2 – Δrx2 = Δs2

~

Le quadrivecteur énergie-implusion
• Quadrivecteur position:

• Temps propre d’une particule de vitesse v:
(c’est un scalaire !)

• Quadrivecteur vitesse:

• Le quadrivecteur                     est de norme 1 (unitaire)

car 

• Donc                                                           est un 
quadrivecteur de norme          : 
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au tableau

 x = ct,
r
x( )~

 v =
dx

dτ
= γ

dx

dt
= γc,γ

r
v( ) = c γ,γ

r
β( )~ ~

~

 τ = 1
γ

t

 β = γ,γ
r
β( )~

 β2 = γ,γ
r
β( )

2
= γ2 − (γ

r
β)2 = γ2 1−

r
β2( ) =1

~

 mc2β = mγc2,mγ
r
βc2( ) = E,

r
pc( )~  mc2

 E,
r
pc( )

2
= E2 −

r
p2c2 = m2c4 



Transformation de E et p

• E, pc  est un 
quadrivecteur, 
donc

comme
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E '

p'x c
p'y c
p'z c

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

γ −βγ 0 0
−βγ γ 0 0
0 0 1 0
0 0 0 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

E
pxc
pyc
pzc

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
 

 
ct '
x '
y'
z '

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
=

γ −βγ 0 0
−βγ γ 0 0
0 0 1 0
0 0 0 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

ct
x
y
z

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
 

y

O
xz 

y’

O’
x’z’

V

t t’

pR R’

m, E

Résumé

– change comme (ct, x) sous une transformation de Lorentz

• La norme d’un quadrivecteur est un invariant relativiste
(de même que le produit scalaire de deux quadrivecteurs)

• Conservation énergie-impulsion

OS, 26 février 2025 28

  E, rpc( ) = mγc2, mγ
r
βc2( )   est un quadrivecteur  

 (cΔt)2 − (Δx
u ru

)2 = (Δs)2

 E2 − (rpc)2 = (mc2)2 

 pour un système isolé, le quadrivecteur Etot, 
rptotc( )  est constant 

invariant

invariant



Collision relativiste

OS, 26 février 2025 29

θ

p

m

m’p2 = 0

m2m1

p1
x

S

labo

θ*
p*

m

m’ p2
* = –p1

*

m2
m1

p1
*x*

S*

centre de 
masse 
(CM)

βCM

  E* =
m2 − ʹm 2( )c4 + s

2 s
 ,      p*c = E*2 −m2c4 Pour la particule de masse m:

  
r
βCM =

rptotc
Etot

=
rp1c

E1+m2c
2  

Vitesse du CM:

  s = Etot
* = m1

2 +m2
2( )c4 + 2m2c

2E1 

Energie disponible dans le CM:

Transformation de Lorentz (ellipse)
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O θ
p

référentiel du labo

θ*

p*

référentiel du centre de masse

p*

γCMp*βCMγCME*/c

  Cas où    βCM <
p*c
E* =β

* :      −π ≤ θ ≤ π         θ↔θ*



Transformation de Lorentz (ellipse)
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O θ
p

référentiel du labo

θ*

p*

référentiel du centre de masse

p*

γCMp*βCMγCME*/c

  Cas où    βCM >
p*c
E* =β

* :      −θmax ≤ θ ≤ θmax         θ←θ*

θ→θ*

Transformation de Lorentz (ellipse)
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O θp

référentiel du labo

θ*

p*

référentiel du centre de masse

p*

γCMp*βCMγCME*/c

  Cas où    βCM >
p*c
E* =β

* :      −θmax ≤ θ ≤ θmax         θ←θ*

θ→θ*



Chapitre 2: Interactions des 
rayonnements avec la matière

• Importance:
– principe de fonctionnement des détecteurs

– évaluation des performances des détecteurs

– radioprotection

• Les interactions dépendent du type de rayonnement:
– particules chargées (e±, μ±, π±, p, α, …)

– photons (rayons X, rayons γ)

– neutrons

– neutrinos (interactions faibles)
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Interactions des particules chargées
= principalement des interactions coulombiennes avec les
 noyaux et les électrons des atomes du milieu
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Perte d’énergie (ralentissement)

Diffusion coulombienne multiple 
(déviation) dans le champ des noyaux

• Collisions avec les électrons du milieu
(excitation, ionisation)

projectiles 
lourds
m ≫me

Tc > 300 GeV

projectiles 
légers
m = me

Tc ~ 10–100 MeV

• Collisions avec les noyaux du milieu

– effet dominant à faible énergie cinétique (< Tc)

• Rayonnement de freinage (Bremsstrahlung) 
dans le champs des noyaux
– effet dominant à haute énergie cinétique (> Tc)



Fluctuations statistiques
• Perte d’énergie
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faisceau 
initial

après passage 
à travers 
matière 

d’épaisseur 
Δx

énergie cinétique T

dN/dT

0

faisceau 
initialaprès passage 

à travers la 
matière

angle θ0

• Diffusion 
coulombienne multiple

ΔT

Perte d’énergie 
spécifique moyenne = ΔT/Δx

dN/dθ

Ecart-type de l’angle de déflection

  σθ = θ2

Collision entre particules chargées

• Impulsion transmise par le projectile à la cible 

(par interaction électromagnétique):

• Si la cible est un électron, Z’= –1, et l’énergie cinétique 

transmise à l’électron vaut
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x
y

M

Ze m

Z’e

V ≈ constante

r
b = r sinθθ

FCoulomb

 Δp
u ru

=
r
FCoulomb dt

−∞

+∞

∫

 Δpx ≅ 0    et    Δpy = – ZZ'e2

2πε0Vb
            si M >>m

 Te =
Δpy

2

2m
= Z2e4

8π2ε0
2V2b2m

    ⇒   b ∝ 1
Te



Energie moyenne d’excitation minimale I
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Figure 33.5: Mean excitation energies (divided by Z) as adopted by the ICRU [11].
Those based on experimental measurements are shown by symbols with error flags;
the interpolated values are simply joined. The grey point is for liquid H2; the black
point at 19.2 eV is for H2 gas. The open circles show more recent determinations by
Bichsel [13]. The dash-dotted curve is from the approximate formula of Barkas [14]
used in early editions of this Review.

The remaining relativistic rise comes from the β2γ growth of Wmax, which in turn is
due to (rare) large energy transfers to a few electrons. When these events are excluded,
the energy deposit in an absorbing layer approaches a constant value, the Fermi plateau
(see Sec. 33.2.8 below). At even higher energies (e.g., > 332 GeV for muons in iron, and
at a considerably higher energy for protons in iron), radiative effects are more important
than ionization losses. These are especially relevant for high-energy muons, as discussed
in Sec. 33.6.

33.2.6. Energy loss at low energies :

Shell corrections C/Z must be included in the square brackets of of Eq. (33.5) [4,11,13,14]
to correct for atomic binding having been neglected in calculating some of the contribu-
tions to Eq. (33.5). The Barkas form [14] was used in generating Fig. 33.1. For copper it
contributes about 1% at βγ = 0.3 (kinetic energy 6 MeV for a pion), and the correction
decreases very rapidly with increasing energy.

Equation 33.2, and therefore Eq. (33.5), are based on a first-order Born approximation.
Higher-order corrections, again important only at lower energies, are normally included
by adding the “Bloch correction” z2L2(β) inside the square brackets (Eq.(2.5) in [4]) .

An additional “Barkas correction” zL1(β) reduces the stopping power for a negative
particle below that for a positive particle with the same mass and velocity. In a 1956
paper, Barkas et al. noted that negative pions had a longer range than positive pions [6].
The effect has been measured for a number of negative/positive particle pairs, including
a detailed study with antiprotons [18].

A detailed discussion of low-energy corrections to the Bethe formula is given in
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numéro atomique z

I/z 

[eV]

Element I/z 
[eV]

H 19.2
He 20.9
Be 15.9

z ≥ 15 9 – 11

Perte d’énergie spécifique
• Calcul simplifié 

de Bohr

• Calcul quantique 

relativiste
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des 
particules 
lourdes

 − dT
d ρx( )

= Z2e4

8πε0
2mV2 NA

z
A

ln 2mV2

I
⎛

⎝
⎜

⎞

⎠
⎟

 − dT
d ρx( )

= Z2e4

4πε0
2mc2β2 NA

z
A

ln 2mc2

I
⋅ β2

1−β2

⎛

⎝
⎜

⎞

⎠
⎟−β

2⎡

⎣
⎢

⎤

⎦
⎥ 

formule de Bethe-Bloch

1

10

10 -1 1 10 10 2 10 3 10 4

βγ

-d
T/

d(
ρx

)  
   

   
   

 (M
eV

 g
-1

 c
m

2 )

Z = ±1 z = 29 (cuivre)
 A = 63.5 g/mol
 I = 322 eV

–d
T/

d(
ρx

)  
[M

eV
 c

m
2 /g

]

βγ

Bethe-Bloch

calcul simplifié

calcul simplifié ×2
remontée 
relativiste



Perte d’énergie spécifique
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minimum d’ionisation 

à βγ = 3.0–3.5 

pour Z = 7–100

MIP = “minimum

             ionizing
             particle”

 0.5

 1.0

 2.0
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50.0
<

dE
/d

x 
(M

eV
 g
<1

cm
2 )

1.0 10 100 1000 10 0000.1

Minimum
ioniza t ion

<100 ×
shell
cor rect .

Complete dE/ dx

dE/ dx without  b

dE/ dx | β<5/3

Radia t ive effect s
become impor tan t

/±  on  Cu
I = 322 eVdE/ dx | β<2

| β<2

βγ = p/Mc

Approx T max

T cut  = 0.5 MeV

| β<5/3

plateau de Fermi

= fonction de V

–d
T/

d(
ρx

)  
[M

eV
 c

m
2 /g

]

des 
particules 
lourdes

z = 29

Perte d’énergie spécifique

• La perte d’énergie spécifique dT/d(ρx) dépend
– faiblement du milieu

z/A ≈ constante

ln(I) ≈ ln(z) + constante

– fortement de la particule incidente

Z2 (=1 dans la plupart des cas)

vitesse β

• NB: en première approximation la perte d’énergie ne dépend 

pas de la masse M de la particule incidente (faible dépendance 

cachée dans Te
max)
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 − dT
d ρx( )

= e4NA

4πε0
2mc2  z

A
 Z2

β2  ln 2mc2

I
⋅ β2

1−β2
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⎝
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⎠
⎟−β

2⎡

⎣
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⎤

⎦
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des 
particules 
lourdes



Perte 
d’énergie 
spécifique
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dépendance par 

rapport au milieu 

relativement faible 

(car on a divisé par ρ) 

6 33. Passage of particles through matter

 1

 2

 3

 4

 5
 6

 8

10

1.0 10 100 1000 10 0000.1

Pion momentum (GeV/c)

Proton momentum (GeV/c)

1.0 10 100 10000.1

1.0 10 100 10000.1

βγ = p/Mc

Muon momentum (GeV/c)

H2 liquid

He gas

C
Al

Fe
Sn

Pb〈–
dE
/d
x〉

 (M
eV

 g
—

1 c
m

2 )

1.0 10 100 1000 10 0000.1

Figure 33.2: Mean energy loss rate in liquid (bubble chamber) hydrogen, gaseous
helium, carbon, aluminum, iron, tin, and lead. Radiative effects, relevant for
muons and pions, are not included. These become significant for muons in iron for
βγ >∼ 1000, and at lower momenta for muons in higher-Z absorbers. See Fig. 33.23.

in the figure is due to the density-effect correction, δ(βγ), discussed in Sec. 33.2.5. The
stopping power functions are characterized by broad minima whose position drops from
βγ = 3.5 to 3.0 as Z goes from 7 to 100. The values of minimum ionization as a function
of atomic number are shown in Fig. 33.3.

In practical cases, most relativistic particles (e.g., cosmic-ray muons) have mean energy
loss rates close to the minimum; they are “minimum-ionizing particles,” or mip’s.

Eq. (33.5) may be integrated to find the total (or partial) “continuous slowing-down
approximation” (CSDA) range R for a particle which loses energy only through ionization
and atomic excitation. Since dE/dx depends only on β, R/M is a function of E/M or
pc/M . In practice, range is a useful concept only for low-energy hadrons (R <∼ λI , where
λI is the nuclear interaction length), and for muons below a few hundred GeV (above
which radiative effects dominate). R/M as a function of βγ = p/Mc is shown for a
variety of materials in Fig. 33.4.

The mass scaling of dE/dx and range is valid for the electronic losses described by the
Bethe equation, but not for radiative losses, relevant only for muons and pions.
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z=1

z=2

z=6–82

–d
T/

d(
ρx

)  
[M

eV
 c

m
2 /g

]

Identification des particules
• La mesure de dT/dx permet d’identifier une particule dont on connaît 

la quantité de mouvement

– ou de chercher des particules de charges fractionnaires, par ex. ±1/3, ±2/3, …
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ALEPH collaboration,
NIM A 350, 481 (1995)
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Parcours 
restant R
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R = dx
T'=T

T=0

∫ = ...

= M
Z2
f(β)

• Si Z = ±1,  R/M ne 
dépend que de β

• Pour deux particules 
de mêmes vitesses:

R1
R2

=
M1

M2

Z2
2

Z1
2

8 33. Passage of particles through matter
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Figure 33.4: Range of heavy charged particles in liquid (bubble chamber)
hydrogen, helium gas, carbon, iron, and lead. For example: For a K+ whose
momentum is 700 MeV/c, βγ = 1.42. For lead we read R/M ≈ 396, and so the
range is 195 g cm−2 (17 cm).

tion [15]:

δ(βγ) =















2(ln 10)x − C if x ≥ x1;
2(ln 10)x − C + a(x1 − x)k if x0 ≤ x < x1;
0 if x < x0 (nonconductors);
δ0102(x−x0) if x < x0 (conductors)

(33.7)

Here x = log10 η = log10(p/Mc). C (the negative of the C used in Ref. 15) is obtained
by equating the high-energy case of Eq. (33.7) with the limit given in Eq. (33.6). The
other parameters are adjusted to give a best fit to the results of detailed calculations
for momenta below Mc exp(x1). Parameters for elements and nearly 200 compounds and
mixtures of interest are published in a variety of places, notably in Ref. 16. A recipe for
finding the coefficients for nontabulated materials is given by Sternheimer and Peierls [17],
and is summarized in Ref. 5.
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Z = ±1

ρ 
R/

M

Rayonnement de freinage (Bremsstrahlung)

• Particule chargée déviée de sa trajectoire (accélérée)

⇒ émission de photons ⇒ perte d’énergie

• Longueur de rayonnement X0 en cm (ou X0’=ρX0 en g/cm2)

= épaisseur de matière nécessaire pour réduire l’énergie d’un électron
   d’un facteur e ≈ 2.7

• Calcul 

théorique
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 dT
dx rad

≅ − T
X0

 dT
d(ρx) rad

≅ − T
X'0

 dT
dx

= − T(x)
X0

   ⇒    T(x) = T(0) exp − x
X0

⎛

⎝
⎜

⎞

⎠
⎟

 1
X0

≅
4e6nz z+1.3( )

4πε0( )3
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⎝
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⎞
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⎡
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⎤
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Perte d’énergie des électrons
• Pertes par collisions 

(excitation, ionisation)

• Pertes par rayonnement

de freinage (Bremsstrahlung)
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 dT
dx coll

= −f z
A

,  I,  β⎛
⎝
⎜

⎞
⎠
⎟

 dT
dx rad

≅ − T
X0
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Table 33.2: Tsai’s Lrad and L′
rad, for use in calculating the radiation length in an

element using Eq. (33.26).

Element Z Lrad L′
rad

H 1 5.31 6.144
He 2 4.79 5.621
Li 3 4.74 5.805
Be 4 4.71 5.924

Others > 4 ln(184.15 Z−1/3) ln(1194 Z−2/3)

Figure 33.11: Fractional energy loss per radiation length in lead as a function of
electron or positron energy. Electron (positron) scattering is considered as ionization
when the energy loss per collision is below 0.255 MeV, and as Møller (Bhabha)
scattering when it is above. Adapted from Fig. 3.2 from Messel and Crawford,
Electron-Photon Shower Distribution Function Tables for Lead, Copper, and Air
Absorbers, Pergamon Press, 1970. Messel and Crawford use X0(Pb) = 5.82 g/cm2,
but we have modified the figures to reflect the value given in the Table of Atomic
and Nuclear Properties of Materials (X0(Pb) = 6.37 g/cm2).

33.4.3. Bremsstrahlung energy loss by e± :

At very high energies and except at the high-energy tip of the bremsstrahlung
spectrum, the cross section can be approximated in the “complete screening case” as [42]

dσ/dk = (1/k)4αr2
e
{

(4
3 − 4

3y + y2)[Z2(Lrad − f(Z)) + Z L′
rad]

+ 1
9 (1 − y)(Z2 + Z)

}

,
(33.29)
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dépend du 

milieu

1/(ρX0)

ρX0(Pb) = 6.37 g/cm2

X0 et Tc pour les électrons
• Energie critique Tc, = énergie cinétique à laquelle la perte 

d’énergie par rayonnement égale celle par collisions
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 dT
dx rad

= dT
dx coll

    ⇒    Tc
z2

m2 ∝ z   ⇒  Tc∝
m2

z
  

1

Matériau z Tc ⇢X0 X0

MeV g/cm
2

cm

H2 (liq) 1 340 61.28 866

He (liq) 2 220 94.32 756

C 6 103 42.7 18.8

Al 13 47 24.01 8.9

Fe 26 24 13.84 1.76

Pb 82 6.9 6.37 0.56

Air (STP) - 83 36.66 30420

Eau - 93 36.08 36.1

Table 1 – Caractéristiques de divers milieux



Perte d’énergie spécifique (muons)
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4 33. Passage of particles through matter

with mean M0. Ne is either measured in electrons/g (Ne = NAZ/A) or electrons/cm3

(Ne = NA ρZ/A). The former is used throughout this chapter, since quantities of interest
(dE/dx, X0, etc.) vary smoothly with composition when there is no density dependence.
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Fig. 33.1: Mass stopping power (= 〈−dE/dx〉) for positive muons in copper as a function
of βγ = p/Mc over nine orders of magnitude in momentum (12 orders of magnitude in
kinetic energy). Solid curves indicate the total stopping power. Data below the break at
βγ ≈ 0.1 are taken from ICRU 49 [4], and data at higher energies are from Ref. 5. Vertical
bands indicate boundaries between different approximations discussed in the text. The
short dotted lines labeled “µ− ” illustrate the “Barkas effect,” the dependence of stopping
power on projectile charge at very low energies [6]. dE/dx in the radiative region is not
simply a function of β.

33.2.2. Maximum energy transfer in a single collision :

For a particle with mass M ,

Wmax =
2mec2 β2γ2

1 + 2γme/M + (me/M)2
. (33.4)

In older references [2,8] the “low-energy” approximation Wmax = 2mec2 β2γ2, valid for
2γme % M , is often implicit. For a pion in copper, the error thus introduced into dE/dx
is greater than 6% at 100 GeV. For 2γme & M , Wmax = Mc2 β2γ.

At energies of order 100 GeV, the maximum 4-momentum transfer to the electron can
exceed 1 GeV/c, where hadronic structure effects significantly modify the cross sections.
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Tc ~ 300 GeV

Ze

ze

V

b
θ

p bmin

bmax

Diffusion coulombienne

• Avec l’approximation θ <<1:

• Angle de déflection quadratique moyen:
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dans le 
champ 

d’un noyau

θ ≅ tanθ = −Δpy
p

= Zze2
2πε0Vbp

θ2 = θ2Σ(θ)dθ
θmin

θmax

∫ = θ2 2πbdb
πbmax

2
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bmax

∫
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Zze2
Vp

⎛

⎝
⎜

⎞

⎠
⎟
2

ln bmax
bmin

⎛

⎝
⎜

⎞

⎠
⎟
1

πbmax
2

prob. de diffusion à un 

angle compris entre θ 
et θ+dθ 



Projections de l’angle de diffusion
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z

x

y

θ

ϕ

1

tan
 θ y

tan θ
x

tan θ

tanθx = tanθ cosφ
tanθy = tanθ sinφ   petits angles⎯ →⎯⎯⎯   θx ≅ θ cosφ

θy ≅ θ sinφ

θ = angle polaire de diffusion
ϕ = angle azimuthal

θx

θy

θx = angle projeté sur Oxz
θy = angle projeté sur Oyz

particule 
incidente

O

Théorème central limite

Soient N variables aléatoires Xi indépendantes
avec une loi de distribution commune quelconque 
de moyenne m et écart-type σ

On définit
Alors

– Y est une variable aléatoire de moyenne mN et d’écart-type σ √N
– Z est une variable aléatoire de moyenne m    et d’écart-type σ/√N

et quand N → ∞, 
 Y et Z tendent vers des variables aléatoires gaussiennes !

En pratique, la gaussienne est souvent
une bonne approximation dès N ~ 6
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Y = Xi
i=1

N

∑     et    Z = 1
N

Xi
i=1

N

∑
–
–



Diffusion coulombienne multiple

• Pour 1 diffusion:

• Pour N diffusions successives:

• Pour un écran d’épaisseur x:
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 σx = σy ≈
15 MeV

pc β
Z x

X0

 X0 = longueur de
        rayonnement

!! = ! cos & = ! cos & = 0
!!" = !" cos" & = !" cos" & = #

" !"

Θ! =)
$%#

&
!!,$

Θ! = * !! = 0
+!" = Θ!" = * !!" = &

" !"

Effet Cherenkov
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(b) v > c/n

polarisation 
symétrique

polarisation 
asymétrique

c/n = vitesse de la lumière dans le milieu d’indice de réfraction n (≥1)
 = vitesse de propagation du champ é.m. produit par la particule



Effet Cherenkov
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e

cône
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cohérentes
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94
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v
α=π/2–θ

cosθ = (c / n)Δt
vΔt

= 1
βn

Effet Cherenkov

• Au seuil:

• Exemple:   pions chargés de 15 GeV/c   ⇒   n=1.0000436 (gaz)
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cosθ = 1
βn

pmin =mγminβminc =mc
βmin
1−βmin

2
= mc

n2 −1

⇒   n = mc2

pminc
⎛

⎝
⎜

⎞

⎠
⎟

2

+1

βmax =1  ⇒   cosθmax =
1
n

θmin = 0  ⇒  βmin =
1
n

seuil (si β<1/n, pas d’effet Cherenkov)

θ

cône de lumière 
Cherenkov

v > c/n
n>1



Interactions des photons dans la matière

• Absorption atomique
γ + A → A* absorption
γ + A → A+ + e– absorption + éjection e–

• Diffusion
γ + A → γ + A* diffusion (cohérente de Rayleigh) sur un atome
γ + e– → γ + e– diffusion sur un électron

• Production de paires (“conversion”)
γ → e+ + e– dans champ Coulombien des noyaux (ou des électrons)

• Absorption nucléaire
γ + AX → AX* 
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effet photoélectrique

effet Compton

matérialisation en e+e–

domine à petit Eγ

domine à grand Eγ

Eγ

(phénomènes é.m. uniquement)

Section efficace
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cible d’aire A et d’épaisseur dx
N “centres” d’aire σ

n      = nombre de centres par unité de volume
n dx = nombre de centres par unité de surface σ

σ
σ

σ
σ

σ
σ

σ

σ
σ

σ
σ

σ

σ
σ

γ incident

dx

A

Probabilité d'interaction = σN
A

= σnAdx
A

= σndx

Section efficace totale σ =      probabilité d’interaction sur une cible     
contenant un centre par unité de surface

Unité:     barn = b = 10–28 m2 = 10–24 cm2



Interactions des photons dans la matière
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33. Passage of particles through matter 23

Photon Energy

1 Mb

1 kb

1 b

10 mb
10 eV 1 keV 1 MeV 1 GeV 100 GeV

(b) Lead (Z = 82)
- experimental σtot

σp.e.

κe

C
ro

ss
 se

ct
io

n 
 (b

ar
ns

/a
to

m
)

C
ro

ss
 se

ct
io

n 
 (b

ar
ns

/a
to

m
)

10 mb

1 b

1 kb

1 Mb
(a) Carbon (Z = 6)

σRayleigh

σg.d.r.

σCompton

σCompton

σRayleigh

κnuc

κnuc

κe

σp.e.

- experimental σtot

Figure 33.15: Photon total cross sections as a function of energy in carbon and lead,
showing the contributions of different processes [50]:

σp.e. = Atomic photoelectric effect (electron ejection, photon absorption)
σRayleigh = Rayleigh (coherent) scattering–atom neither ionized nor excited
σCompton = Incoherent scattering (Compton scattering off an electron)

κnuc = Pair production, nuclear field
κe = Pair production, electron field

σg.d.r. = Photonuclear interactions, most notably the Giant Dipole Resonance [51].
In these interactions, the target nucleus is broken up.

Original figures through the courtesy of John H. Hubbell (NIST).
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Interactions des photons dans la matière
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Coefficient d’atténuation massique μ
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page 39 du polycopié

- = .+
/ = *(

0 +

• n = densité atomique 
[cm–3]

• ρ = masse volumique 
[g/cm3]

• NA = nombre 
d’Avogadro [mol–1] 

• A = masse atomique 
[g/mol]

Effet photoélectrique
• Un électron lié à l’atome absorbe le photon incident 

et est libéré avec une énergie cinétique Te:

• Calcul 
théorique 
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Te ≅ E γ −Eliaison    ⇒     E γ ≥ Eliaison

σp.e.(K) = 32π
3

2 z5α4 mc2

E γ

⎛

⎝
⎜

⎞

⎠
⎟

7/2

  où α = e2

4πε0hc
≈ 1

137

Eliaison(K)Eliaison(L)

Eγ

σp.e.
effet de seuil

Eγ Te



Effet Compton
• Collision d’un photon 

d’énergie Eγ sur un 
électron au repos

• Conservation quantité de 
mouvement et énergie:
– 3 équations pour 4 inconnues 

(E, pe, θ, φ)
– élimination de pe et φ pour 

obtenir une relation entre E et θ 
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E γ

c
= E
c
cosθ+ pe cosφ

0 = E
c
sinθ− pesinφ

E γ +mc
2 = E+ (pec)

2 + (mc2)2

⎧

⎨

⎪
⎪

⎩

⎪
⎪

Te = Ee −mc
2 = E γ −E =

E γ

1+ mc2
E γ 1− cosθ( )formule de Compton

Te maximum quand θ = π

E = E γ

1+ E γ

mc2
1− cosθ( )

pγ = Eγ/c
p = E/c

pe

θ
φ

e–

γ

Effet Compton
• Calcul en 

électrodynamique 
quantique (QED)
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dσ
dΩ

= e2
4πε0mc

2

⎛

⎝
⎜

⎞

⎠
⎟

2
1
2
E
E γ

⎛

⎝
⎜

⎞

⎠
⎟

2
E γ

E
+ E
E γ

− sin2θ
⎛

⎝
⎜

⎞

⎠
⎟

E
E γ

= 1

1+ E γ

mc2
1− cosθ( )

Eγ       en MeV

dσ/dΩ    en fm2

dσ/dΩ 
θ

Eγ fixé



Création de paire
• Possible seulement dans le champ d’un noyau (ou électron) 

et si Eγ > 2mc2

• Equation de Dirac (équ. du mvt de l’e–):
– solutions d’énergies positives > +mc2    → particule
– solutions d’énergies négatives < –mc2   → antiparticule
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E

mc2

-mc2

0

“mer” d’états occupés en respectant 
le principe d’exclusion de Pauli

γ électron e–

“trou” = positon e+

γ e+

e–

Création de paire

• Calcul en électrodynamique quantique (QED):

• Gerbe électromagnétique = succession de processus de 
Bremsstrahlung et de création de paire dans la matière
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σpaire ≈ z
2α3 hc

mc2
⎛
⎝
⎜

⎞
⎠
⎟
2 28
9
ln 2E γ

mc2
⎛

⎝
⎜

⎞

⎠
⎟−
218
27

⎡

⎣
⎢

⎤

⎦
⎥

γ e+

e–

γ

γ

e–
e+



Quel point commun ?
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Processus Section efficace

Diffusion de 
Rutherford

Perte d’énergie 
par collisions

Rayonnement 
de freinage

Diffusion 
Compton

Création de 
paire σpaire ≈ z

2 e2
4πε0hc
⎛

⎝
⎜

⎞

⎠
⎟

3
hc
mc2
⎛
⎝
⎜

⎞
⎠
⎟
2 28
9
ln 2E γ

mc2
⎛

⎝
⎜

⎞

⎠
⎟−
218
27

⎡

⎣
⎢

⎤

⎦
⎥

dσ
dΩ

= e2
4πε0mc

2

⎛

⎝
⎜

⎞

⎠
⎟

2
1
2
E
E γ

⎛

⎝
⎜

⎞

⎠
⎟

2
E γ

E
+ E
E γ

− sin2θ
⎛

⎝
⎜

⎞

⎠
⎟

σ∝ – dT
dx rad

≅ T 4e6nz z+1.3( )
4πε0( )3hc mc2( )

2 ln
183
z1/3

⎛
⎝
⎜

⎞
⎠
⎟+ 1
8

⎡
⎣⎢

⎤
⎦⎥

σ∝ – dT
dx coll

≅ Z2e4nz
4πε0

2mc2β2
ln 2mc2

I
⋅ β2

1−β2
⎛

⎝
⎜

⎞

⎠
⎟−β

2⎡

⎣
⎢

⎤

⎦
⎥

dσ
dΩ

= Zze2
16πε0T
⎛

⎝
⎜

⎞

⎠
⎟

2
1

sin4 θ / 2( )

Tous des processus électromagnétiques, avec σ ~ (e2)n ~ αn, où n=2 ou 3 

α N

π, p, α, …

e–

γ
e–

N
γ

e– γ

e–γ
e+

N

Electrodynamique quantique

Processus 
élémentaire
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(QED = quantum electrodynamics)

= particule chargée (e–, e+, μ–, μ+, …)

= photon = champ électromagnétique

q       = « force » du couplage = charge électrique

q

= vertex = couplage entre particule chargée 
et champ électromagnétique



Diffusion électron-électron

Avant: Etot(t1) = E1+E2 = 2E
Pendant: Etot(t2) = E1+E4+Eγ = 2E+Eγ
Après: Etot(t3) = E3+E4 = 2E
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Energie violée d’une quantité 
ΔΕ=Eγ pendant un temps Δt 

⇒
E γ = 0rpγ =

rp3−
rp1 =

rp2 −
rp4 ≠ 0

⎧
⎨
⎩

⇒ E γ ≠
rpγc

Alternative: énergie et quantité de mouvement conservées à chaque vertex
photon 
virtuel

rp1
rp4

rp2
rp3

x
z

y

p1 = p2 = p3 = p4
E1 = E2 = E3 = E4 = E

CM
t

t1

t2

t3

Δt

Diagramme de Feynman

e–

e– e–

e–

γ

Particule d’énergie E et d’implusion p

• Si
alors la particule est réelle (“on shell”)
– la particule existe (comme particule libre) 

dans l’état initial ou l’état final d’un processus

• Si
alors la particule est virtuelle (“off shell”)
– la particule n’apparaît pas dans l’état initial ou final d’un processus; 

elle est échangée au cours du processus, entre deux vertex d’un 
diagramme de Feynman
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E2 − rp2c2 =m2c4

E2 − rp2c2 ≠m2c4



QED
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q=e

γ

e–

e–

q=ze

γ

noyau

noyau

amplitude∝ ze
probabilité∝ z2α ≅ z2

137

amplitude∝ constante de couplage = e
probabilité = amplitude 2

∝α = e2

4πε0hc
≅ 1

137

QED (suite)
Toute interaction électromagnétique est décrite par une combinaison 
de processus élémentaires → diagrammes de Feynman
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t

γ

e–

e–

γ

γ
γe+ e–

e+

e+

e–

lignes externes = 
particules réelles

lignes internes = 
particules virtuelles

NB: – une particule (e–) a sa flèche dans le sens du temps
 – une antiparticule (e+) a sa flèche dans le sens opposé au temps
 – le photon (γ), qui est sa propre antiparticule, n’a pas de flèche

amplitude∝ qi
vertex i
∏ section efficace∝ amplitude 2



QED (suite)
Plusieurs diagrammes de Feynman peuvent décrire le même processus 
(même état initial et même état final)

Ai = amplitudes complexes → phénomène d’interférences
        (constructives ou destructives) entre diagrammes

En première approximation, on ne considère que les diagrammes à 
l’ordre le plus bas en α, donc avec le plus petit nombre de vertex

OS, 26 mars 2025 71

σ∝ Atot
2     avec  Atot = Ai

i
∑      

Atot = ckα
k

k
∑ = ck

1
137
⎛
⎝
⎜

⎞
⎠
⎟

k

k
∑ = c1

1
137

+ c2
1

137
⎛
⎝
⎜

⎞
⎠
⎟

2

+ c3
1

137
⎛
⎝
⎜

⎞
⎠
⎟

3

+K     

négligeable

somme sur tous les 
diagrammes de 

Feynman possibles

Diffusion électron-électron (suite)
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γ

e–

e–

e–

e–

etc …

• Amplitude proportionnelle à e2, donc α = 1/137 

• Amplitudes proportionnelles à e4, donc α2 = (1/137)2 

• Amplitudes proportionnelles à e14, donc α7 = (1/137)7 

t



Diffusion électron-positon
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γ

e–

e–

e+

e+ γ

e–

e–

e+

e+

etc …

⇒   σ e+e− → e+e−( ) ≠ σ e−e− → e−e−( )      

t
• Amplitude proportionnelle à e2, donc α = 1/137 

• Amplitudes proportionnelles à e4, donc α2 = (1/137)2 

Chapitre 3: Détecteurs
• Détection des particules chargées

– plaques photographiques
– chambres à bulles
– scintillateurs
– détecteurs à gaz, chambres à fils
– détecteurs à semi-conducteur
– …

• Détection des particules neutres (n, γ, ...)
– particule neutre interagit dans le détecteur en produisant 

(ou donnant de l’énergie à) une particule chargée, qu’on détecte

• “Calorimétrie”
– calorimètre électromagnétique
– calorimètre hadronique
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particule 
chargée ionisation 

et/ou excitation 
du milieu

détecteur

particule 
chargée 

ou neutre

énergie déposée 
(“gerbe”)

calorimètre



Scintillateurs
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cristaux

fibres

plastiques

Rising Time of Cherenkov & Scintillation 

       

June 27, 2012 Talk given in CMS Forward Calorimetry Task Force Meeting at CERN by Ren-yuan Zhu, Caltech 18 

Cristaux scintillants (inorganiques)
• Exemples:

– NaI(Tl)
– CsI(Tl)

– LiI(Eu)
– BaF2(Eu)
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E
niveaux d’énergie atomiques

bande de conduction (vide)

bande de valence (pleine)

niveau métastable (piège)

ΔE

excitation d’un électron
(au passage de la particule chargée)

piégeage désexcitation 
(τ ~ 200–1000 ns)

hν

Photon émis: hν < ΔE → ne peut pas être réabsorbé
hν ~3 eV pour NaI



Scintillateurs organiques
• Exemples:

– anthracène
– stilbène

– plastiques
– solutions 

organiques
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E
niveaux d’énergie moléculaires

(bandes de rotations ou vibrations)

ΔE

excitation d’un électron
(au passage de la particule chargée)

→ énergie transmise à l’électron = ΔE+ε

désexcitation 
(τ ~ 30 ns)

hν

Photon émis: hν = ΔE

ΔE ~ quelques eV ~ 10 ε

ε

Scintillateurs
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1

Scintillateur ⌘ ⌧ �
(rel) ns nm

Anthracène 100 30 447

Plastic NE 102 65 2.4 423

NE 111 55 1.6 370

Liquide NE 220 65 3.8 425

NE 311 65 3.8 425

NE 313 62 4.0 425

Cristaux NaI(Tl) 230 230 413

CsI(Tl) 95 1100 580

BaF2(Eu) 110 1000 435

BGO 35 300 480

organique

inorganique

→ hν = 3.0 eV

E = pc = hν = hc
λ
= 2π hc

λ
          hc =197 MeV fm =197 eV nm 

η = rendement de
 scintillation

τ = durée de vie
 moyenne des
 niveaux excités

λ = longueur d’onde
 au maximum du
 spectre d’émission 



Photomultiplicateur
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γ

ε = efficacité quantique (15–25%)

ΔV ~ 1 kV

courant i(t) = q exp(–t/τ)/τ

q = i(t)dt
0

∞

∫ =Nphotons f εG e
f = facteur de collection lumineuse
G = gain photomultiplicateur ~ 107

Détecteurs d’ionisation à gaz

• Condensateur 
cylindrique rempli 
d’un gaz isolant:

– champ électrique:

– mobilité des charges μ:
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fil d’anode

cathode

V0 > 0
particule 
chargée

– 
– 

– 
 –

 –
 –

 +
 +

 +
 +

 +

+ 
+ 

+ 
+ 

+ 
+ 

– –
 –

 – 
– 

–

E(r) = 1
r

V0

ln(b / a)
 

b = diamètre tube
a = diamètre fil

rv(r) =µ
r
E(r)

μe– ~1000 μion+

Au voisinage du fil d’anode, 
multiplication des électrons par avalanche (   )

gaz



Détecteurs d’ionisation à gaz
Modes opératoires

I: recombinaison
 des charges

II: chambre
 d’ionisation
III: compteur
 proportionnel
IV: compteur
 Geiger-Müller
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Détecteurs à traces

• Anciens (technique photographique)
– chambre à brouillard
– chambre à bulles

– émulsions

• Modernes (technique électronique)
– chambre proportionnelle multifilaire (MWPC)
– chambre à dérive

– chambre à projection temporelle (TPC)
– détecteur à microstrips (ou pixels) de Si

– …
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… on en invente encore aujourd’hui



Photographie dans une chambres à bulles

• Hydrogène liquide, B = 1.5 T
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faisceau de 
pions chargés 
de 16 GeV/c

“double” condensateur 
à plaques parallèles

Chambre proportionnelle multifilaire
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⇒      mesure de la coordonnée x du 
point de passage de la particule 

chargée à travers le détecteur

condensateur 
cylindrique

MIP = particule chargée
au minimum d’ionisation

cathode 
(V=0)

fil 
d’anode 
(V>0)

gas

r
E

r
E
r
E gas

cathode (V=0)

cathode (V=0)



Chambre proportionnelle multifilaire
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Invention de Georges 
Charpak (années 68–70)
→ prix Nobel en 1992

champ électrique 
~uniforme, sauf au 
voinage des fils 
d’anode où E ~ 1/r

lignes de champ électrique et equipotentielles

grand nombre de fils d’anode (canaux) 
→ lecture  électronique des signaux

Chambre à dérive
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détection 
à t=0 en x

détection 
sur l’anode 

à t=Δt en x=0

Scintillateur    

xx0

v = vitesse de dérive des électrons (~constante) 
x = vΔt



Chambre à dérive de CDF
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particule 
chargée

CDF = Collider
 Detector
 at Fermilab
 (~1988–2011)

Chambre à projection temporelle
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chambre proportionnelle multifilaire + chambre à dérive:
“chambre à bulles électronique”

(multiplication gazeuse)

mesure:
x, y, z, dE/dx



Chambre à projection temporelle
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TPC = Time Projection Chamber

Amélioration de
l’expérience ALICE
au LHC (prête en 2022)

Semi-conducteurs
Intrinsèque (= pur)
Type I 
• par exemple Si, Ge

• atomes tétravalents
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Extrinsèque (= dopé)
Type N 
• dopant (P, As, …) 

pentavalent
donneur d’e–

Extrinsèque (= dopé)
Type P 
• dopant (B, Al, Ga, …) 

trivalent
accepteur d’e–

Porteurs de charge libres 
(même pour le type I, qui est 

toujours légèrement de type N)



Détecteur à semi-conducteur

• Avantages sur les détecteurs à gaz:
– plus compact, pas besoin de haute tension ni de bonbonnes de gaz
– meilleure résolution

• Energie pour créer une paire électron-trou (3.6 eV dans le Si)
bien plus petite que celle pour ioniser un gaz  (15–30 eV dans Ar)

• Mais … un semi-conducteur n’est pas isolant !
– il contient des porteurs de charge libres
– on ne peut pas simplement remplacer le gaz isolant par du silicium
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Jonction P–N
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Jonction P–N

• Cristal de Si de haute résistivité (presque type I, légèrement N)

• Sur une face: dopage P très fort (P+) par implantation d’ions
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Diode PIN

• Jonction P–N avec fort dopage N sur l’autre face (N+)

• Métallisation des deux faces (contact ohmique)
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Détecteur Si à micro-bandes
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Détecteur de vertex de CDF

OS, 2 avril 2025 96



Calorimètres
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• Un bon calorimètre doit être assez épais pour stopper la 
particule incidente et contenir toute la gerbe

• Mesures: énergie déposée par la particule, position de la 
gerbe, forme de la gerbe (profondeur, extension latérale)

Calorimètres
• Calorimètre électromagnétique

– détection de photons, électrons, positons
qui forment des gerbes électromagnétiques

– également π0 → γγ
– épaisseur > 20 X0

(X0 = longueur de rayonnement)

• Calorimètre hadronique

– détection de hadrons 
(protons, neutrons, pions, …) 
qui forment des gerbes hadroniques

+ gerbes é.m. initiées par les π0

– épaisseur > 5 λ    
(λ = longueur d’absorption
        nucléaire ~ 1/σabs)
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pour des hadrons de haute énergie 
(> 5 GeV) dans la matière:
interactions é.m. << interaction forte

gerbe é.m. 5 GeV

π– 

gerbes de 100 GeV
e– 

μ– 



Détecteur 
ALEPH
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Expérience ALEPH 
au LEP (1989–2000)

Etude collisions e+e– 
à √s = 90–209 GeV

Détecteur ALEPH
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Détecteur CMS au LHC (depuis 2008)
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calorimètre hadronique

Détecteur CMS au LHC (depuis 2008)
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Chapitre 4: Accélérateurs
• Il faut des faisceaux de plus en plus énergétiques et intenses pour:

– sonder la matière sur des distances de plus en plus petites (λ = h/p)
– produire de nouvelles particules massives (réelles)

– explorer des phénomènes rares (avec des sections efficaces très petites)

•  Il faut donc des accélérateurs:
– l’Univers (rayons cosmiques): intensité limitée à (très) haute énergie
– accélérateurs terrestres: énergie limitée (technologie, coût, …)

• Seules les particules chargées “stables” peuvent être accélérées: 
– e–, e+, p, p, ions, muons μ± (τ ~ 2 μs)

• Composantes d’un accélérateur
– source de particules chargées
– accélération (par des champs électriques)

– tube à vide
– guidage et stockage des faisceaux (par des champs magnétiques)
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–

Guidage des faisceaux

Force de Lorentz:

• Déflection
– aimants dipolaires 
– tout le faisceau dévié 

dans la même direction

• Focalisation 
– aimants quadrupolaires
– focalisation dans un plan 

transverse, défocalisation 
dans l’autre

– Note: un doublet de 
quadrupôles focalise 
dans les deux plans
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r
F = qrv×

r
B



Aimant quadrupolaire
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Double quadrupôle pour les 2 faisceaux du LHC

Accélérateur de Van de Graaff
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dès ~1931

Ecin =
r
F ⋅d

r
l∫ = Fl = qEl = qV ≅15 MeV

plusieurs 
mètres

gaz isolant 
(p. ex SF6) sous 
pression

V = Q/C = 15 MV

vide

électrode 
de 

décharge

E→

limité par V réalisable



Accélérateur linéaire (LINAC)
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n différences de potentiel V successives: Ecin = n qV

longueur des tubes variables au 
début, puis constante quand v≃c

Le plus long LINAC est à SLAC (Stanford National Accelerator Lab):
• longueur = 3.2 km
• n ≃ 100’000 
• Ecin

e– ≃ 50 GeV

protons de 
~30 MeV

B uniforme
et constant

E(t) alternatif

source de 
protons

Cyclotron
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(Lawrence, ~ 1930)

E(t) = Emax sin ωt( )

 
Condition:
ω =ωcyclotron =

qB
mγ

   



Cyclotron (suite)
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γ = E
mc2

=1+ Ecin
mc2

Si Ecin≪ mc2, 
alors γ≃1 et

 ωcyclotron =
qB
m

→ condition sur ω peut être 
satisfaite indépendamment 
de l’énergie des particules 
accélérées

→ le cyclotron 
peut fonctionner 
“en continu”

Limitation: Ecin ≤ 30 MeV pour des protons 
pas possible pour des électrons

Synchrocyclotron
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(= cyclotron relativiste)

 ωcycl =
qB
mγ

 • Lorsque γ > 1, deux solutions pour garder la 
synchronisation, c’est-à-dire ω=ωcyclotron 
① on diminue ω au cours de l’accélération

avec champ B uniforme
• synchronisation possible seulement pour les particules de même γ
• accélération d’un paquet de particules à la fois → baisse d’intensité

② on garde ω constant au cours de l’accélération, 
mais on utilise un champ B non-uniforme
• B(r) croissant avec r

Premier accélérateur du 
CERN (1957–1990)
• diamètre orbite en fin 

d’accélération = 227 cm
• Ecin = 600 MeV



Synchrocyclotron du PSI
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Paul Scherrer Institute, 
Villigen, Suisse

synchrocyclotron cyclotron

cavité accélératrice RF avec 
E alternatif et ω constant

aimant avec B constant et non-uniforme 
pour garantir la synchronisation

Synchrotron
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(1945, McMillan, Veksler)

faisceau 
circulant par 

“paquets”

R fixe (constant)

(dipole)



Synchrotron
• Rayon des orbites = R = constante

• Deux conditions à satisfaire simultanément
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ωRF = n pc2

RE
B= p

qR

n entier

 ⇒  ωRF,  B ≠  constante au cours de l'accélération

Mais quand β = pc
E
≅1 ⇒  ωRF = constante

Limitations techniques pour B et ωRF  
⇒  injection de particules pré-accélérées 
      (LINAC ou synchrotron plus petit)

Synchrotrons

• Si on veut E plus grand, il faut augmenter R, car
– pour les protons: on ne peut pas créer un champ B arbitrairement élevé
– pour les électrons: trop de perte d’énergie par rayonnement synchrotron
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Date Synchrotron Particules Energie faisceau 
(GeV)

1989–1995 LEP (CERN) e–, e+ ~ 46
1996–2000 LEP (CERN) e–, e+ < 104.5
1986–1996 Tevatron (FNAL) p, p 900
2001–2011 Tevatron (FNAL) p, p 980
2009 LHC (CERN) p 450
2010 LHC (CERN) p 3500
2011–2012 LHC (CERN) p 4000
2015–2018 LHC (CERN) p 6500
2022–2026 LHC (CERN) p 6800
2030–2041 LHC (CERN) p 7000

–
–



Rayonnement synchrotron
• Rayonnement émis par une particule accélérée (déviée)

• Perte d’énergie après 1 tour

• Effet 1013 fois plus grand pour les électrons que pour les 
protons
– électrons de   20 GeV au LEP:  ΔE = –3 MeV/tour 
– électrons de 100 GeV au LEP:  ΔE = –2 GeV/tour 

• Idée “récente”:
– accélérer des muons à la place des électrons
– permettrait d’avoir des leptons de très haute énergie (~1 TeV)
– difficile technologiquement, peut-être dans 20 ans (?)
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ΔE = − 4παhc
3R

β3γ4 β ≅1,     γ = E
mc2

Accélérateurs circulaires
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Champ
magnétique

 
B

Fréquence
accélératrice

νRF = n ω/(2π)
ω = qB/(mγ) = v/R

Rayon
orbite

R=p/(qB)

Energie
cinétique 
maximale
pour  des
protons

Cyclotron constant
uniforme

≃ constant 
si v≪c variable 30 MeV

Synchrocyclotron

constant
uniforme variable

variable 1 GeVconstant
non-
uniforme

constant

Synchrotron variable variable
→ constant si v≃ c constant 7 TeV

ou plus

n=1

n=1

n=1

n≫1



Complexe des accélérateurs du CERN
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LINAC4 (H–) → 160 MeV
PS booster → 1.4 GeV

PS → 25 GeV
SPS → 450 GeV

LHC → 7 TeV

Stabilité des faisceaux
• Les particules accélérées ne suivent pas l’orbite idéale

– divergence à l’injection
– asymétrie des champs
– alignement imparfait des aimants
– …

• Les paquets de particules ont tendance à s’étaler

⇒ il faut une force de rappel transversale pour garantir la 
stabilité de l’orbite
– oscillation bétatron (voir exercice)

⇒ il faut une force de rappel longitudinale pour garder les 
paquets groupés
– oscillation synchrotron
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Oscillations synchrotron (cas β≪1)
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particules en retard,
à accélérer plus

particules en avance,
à accélérer moins

paquet z

z

z

zE(t1)

E(t2)

E(t3)

cavité
accélératrice

t1

t2 > t1

t3 > t2

passage du paquet 
quand E augmente

Oscillations synchrotron (cas β≃1)
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particules en retard particules en avance

paquet z

toutes les particules ont la même vitesse

• Energie de transition (entre régimes β≪1 et β≃1)

• ωRF grand (n grand), pour mieux localiser les paquets

passage du paquet 
quand E diminue

à accélérer plus
pour que R augmente

⇒vont ainsi prendre du retard

à accélérer moins
pour que R diminue

⇒vont ainsi prendre de l’avance



Luminosité

• Nombre d’événements 
d’un certain type par unité de temps:
– σ = section efficace [cm2] pour le type d’événement considéré
– L = luminosité [cm–2s–1] 

• Luminosité pour un collisionneur:

– f = fréquence de circulation [s–1]
– npaquets = nombre de paquets “+” = nombre de paquets “–”
– N± = nombre de particules par paquet “±”
– A = section des paquets au point de collision [cm2]
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N = σ L

L = f npaquets
N+N−

A

“–” “+”

point de collision

paquet

Chapitre 5
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e+ positons (anti-matière)

ν neutrinos
π pions
μ muons

Théoriciens et expérimentateurs à l’oeuvre 
à l’aube de la physique des particules

Prédictions et …
... découvertes



Découverte du positon (1932)
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[Carl D. Anderson, "The Positive Electron", Physical Review 43 (1933) 491–494]

la même année 
que le neutron

Chambre de Wilson:

diamètre 14 cm
épaisseur 1 cm

6 mm Pb
Anderson observe
15 positons 
dans 1300 clichés:

0 < qe+ < 2 qp
si qe+ = qp, me+ < 20 me-

B

1.5 T
⊗

Découverte antiproton, …

• Au Bevatron à Berkeley (USA)

– 1955:

– 1956:

• etc ... 

• Au CERN
– dès 1995: anti-atome d’hydrogène
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état lié   p e+

p+ p→ p+ p+ p+ p

p+ p→ n + n

[Phys. Rev. 100 (1955) 947]

[Phys. Rev. 104 (1956) 1193]

mp mp



Radioactivité β et neutrino

1898: Rutherford distingue radioactivités α et β
 ~ 1900: rayons β = électrons
 1914: Chadwick et Rutherford constatent que la
  désintégration β viole la conservation de l’énergie
 1930: Pauli postule l’existence d’une nouvelle particule
  pour rétablir les lois de conservation de l’énergie et
  du moment cinétique
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Z
AX→ Z+1

AY+ e−+ νe n→ p+ e−+ νe
Neutrino: masse nulle
 insensible à l’interaction é.m. (charge électrique nulle)
 insensible à l’interaction forte
 spin 1/2

Découverte du neutrino
1956: Reines & Cowan observent directement des 
 anti-neutrinos au réacteur de Savannah River (USA)

– interactions dans un cuve de 200 l d’eau avec scintillareur 
liquide et chlorure de cadmium
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Photon = particule d’échange des 
forces électromagnétiques

• Effet du photon virtuel se
propage sur une distance d:

• Si le photon est de très faible énergie,
d est très grande

• Dans la limite Eγ→0, 
d n’est plus limitée
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t Diagramme 
de Feynman

e–

e– e–

e–

γ Δt < h
ΔE

ΔE = E γ = hν = hω

d = cΔt ≤ hc
ΔE

= hc
hω

= c
ω

L’interaction 
électromagnétique
a une portée infinie

Méson de Yukawa = particule 
d’échange des forces nucléaires

• 1934: Yukawa décrit les forces entre nucléons (protons, neutrons) 
par l’échange d’une nouvelle particule virtuelle, le méson π

• Il donne une masse à ce méson pour 
limiter la portée de l’interaction

OS, 16 avril 2025 128

Δt < h
ΔE

ΔE = Eπ

d ≤ cΔt ≤ hc
ΔE

≤ hc
m

π
c2
≡ a

t Diagramme 
de Feynman

p, n

p, n p, n

p, n

π

a = h/(mπc) 
= portée (finie) de 

l’interaction nucléaire



Maxwell et Yukawa

OS, 16 avril 2025 129

Théorie de Maxwell

photon γpotentiel de Coulomb ∝ e
r

portée = ∞ masse = 0

Théorie de Yukawa

méson πpotentiel de Yukawa ∝ gr
exp − r

a
⎛
⎝
⎜

⎞
⎠
⎟

portée = a masse = mπ >0

a = h
mπc

Découverte de “mésons” cosmiques
• 1938–1943: plusieurs expériences confirment l’existence 

de “mésons” dans les rayons cosmiqes
– mésons instables, se désintègrent en électrons (τ ≃ 2 μs)

• 1947: expérience de Conversi, Pancini, Piccioni

– les “mésons” positifs et 
négatifs se désintègrent 
de la même façon

• “méson+” → e+

• “méson–” → e–
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“méson” cosmique

électron

Carbon

[Phys. Rev. 71 (1947) 209]



Découverte de “mésons” cosmiques

• Pour les théoriciens, ce “méson” cosmique 
ne peut pas être le méson de Yukawa

• Raisons:
– temps de vie devrait être ~100 fois plus court
– section efficace de diffusion méson-nucléon 

devrait être ~100 fois plus grande
– mésons de Yukawa stoppés dans la matière 

devraient se comporter différemment
• les π+ sont repoussés par les noyaux positifs 

et se désintègrent normalement
• les π– sont attirés par les noyaux positifs,

capturés sur une orbite de Bohr de rayon rn,
et une fois sur l’orbite la plus interne (n=1), 
sont absorbés par les noyaux (réaction nucléaire) 
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rn = n
2 hc
z α m

π
c2

Découverte méson π

• rayons cosmiques enregistrés
par des émulsions photographiques
à haute altitude (~ 25–30 km)
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par C. Powell en 1947 
(Nobel de physique en 1950)

100 μm



Découverte méson π

• “star”
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proton 3 MeV
(quitte l’émulsion)

triton 5.6 MeV
(stoppé)

proton 3.7 M
eV

(stoppé)

pio
n n

ég
ati

f in
cid

en
t

Pion neutre: π0

• Première particule à être
– prédite par des arguments de symétrie

(indépendance de charges des forces nucléaires) 
• ~ 1938: la force nucléaire s’exerçant entre deux nucléons ne dépend 

pas de leurs charges électriques

• ~1940: prédiction désintégration π0 → γγ avec τ ~ 10–16 s

– découverte à l’aide d’un accélérateur
• ~1950: synchrocyclotron de 184 pouces (4.7 m) de diamètre 

            à Berkeley avec protons de 330 MeV
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t p, n

n, p p, n

n, p

π±

p, n

p, n p, n

p, n

π0



Mesure de la masse du π0 

• Pions négatifs
– produits par les protons de 

330 MeV
– puis stoppés dans une cible 

d’hydrogène
– puis capturés sur l’orbite de 

Bohr la plus basse

• Réactions:
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[Panofsky, Aamodt, Hadley, Phys. Rev. 81 (1951) 802]

π−+ p→ n+ γ
π−+ p→ n+π0 ,  π0 → γ+ γ

Eγ = Ee–+ Ee+

Eγ

photons de π–p → nγ
mesure masse π–  

 

photons de π–p → nπ0
mesure masse π0  

Mesure de la masse des pions 
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[Panofsky, Aamodt, Hadley, Phys. Rev. 81 (1951) 802]

γ

π–

γ

e+e–

convertisseur Ta

0.5–1.0 T
⊙B

cible H2

Eγ = Ee– + Ee+



Mésons et muons

• Mésons de Yukawa = mésons π = pions

• Muons = leptons μ   (≠ mésons)
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Contenu 
en quarks

Masse 
(MeV/c2)

Temp de 
vie (s)

Mode de 
désintégration

π– ud
139.57 2.6 × 10–8

π– → μ– + νμ

π+ ud π+ → μ+ + νμ

π0 uu ou dd 134.98 8.4 × 10–17 π0 → γ+γ

Masse 
(MeV/c2)

Temp de 
vie (s) Mode de désintégration

μ–
105.66 2.2 × 10–6

μ– → e– + νe + νμ

μ+ μ+ → e+ + νe + νμ

–
– antiparticules

antiparticules
––

–

– –

Chapitre 6: 
Etats métastables et résonances

• Métastable: se dit d’un système qui n’est pas stable en 
théorie, mais qui paraît tel en raison d’une vitesse de 
transformation très faible (Larousse)

• Exemple: désintégration 
                d’une particule
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état initial 
métastable

état final 1
état final 2
état final 3
état final 4
…

durée de vie: τ = 14.8 min
cτ = 2.7 × 1011 m

n→ p+ e−+ νe

infinité d’états finals possibles 
(spectre d’énergie de l’électron)



Etats stationnaires non perturbés

• Hamiltonien H = H0+Hint
– H0 est l’hamiltonien non perturbé
– Hint est petite perturbation (“Hint << H0”) responsable de l’instabilité

• Si Hint = 0:
– équation de Schrödinger:
– solutions stationnaires:
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ih ∂ψ
dt

= H0ψ     où  ψ(rx, t) = fonction d'onde

ψn(
rx, t) = un(

rx)exp − iEnt
h

⎛
⎝
⎜

⎞
⎠
⎟    n = indice discret

H0un(
rx) = Enun(

rx) équ. aux valeurs propres
un

*(rx) um(rx) d3rx∫ = δnm orthonormalisation

un(
rx){ }= base des fonctions d'onde stationnaires  

un{ }= base des états stationnaires

Perturbation

• Soit |α> un état stationnaire 
du système non perturbé à t=0

• Si Hint = 0

• Si Hint ≠ 0

– transition possible après un certain temps T 
de l’état |α> vers un autre état |un>
à condition que En ~ Eα (“conservation de l’énergie”)

– probabilité de transition négligeable si |En–Eα| > h/T 
(“principe d’incertitude”)

– souvent les états accessibles forment un continuum d’états finals
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α ∈ un{ }

α H α = α H0 α = Eα

un H α = un H0 α = 0    si un ≠ α  

un H α = un Hint α     pas forcément nul



Règle d’or de Fermi

• Taux de transition
(= probabilité de transition par unité de temps) 
d’un état initial |α> d’énergie Eα 
vers un continuum d’états finals |β> d’énergies E ≃Eα

– < β | Hint | α > =   élément de matrice moyen entre l’état |α> 
                            et un état |β> de l’hamiltonien d’interaction (perturbation)

– ρ(E) =  dN/dE =  densité d’états finals accessibles
                           (ou facteur d’espace de phase)  
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ωα→β =
2π
h

β Hint α
2
ρ(E)

Etats métastables

• Probabilité de désintégration d’un état |α> par unité de temps

• η0 = nombre de systèmes dans l’état |α> à l’instant t=0
• η(t) = nombre de systèmes dans l’état |α> à l’instant t>0
• η(t) ωα dt = nombre de désintégrations entre t et t+dt

• On définit la durée de vie moyenne τα de l’état |α>
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ωα =
2π
h

Hint
2
ρ(E) = constante, si Hint constante

dη= − η(t)ωαdt⇒
dη
dt

= −η(t)ωα ⇒ η(t) = η0 exp(− ωαt)

τα =
1
ωα

η(t) = η0 exp(− t / τα)
Loi de décroissance exponentielle des états métastables



Etats métastables (suite)
• Cas Hint = 0:  ωα = 0, η(t) = η0 = constante 

– Fonction d’onde stationnaire de l’état |α>
– Probabilité de présence de l’état |α> au temps t

• Cas Hint ≠ 0:  ωα = 1/τα ≠ 0, η(t) = η0exp(-t/τα)
– Probabilité de présence de l’état |α> au temps t :  exp(-t/τα) ≠ constante

– On écrit

      de sorte que
  

– On définit

OS, 30 avril 2025 143

ψα(
rx, t) = uα(

rx)exp − iEαt
h

⎛
⎝
⎜

⎞
⎠
⎟

ψα(
rx, t) 2 d3rx∫ = uα(

rx) 2 d3rx∫ =1=  constante

ψα(
rx, t) = uα(

rx)exp − iEαt
h

⎛
⎝
⎜

⎞
⎠
⎟exp − t

2τα

⎛

⎝
⎜

⎞

⎠
⎟

ψα(
rx, t) 2 d3rx∫ = uα(

rx) 2 exp − t
τα

⎛

⎝
⎜

⎞

⎠
⎟d3

rx∫ = exp − t
τα

⎛

⎝
⎜

⎞

⎠
⎟

Γα =
h
τα
= hωα ψα(

rx, t) = uα(
rx)exp − i

h
Eα − i

Γα
2

⎛
⎝
⎜

⎞
⎠
⎟t

⎛

⎝
⎜

⎞

⎠
⎟

énergie complexe

Résonance de Breit-Wigner
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2
πΓα

1
πΓα Γα

Eα +ΓαEα − Γα E

P(E)

Eα

P(E) = 1
π

Γα / 2( )
E −Eα( )2 + Γα / 2( )2

P(E)dE = prob. pour que le système métastable 
  “d’énergie Eα–iΓα/2” ait effectivement 
  une énergie comprise entre E et E+dE

 Eα= valeur la plus probable de l’énergie
 Γα= largeur (à mi-hauteur)
 τα= h/Γα = durée de vie moyenne

de l’état 
métastable 
(résonance)

pas une 
gaussienne 



Interactions et temps caractéristiques
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intensité interaction ∝ α Hint β
2
∝ω∝Γ= h

τ

Interaction Γ [MeV] τ [s] Exemple

faible < 10–8 > 10–13 π+ → μ+νμ
τ = 2.6 × 10–8 s
Γ = 2.5 × 10–8 eV

é.m. < 10–1 > 10–20 π0 → γγ τ = 8.4 × 10–17 s
Γ = 7.8 eV

forte < 103 ≥10–24 ρ → ππ τ = 4.4 × 10–24 s
Γ = 151 MeV

ℏ = ℏ#
# ≅ 197 MeV fm

3×10! m s–# = 6.6×10–$$ MeV s

Résonance ρ
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[Erwin et al,  
 Phys. Rev. Lett. 6 (1961) 628]

π– p → ρ– p

             ⤷ π– π0

π– p → ρ0 n

             ⤷ π+ π–

Prédiction pour élément 
de matrice de transition 
constant:

distribution déterminée 
par l’espace de phase 
uniquement

m* = (Eπ1+Eπ2)
2 − (rpπ1+

rpπ2)
2   [MeV]

Γρ

mρ

mρc2 = 770 MeV
Γρ = 151 MeV



m* = (Eπ1+Eπ2 +Eπ3)
2 − (rpπ1+

rpπ2 +
rpπ3)

2   [GeV]

N
om

br
e 

de
 c

om
bi

na
iso

ns
 π

ππ
  /

  2
5 

M
eV

Résonance ω0
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mωc2 = 782 MeV
Γω =     8 MeV

[Maglic et al,  
 Phys. Rev. Lett. 7 (1961) 178]

ω0

pp → π+π+π–π–π0

pp → ω0π+π–

            ⤷ π+π–π0

–

–

Q=±1 (π+π+π– ou π–π–π+)
Q=±2 (π+π+π0 ou π–π–π0)

Q=0   (π+π–π0)

largeur 
pic > Γω

Résonance Σ*±
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[Alston et al,  Phys. Rev. Lett. 5 (1960) 520]

K–p → Λπ+π–           

K–p → Σ*+π–

             ⤷ Λπ+

K–p → Σ*–π+

             ⤷ Λπ–

continuum

résonance
Σ*+ 

résonance
Σ*–

Σ*+

Σ*–

contour = limite cinématique

point = mesure effectuée sur
            un événement

Diagramme 
de Dalitz

(voir exercices)

mΣ*c2 = 1383 MeV
ΓΣ* =     36 MeV



Résonance φ
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mφc2 = 1019 MeV
Γφ =       4 MeV

[Connolly et al,  Phys. Rev. Lett. 10 (1963) 371]

K–p → ΛK+K– ou ΛK0K0

K–p → Λφ

                 ⤷ K+K– ou K0K0

–

–
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π–p → π–p

Se
ct

io
n 

ef
fic

ac
e 

to
ta

le
 π
±

p 
(m

b)

masse π±p = √s (MeV)

Diffusion 
pion-nucléon

π+p → π+pΔ++

i.e. π+p → Δ++ → π+p

Δ0

i.e. π–p → Δ0 → π–p

N(1525)
N(1688)

Δ(1920) N(2190)

Plusieurs résonances observées, 
certaines dans les deux canaux (Δ), 

d’autres pas (N)

ΓΔ



Quelques résonances (mésons) …
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Quelques résonances (baryons) …
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etc …



s

ΓZ

mZ

Résonance Z0

Production de 
bosons Z0 au LEP 
(Large Electron 
Positron collider)
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e+e− → l+l− ,  l = e, µ, τ

Z0

e+

e–

ℓ+

ℓ–

t

Chapitre 7: 
Nombres quantiques et 

lois de conservation

• Lois de conservation
• Moment cinétique, spin, parité 
• Isospin
• Charges baryonique et leptoniques
• Charge d’étrangeté
• Classification des hadrons
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Lois de conservation
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Transformations 
ou symétries

Quantités conservées
(si invariance respectée) forte é.m faible

Sy
m

ét
ri

es
 co

nt
in

ue
s

Q
ua

nt
ité

s a
dd

iti
ve

s
Translations espace-temps Energie-impulsion oui oui oui
Rotations espace-temps Moment cinétique oui oui oui
Rotations espace isospin Isospin oui non non

Transformations de jauge

Charge électrique oui oui oui
Charge baryonique oui oui oui
Charges leptoniques oui oui oui
Charges d’étrangeté, … oui oui non

Sy
m

ét
ri

es
 d

isc
rè

te
s

Q
ua

nt
ité

s m
ul

tip
lic

at
iv

es P = inversion d’espace Parité P = ±1 oui oui non

C = conjugaison de charge C = ±1 oui oui non

CP CP = ±1 oui oui presque

T = renversement du temps – oui oui presque

CPT – oui oui oui

Interactions

?
?

Conservation du moment cinétique et de 
la parité dans un processus 1+2 → 3+4

• Conservation du moment cinétique total

– Ji = spin de la particule i (entier ou demi-entier)
– Lij = moment cinétique orbital relatif entre les particules i et j (entier)

• Conservation de la parité, 

seulement si interaction forte ou é.m., par si interaction faible

– Pi = parité intrinsèque de la particule i (+1 ou –1)
– Lij = moment cinétique orbital relatif entre les particules i et j (entier)

Se généralise pour un processus avec un nombre quelconque
de particules dans l’état final ou pour une désintégration
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r
J1+

r
J2 +

r
L12 =

r
J3+

r
J4 +

r
L34

P1 ⋅P2 ⋅ −1( )L12 =P3 ⋅P4 ⋅ −1( )L34

Attention:
composition vectorielle 
des moments cinétiques

Attention: les parités 
sont multiplicatives



Spin = moment cinétique intrinsèque
• Chaque particule a un moment cinétique intrinséque J (= spin)

– contrairement au moment cinétique orbital L qui prend des valeurs 
entières (en unités de ℏ), le spin J peut être demi-entier ou entier

• Fermions ⇔ J demi-entier

– leptons et quarks: J = 1/2
– baryons: J = 1/2, 3/2, 5/2, …  [par exemple Jp=Jn=1/2]

• Bosons ⇔ J entier

– boson de Higgs H: J = 0
– bosons d’échange (γ, Z0, W±, gluons): J = 1
– mésons: J = 0, 1, 2, 3, … [par exemple Jπ=0]
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En mécanique quantique, deux particules identiques sont 
indistinguables. L’état quantique d’un système de deux particules 

identiques doit être soit antisymétrique (cas des fermions) soit 

symétrique (cas des bosons) sous l’échange des deux particules.

Parité intrinsèque

• Chaque hadron possède une parité intrinsèque P (= ±1) 
qui décrit la manière dont son état quantique propre (au 
repos) se transforme sous une inversion d’espace
– Exemples:  

• proton, neutron: Pp = Pn = +1
• pion: Pπ = –1

• Spin et parité intrinsèques sont souvent donnés ensemble
et notés JP
– Exemples:  

• proton, neutron: JP = ½+

• pion: JP = 0–
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JP = 0– pseudo-scalaire
JP = 0+ scalaire
JP = 1– vecteur
JP = 1+ pseudo-vecteur

Nomenclature pour les mésons



Parité orbitale en mécanique quantique
• Inversion d’espace: opérateur P

• Conservation de la parité
• Cas d’une particule (relative) dans un potentiel central:

– conservation du moment cinétique
– Les états propres simultanés de H, L2 et Lz, de moment cinétique ℓ

sont aussi états propres de P, pour la valeur propre (–1)ℓ:  
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ψ(rr) →  ψ(−rr) fonction d'onde
ψ  →  P ψ "ket"
P2 ψ = ψ      ⇒  valeurs propres = ±1

⇔   P,H[ ] = 0 (H = Hamiltonien)

ψnlm(rr) = Rnl(r)Yl
m(θ,ϕ)      où  (r,θ,ϕ) = coordonnées sphériques

⇔   Lx,H[ ] = Ly,H"# $%= Lz,H[ ] = 0

P ψnlm(rr) = ψnlm(−rr) = Rnl(r)Yl
m(π−θ,ϕ+π)

= Rnl(r) (−1)lYl
m(θ,ϕ) = (−1)l ψnlm(rr) P = –1( )l

Conjugaison de charge C
• Opération consistant à changer le signe de toutes les charges 

d’une particule X pour obtenir son anti-particule X

• Si qi = 0, alors X est sa 
propre antiparticule 
→ deux cas:

• Les interactions forte et é.m. conservent C
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X
charges qi

X
charges –qi

–C

Nombre 
quantique

Exemple

C = +1 π0

C = –1 γ

X +XC

X –XC

π0→ γγ π0→ γγγ/

–



Nucléon (= proton ou neutron)
• Le nucléon a un spin s = ½ 

– Espace des états de spin de dimension 2s+1 = 2
– Base de l’espace des états de spin
 formée d’états propres de s 2 et sz 

• Le nucléon est un fermion
– il obéit à la statistique de Fermi-Dirac, 

et donc au principe d’exclusion de Pauli
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↑ , ↓{ }

rs2 ↑ = s(s+1)h2 ↑ = 3
4
h2 ↑ sz ↑ = + 1

2
h ↑

rs2 ↓ = s(s+1)h2 ↓ = 3
4
h2 ↓ sz ↓ = − 1

2
h ↓

En mécanique quantique, deux particules identiques sont 
indistinguables. L’état quantique d’un système de deux particules 

identiques doit être soit antisymétrique (cas des fermions) soit 
symétrique (cas des bosons) sous l’échange des deux particules.

Système de deux nucléons de spin ½ 
• Base de l’espace de états de spin de dim. 4:

– pas états propres du spin total  S = s1 + s2
• Nouvelle base d’états 

propres du spin total: 

Si l’état de mouvement est symétrique (ℓ pair, par ex. ℓ=0)
– un système pp ou nn (fermions identiques) doit être dans un état 

antisymétrique, donc avoir S=0 (S=1 interdit) 
– un système pn (fermions différents) peut avoir S=0 ou S=1
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↑↑ , ↑↓ , ↓↑ , ↓↓{ }

S; MS{ },   S= 0,  1,    −S≤ MS ≤ S

0; 0 = 1
2

↑↓ − ↓↑( )
1; +1 = ↑↑

1; 0 = 1
2

↑↓ + ↓↑( )
1; −1 = ↓↓

état singulet S=0, antisymétrique

triplet d’états S=1, symétriques
sous l’échange des deux nucléons



Interaction nucléon-nucléon:
faits d’expérience

• Deuton:

• Indépendance de charge des forces nucléaires:
– si les deux nucléons sont dans le même état de mouvement relatif 

et de spin total, et si on ignore les forces de Coulomb, alors

– de plus: 
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le seul système lié de deux 
nucléons est le système pn 
dans l’état S=1 et ℓ=0

le force entre un 
proton et un neutron 
dépend du spin

⇒

force entre p et p = force entre n et n = force entre p et n

mp ≃ mn

Le proton et le neutron sont très semblables;
ils seraient indiscernables si la seule force en 
jeu était la force nucléaire forte

⇒
la force é.m. 
“lève la 
dégénerescence”

p n

Isospin du nucléon
• Le nucléon a un isospin I = ½ 

– Le nucléon a 2I+1 = 2 états de charge possible
• état proton

• état neutron

– Espace des états d’isospin de dimension 2I+1 = 2
– Base de l’espace des états de spin
 formée d’états propres de I 2 et I3 

– opérateur de charge pour le nucléon:   Q = I3 + 1/2
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p , n{ }
r
I 2 p = I(I+1) p = 3

4
p I3 p = + 1

2
p

r
I 2 n = I(I+1) n = 3

4
n I3 n = − 1

2
n

Q p = +1 p    valeur propre +1
Q n = 0 n    valeur propre   0

même 
formalisme 
que le spin

p
n “doublet d’isospin”



Composition de deux isospins ½

• Même formalisme que pour la compositions de deux spins ½

• Isopsin total:

• Les états propres de I2 et I3 forment une base de l’espace des 
éats d’isospin
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I; MI{ },   I = 0,  1,    − I ≤ MI ≤ I

0; 0 = 1
2
pn − np( )

1; +1 = pp

1; 0 = 1
2
pn + np( )

1; −1 = nn

état singulet I=0, antisymétrique

triplet d’états I=1, symétriques
sous l’échange des deux nucléons

r
I =

r
I (1)+

r
I (2)

Système de deux nucléons

• Etat de spin

• Etat d’isospin

• Etat de mouvement relatif

• L’état complet                                         doit être antisymétrique 
pour des fermions
– Cas ℓ=0 (|ψ> symétrique): 6 états internes possibles
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S; MS ,   avec S= 0 ou 1

ψ
I; MI ,    avec I = 0 ou 1

ψ ⊗ S; MS ⊗ I; MI

S= 0; MS = 0 ⊗ I =1; MI       
0;0 ⊗ 1;+1
0;0 ⊗ 1; 0
0;0 ⊗ 1;−1

⎧

⎨
⎪

⎩⎪

S=1; MS ⊗ I = 0; MI = 0
1;+1 ⊗ 0;0
1; 0 ⊗ 0;0
1;−1 ⊗ 0;0

⎧

⎨
⎪

⎩⎪

antisym.               sym.

sym.                  antisym.

!
" | ↑↓> −| ↓↑> ⊗ |'' >
!
" | ↑↓> −| ↓↑> ⊗ !

" |'( > +|(' >
!
" | ↑↓> −| ↓↑> ⊗ |(( >

| ↑↑>⊗ !
" |'( > −|(' >

!
" | ↑↓> +| ↓↑> ⊗ !

" |'( > −|(' >
| ↓↓>⊗ !

" |'( > −|(' >



Interaction forte et isospin
• Interaction dépend de l’isospin total

– état lié pn, avec ℓ=0 et S=1 ⇒ I=0
– états pp et nn ont nécessairement I=1 

puisque I3 = ±1; 
or pp ou nn n’est pas un état lié 
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Système
avec ℓ=0

I MI S

pp 1 +1 0 même force 
entre les deux 
nucléons

pn 1 0 0

nn 1 –1 0

pn (deuton) 0 0 1 force différente

Les forces nucléaires:
– peuvent dépendre de I
– sont indépendentes de MI
– conservent l’isospin 

indépendance de charge

invariance par rotation dans l’espace 
d’isospin (ou espace de charge)
⇔ I conservé
⇔ [H, I1] = [H, I2] = [H, I3] = 0

NB: les forces é.m et faible ne conservent pas (violent) l’isospin !

Isospin du pion

• Le pion de Yukawa (= méson π) a un isospin I = 1 
– Il a donc 2I+1 = 3 états de charge possibles

– opérateur de charge pour le pion:  Q = I3
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r
I 2 π+ = I(I+1) π+              I3 π

+ = + π+    valeur propre +1
r
I 2 π0 = I(I+1) π0 I3 π

0 = 0 π0 valeur propre   0
r
I 2 π– = I(I+1) π– I3 π

– = – π– valeur propre –1

π+ , π0 , π−

base de l’espace des états d’isospin du pion

“triplet d’isospin”



Tout hadron a un isospin
• Exemples:
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Hadron Isospin 
I

Etats 
de 

charge

Valeur 
propre 
de I3

Masse 
[MeV/c2]

Spin et 
parité 

JP

N
(nucléon)

1/2
p
n

+1/2
–1/2

938.3
939.6

1/2+

π
(pion)

1
π+

π0

π–

+1
0
–1

139.6
135.0
139.6

0–

ρ
(rho)

1
ρ+

ρ0

ρ–

+1
0
–1

~770 1–

ω
(omega)

0 ω0 0 781.9 1–

Δ
(delta)

3/2

Δ++

Δ+

Δ0

Δ–

+3/2
+1/2
–1/2
–3/2

~1232 3/2+

hadron = 
particule 
sensible à 

l’interaction 
forte

Conservation de l’isospin total

• Le formalisme d’isospin est le même que le formalisme 
des moments cinétiques

• Somme (vectorielle) de deux isospins:
– Règle de composition:

!! − !" ≤ ! ≤ !! + !", par pas de 1

• Exemples de processus d’interaction forte
(avec conservation de l’isospin, c’est-à-dire de I et I3):
– $! + & → Δ!!
– )" → $!+ $#
– *" → $!+ $#+ $"
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,⃗$ ,⃗%

,⃗ = ,⃗$ + ,⃗%
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S
ec

ti
on

 e
ff

ic
ac

e 
to

ta
le

 π
±

p 
(m

b)

masse π±p = √s (MeV)

Interaction 
pion-nucléon

à basse 
énergie

Pourquoi la résonance à 1232 
MeV est-elle plus intense dans 
π+p que dans π–p ?

Pourquoi y a-t-il des résonances 
à 1525 et 1688 MeV dans π–p
mais pas dans π+p ?

Discussion sur la base de:
– conservation de l’isospin
– indépendance de charge
 des forces nucléaires

Interaction pion-nucléon

• Faisceau de pions chargés sur cible d’hydrogène:

• Isospin du pion π:                  Iπ = 1 

• Isospin du nucléon N:             IN = 1/2

• Isospin total du système πN:   I  =  3/2 ou 1/2     

• Etats propres de l’isospin total (I2 et I3):
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à basse 
énergie

I;M = CIπIN
(I,M,

Mπ,MN
Mπ+MN=M

∑ Mπ,MN) Iπ;Mπ ⊗ IN;MN

π+p→π+p        diffusion élastique
π–p→π–p diffusion élastique
π–p→π0n échange de charge

r
I =

r
Iπ +

r
IN

coefficients de Clebsch-Gordan



Coefficients de Clebsch-Gordan
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45. Clebsch-Gordan coefficients 1

45. Clebsch-Gordan Coefficients, Spherical Harmonics, and d Functions

Note: A square-root sign is to be understood over every coefficient, e.g., for −8/15 read −
√

8/15.

Y 0
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√
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4π
cos θ
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= −

√
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8π
sin θ eiφ

Y 0
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=
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4π
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√

15
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sin θ cos θ eiφ

Y 2
2
=
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√

15

2π
sin2 θ e2iφ

Y −m
" = (−1)mY m∗

" 〈j1j2m1m2|j1j2JM〉
= (−1)J−j1−j2〈j2j1m2m1|j2j1JM〉d "

m,0 =

√

4π
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Figure 45.1: The sign convention is that of Wigner (Group Theory, Academic Press, New York, 1959), also used by Condon and Shortley (The
Theory of Atomic Spectra, Cambridge Univ. Press, New York, 1953), Rose (Elementary Theory of Angular Momentum, Wiley, New York, 1957),
and Cohen (Tables of the Clebsch-Gordan Coefficients, North American Rockwell Science Center, Thousand Oaks, Calif., 1974).

j1      j2   

j1    j2   

Système pion-nucléon

• Quadruplet d’isospin total I = 3/2:

• Doublet d’isospin total I = 1/2:

OS, 7 mai 2025 174

3
2
; + 3

2
= 1;+1 ⊗ 1

2
;+ 1
2

= π+p

3
2
; + 1

2
= 1

3
1;+1 ⊗ 1

2
;– 1
2
+ 2

3
1;0 ⊗ 1

2
;+ 1
2

= 1
3
π+n + 2

3
π0p

3
2
; − 1

2
= 2

3
1;0 ⊗ 1

2
;– 1
2
+ 1
3
1;−1 ⊗ 1

2
;+ 1
2

= 2
3
π0n + 1

3
π−p

3
2
; − 3

2
= 1;−1 ⊗ 1

2
;− 1
2

= π−n

1
2
; + 1

2
= 2

3
1;+1 ⊗ 1

2
;− 1
2
− 1
3
1;0 ⊗ 1

2
;+ 1
2

= 2
3
π+n − 1

3
π0p

1
2
; − 1

2
= 1

3
1;0 ⊗ 1

2
;– 1
2
− 2

3
1;−1 ⊗ 1

2
;+ 1
2

= 1
3
π0n − 2

3
π−p
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45. Clebsch-Gordan Coefficients, Spherical Harmonics, and d Functions

Note: A square-root sign is to be understood over every coefficient, e.g., for −8/15 read −
√

8/15.
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Figure 45.1: The sign convention is that of Wigner (Group Theory, Academic Press, New York, 1959), also used by Condon and Shortley (The
Theory of Atomic Spectra, Cambridge Univ. Press, New York, 1953), Rose (Elementary Theory of Angular Momentum, Wiley, New York, 1957),
and Cohen (Tables of the Clebsch-Gordan Coefficients, North American Rockwell Science Center, Thousand Oaks, Calif., 1974).
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π0n
π–p   

π–n



• On exprime |π+p>, |π–p>, |π0n> dans la base d’états propres
de l’isospin total

• Par la règle d’or de Fermi:

avec α1=α2=α3=α
car les 3 réactions font intervenir des
particules de mêmes masses et mêmes spins

45. Clebsch-Gordan coefficients 1

45. Clebsch-Gordan Coefficients, Spherical Harmonics, and d Functions

Note: A square-root sign is to be understood over every coefficient, e.g., for −8/15 read −
√

8/15.
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Figure 45.1: The sign convention is that of Wigner (Group Theory, Academic Press, New York, 1959), also used by Condon and Shortley (The
Theory of Atomic Spectra, Cambridge Univ. Press, New York, 1953), Rose (Elementary Theory of Angular Momentum, Wiley, New York, 1957),
and Cohen (Tables of the Clebsch-Gordan Coefficients, North American Rockwell Science Center, Thousand Oaks, Calif., 1974).

π+p   
π+n
π0p   

π0n
π–p   

π–n

Système pion-nucléon (suite)
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π+p = 3
2
;+ 3
2

π−p = 1
3
3
2
;− 1
2
− 2

3
1
2
;− 1
2

π0n = 2
3
3
2
;− 1
2
+ 1
3
1
2
;− 1
2

σ π+p→π+p( ) = α1 π+p H π+p
2

σ π−p→π−p( ) = α2 π−p H π−p
2

σ π−p→π0n( ) = α3 π0n H π−p
2

3
2
;M H 1

2
;M' = 0

3
2
;M H 3

2
;M ≡A3/2

1
2
;M H 1

2
;M ≡A1/2

Conservation de l’isospin:

L’indépendance de charge 
permet de poser:

Interaction pion-nucléon (suite)
• Ainsi:

• On définit:
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σ π+p→π+p( ) = α A3/2
2

σ π−p→π−p( ) = α 13A3/2 +
2
3
A1/2

2

σ π−p→π0n( ) = α 2
3
A3/2 −

2
3
A1/2

2

R =
σ tot π

+p( )
σ tot π

–p( )
=

σ π+p→π+p( )
σ π−p→π−p( )+σ π−p→π0n( )

=
A3/2

2

1
3

A3/2 +
2
3

A1/2

2

+ 2
3

A3/2 −
2

3
A1/2

2 =
3 si A3/2 >> A1/2

1 si A3/2 ≈ A1/2

0 si A3/2 << A1/2

⎧

⎨
⎪

⎩⎪
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S
ec

ti
on

 e
ff

ic
ac

e 
to

ta
le

 π
±

p 
(m

b)

masse π±p = √s (MeV)

Interaction 
pion-nucléon 

(fin)

On observe:

    R~3 à √s=1232 MeV
    ⇒ résonance d’isospin 3/2

    R~0 à √s=1525, 1688 MeV
    ⇒ résonance d’isospin 1/2

I=3/2

I=3/2

I=1/2

Nombre (charge) baryonique B

• La conservation du nombre baryonique 
explique pourquoi certaines réactions ne 
sont jamais observées:
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Particules B
nucléons +1
anti-nucléons –1
pions, leptons, γ, Z, W 0

• Quelques réactions 
observées (B conservé)
pp→ ppπ0
pp→ pnπ+

pp→ nnπ+π+π0π0
pp→ pppp
pp→ nn
n→ pe− νe
π–→µ− νµ
π0→ γγ

pp→ ppπ+π+
pp→ ppn
n→π+π0π–

/
/
/

• Quel est le nombre baryonique
de la résonance Δ ?

• Charge électrique
– Q = I3 + 1/2 pour N, Δ, ... avec B=1
– Q = I3           pour π, ω, ... avec B=0
– Généralisation: Q = I3 + B/2 

π N→ Δ →π N
0 + 1 =  B(Δ) = 0 +1    ⇒ B(Δ) = 1

nombre 
quantique 

additif



Nombres (charges) leptoniques L
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Particules Le Lμ Lτ
e–, νe
e+, νe

+1
–1

0
0

0
0

μ–, νμ
μ+, νμ

0
0

+1
–1

0
0

τ–, ντ
τ+, ντ

0
0

0
0

+1
–1

tous les non-leptons 0 0 0

nombres 
quantiques 

additifs

• Conservation des 
nombres leptoniques 
(séparément)
– exemples:

–

–

–
ν→ γγ interdit / pas observé
µ− → e− γ interdit / pas observé
µ− → e−e+e− interdit / pas observé

µ− → e− νe νµ permis / observé
n → pe− νe permis / observé
Z→ τ+ τ− permis / observé• La violation des nombres leptoniques 

(mais pas de leur somme !) 
est observée seulement dans les 
phénomènes d’oscillation des neutrinos

– Prix Nobel de physique 2015

νe →ν
µ

       interdit / observé

Nomenclature …
• Hadrons = particules sensibles à l’interaction forte

              (= particules formées de quarks)
– Charactérisés par leur nombre baryonique:

• baryons         B = +1
• antibaryons  B = –1
• mésons          B = 0

– Le = Lμ = Lτ = 0

• Leptons = particules insensibles à l’interaction forte
– Charactérisés par leur nombres leptoniques:

• e, νe    Le = ±1
• μ, νμ   Lμ = ±1
• τ, ντ    Lτ = ±1

– B=0, autres L = 0

• gluons, γ, Z0, W+, W–, H = bosons d’échange 
– B = Le = Lμ = Lτ = 0
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découvertes dès ~ 1950
Particules étranges

• Hadrons produits par 
interaction forte, mais avec 
une durée de vie moyenne 
beaucoup trop grande pour 
être des résonances 
caractéristiques de 
l’interaction forte 
→ étrange !?

Exemple:
π− p→K0 Λ
suivi de K0 →π+ π− et Λ→ p π−

τ(K0) ~ τ(Λ) ~10–10 s 
voir série 8

Charge d’étrangeté
• Les désintégrations du K0 et du Λ ne se font pas par 

interaction forte (sinon leur durée de vie serait de ~ 10–23 s)
– quelque chose (une loi de conservation !) les empêche de se 

désintégrer par interaction forte

– ils se désintègrent quand même: c’est l’effet d’une autre interaction 
(l’interaction faible) qui viole cette loi de conservation

• Introduction du concept d’étrangeté S et de la loi de 
conservation de l’étrangeté, violée par l’interaction faible
– S=0 pour toutes les particules connues jusqu’alors

– S≠0 pour les particules étranges

– On assigne arbitraitement S(K0) = +1 et S(Λ)=–1, pour que 
l’étrangeté soit conservée dans la production par interaction forte
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nombre 
quantique 

additif

π− p→ K0 Λ
0 + 0 =  S(K0)+S(Λ)     ⇒ S(K0) = –S(Λ) 



Particules étranges (suite)
• Désintégrations (faibles) du K0 et du Λ:

– S pas conservé, B conservé 

• Autres processus observés, par interaction forte:
– S et B conservés
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K0 →π+ π− Λ→ p π−

S : 1 ≠ 0+ 0 –1 ≠ 0+ 0
B: B(K0) = 0+ 0 B(Λ) = 1+ 0

π+ n→K0 Σ+ 
S : 0+ 0 = 1+S(Σ+) ⇒ S(Σ+) = –1
B: 0+1 = 0+S(Σ+) ⇒ B(Σ+) = +1

π− p→K0 K0 Ξ0  
S : 0+ 0 = 1+ 1+S(Ξ0) ⇒ S(Ξ0) = –2
B: 0+ 1 = 0+ 0+B(Ξ0) ⇒ B(Ξ0) = +1 etc ...

Particules étranges (fin)
• Finalement

• Note: Q = I3 + B/2 pas valable pour les particules étranges

• Généralisation 

          Y = B+S = hypercharge
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Particules 
étranges

S B I 2I+1 = nombre 
d’états de 

charge
Λ –1 +1 0 1

Σ+, Σ0, Σ– –1 +1 1 3

Ξ0, Ξ– –2 +1 1/2 2

Ω– –3 +1 0 1

K–, K0 –1 0 1/2 2

K+, K0 +1 0 1/2 2

–

Q = I3+
1
2
B+S( ) = I3+Y / 2

Formule de 
Gell-Mann 

et Nishijima



Renversement du temps T

• Transformation T:
– renversement des vitesses
– échange entre l’état initial et l’état final

• Exemple d’invariances par T: 
– « prédiction » des éclipses passées 

– particule dans une champ électromagnétique

– réaction nucléaire  p + 27Al ⇄ α + 24Mg

• Attention:
– l’irréversibilité de certains phénomènes macroscopiques 

(croissance de l’entropie) est de nature statistique; 
c’est une question indépendante de l’invariance par T !
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!

Symétrie CPT
• Théorème:

Toute théorie quantique des champs locale qui incorpore l’invariance
de Lorentz est automatiquement invariante sous la symétrie CPT

• Conséquences:
– les masses d’une particule et de son anti-particule sont égales

– les temps de vie moyen d’une particule et de son anti-particule sont égaux

• Une observation d’un non-respect de la symétrie CPT impliquerait 
une violation de l’invariance de Lorentz
– pas observé jusqu’à présent

• Une violation de CP implique une violation de T
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Particules et antiparticules
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masses m égales     (théorème CPT)
durées de vie moyennes τ égales     (théorème CPT)
spins J égaux
isospins I égaux

composantes I3 opposées

parités P égales si bosons
opposées si fermions

charges 
(électrique Q, baryonique B, 
leptoniques L, étrangeté S, …)

opposées

Multiplets d’isospin (baryons)
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U

Y

R0

1321
1314

1197.4
1192.5
1189.4

1115.6

939.6
938.2

S = 0n
p

+
0
<

S = <1

S = <1

S = <2

 J = 1/2+

<

0

1

U *

Y *

6

1672

¾1530

¾1385

¾1232

S = <3

S = <2

S = <1

S = 0

 J = 3/2+

m [MeV/c2]

I = 3/2

I = 1

I = 1/2
I = 0

I = 1/2

I = 0

I = 1

I = 1/2



Baryons avec JP = 1/2+
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Y

I3

Q

–1      
      

 0      
     +

1

S=–2

S= 0

S=–1

Q = I3+ (B+S) / 2
= I3+Y / 2

Gell-Mann, Nishijima

octet similaire
pour les 

antibaryons 
avec JP=1/2+

Baryons avec JP = 3/2+
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Y

I3

Q

décuplet similaire
pour les 

antibaryons 
avec JP=3/2+

S=–2

S= 0

S=–1

S=–3

–1      
      

0      
     +

1      
   +2



Mésons pseudoscalaires (JP = 0–)
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0      

      
    +

1

Y

I3

octet + 
singulet

I(η)=I(η’)=0

η et η’: mélanges de η1 
(singulet) et η8 (octet)

η’

S=–1

S=+1

S= 0 Q

Mésons vecteurs (JP = 1–)
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0      

      
    +

1

Y

I(ω)=I(φ)=0

ω et φ: mélanges de ω1 
(singulet) et ω8 (octet)

I3

Q

octet + 
singulet

S=–1

S=+1

S= 0



Analogie
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Classification

Découverte/postulat
d’un structure sous-jacente

Diminution du nombre de 
constitutants élémentaires

Prédiction de l’existence de nouveaux éléments/hadrons

Zoo des chimistes:
multitude d’éléments

Tableau de 
Mendeleïev

Un atome est formé 
de Z électrons et un noyau

Zoo des physiciens:
multitude de hadrons

Multiplets de 
baryons et mésons

Un hadron est 
formé de quarks

Découverte du baryon Ω–
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K−p→K0K+Ω−

Ω−→Ξ0π−

Ξ0→Λπ0

Λ→ pπ−

π0→ γγ

γ→ e+e−

V.E. Barnes et al., Phys. Rev. Lett. 12, 204 (1964)



Le modèle des quarks

Postulat: tous les hadrons (connus à l’époque) 
 sont formés à partir de 3 sortes de quarks
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Gell-Mann 
& Zweig
(~1964)

Baryon = quark + quark +quark
Méson  = quark + anti-quark

Quark JP B I I3 S Y=
B+S

Q=
I3+Y/2

u = up 1/2+ +1/3 1/2 +1/2 0 1/3 +2/3

d = down 1/2+ +1/3 1/2 –1/2 0 1/3 –1/3

s = strange 1/2+ +1/3 0 0 –1 –2/3 –1/3

anti-
quarks 1/2– –1/3 = ×(–1) ×(–1) ×(–1) ×(–1)

Multiplet fondamental
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Construction des mésons pseudoscalaires

• 9 combinaisons
de quarks possibles:

• Plaçons-les sur le diagramme Y–I3:

• Théorie des groupes SU(3):
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ℓ = 0,   JP = 0–

uu du su
ud dd sd
us ds ss

Y

I3
uudu

su sd

dd ud

usds

ss

–1                     0                    +1  
–1

0

+1

3⊗ 3 = 8⊕1= octet + singulet

I = 0, I3 = 0 :
1
3
uu +dd + ss( )

I = 0, I3 = 0 :
1
6
uu +dd − 2ss( )

I =1, I3 = 0 :
1
2
uu −dd( )

octet

singulet
mélange

π0

η

η’

K0

K0 K+

K– –

π–

π0

π+η η’

↓↑

Construction des mésons vecteurs

• 9 combinaisons
de quarks possibles:

• A nouveau:
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ℓ = 0,   JP = 1–

uu du su
ud dd sd
us ds ss

Y

I3
uudu

su sd

dd ud

usds

ss

–1                     0                    +1  
–1

0

+1

3⊗ 3 = 8⊕1= octet + singulet

+ construction 
d’autres mésons

S = 0 S = 1
ℓ = 0 JP = 0– JP = 1–

ℓ = 1 JP = 1+ JP = 0+, 1+, 2+

ℓ = 2 JP = 2– JP = 1–, 2–, 3–

… … …

K*0

K*0 K*+

K*–
–

ρ–

ρ0

ρ+ω φ

Exemple: 
mésons tenseurs
a2

–, a2
0, a2

+ 
avec I=1, JP=2+,
m≃1.32 GeV/c2

↑↑



Construction des baryons avec JP=3/2+

• 10 combinaisons
de quarks possibles:
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ℓ = ℓ’ = 0,   JP = 3/2+

Y

I3
–1                     0                    +1  

–1

0

+1

–2

udsdds

dss uss

uus

uududd uuuddd

sss

uuu uud uus
udd uds uss
ddd dds dss
sss

↑↑ ↑u u u

Principe 
d’exclusion 

Dans le Δ++ 
les 3 quarks u 
sont dans le 
même état !

Σ*–

Ξ*0

Δ0 Δ+

Ξ*–

Σ*+Σ*0

Ω–

Δ++Δ–

↑ ↑↑

Couleur des quarks
• On admet l’existence d’un degré de liberté interne supplémentaire, 

appelé “charge de couleur”
– il faut 3 couleurs (rouge, vert, bleu), pour que les 3 quarks u du Δ++ ne 

soient pas dans le même état

• Δ++ = système de 3 quarks u avec JP=3/2+ et ℓ=0, 
antisymétrique sous l’échange de 2 quelconques des 3 quarks

– Un tel état totalement antisymétrique est “incolore” (singulet de couleur)

• Tous les hadrons (pas seulement le Δ++) doivent être incolores
• Les combinaisons de quarks incolores les plus simples sont:

– rouge+vert+bleu → baryons

– rouge+antirouge ou vert+antivert ou bleu+antibleu → mésons 
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|Δ++>  ~  |uuu> – |uuu> + |uuu> – |uuu> + |uuu> – |uuu>

Pas de combinaisons incolores de 1 ou 2 quarks !



Construction des baryons avec JP=1/2+

• On doit trouver des 
combinaisons 
incolores qui 
satisfassent au 
principe d’exclusion
– il ne reste que 8 états 

possibles
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ℓ = ℓ’ = 0,   JP = 1/2+

Y

I3
–1                     0                    +1  

–1

0

+1

–2

(uds)I=0dds

dss uss

uus

uududd

(uds)I=1
Σ–

Ξ0

n p

Ξ–

Σ+Σ0 Λ

+ construction 
d’autres baryons
avec ℓ ≠ 0 et/ou ℓ’ ≠ 0

↑ ↓↑

Table des particules

• Disponible sur le site Moodle 
(section “examen)
– liste des hadrons non exhaustive

• Pour une version plus complète 
voir http://pdglive.lbl.gov
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Chapitre 8: 
Interactions forte et faible

• Quarks et gluons (chromodynamique) 

• Saveurs lourdes

• Interaction électrofaible: bosons W, Z

• Boson de Higgs
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Chromodynamique quantique (QCD)

OS, 21 mai 2025 204

Electrodynamique
quantique (QED)

Chromodynamique
quantique (QCD)

Charges électriques de couleur
Type de charges
& anticharges

négative –
positive +

rouge       vert       bleu
antirouge antivert antibleu

Particule d’échange
(de masse nulle)

le photon, 
qui est neutre
électriquement

8 gluons, 
qui ne sont pas neutres 
de couleur (pas incolores)

Forces exercées 
entre

particules chargées 
électriquement

particules avec charge(s) de 
couleur, c’est-à-dire les 
quarks et les gluons

• Chaque quark porte une des trois couleurs 

• Chaque antiquarks pour une des trois anticouleurs

• Chaque gluon porte une couleur et une anticouleur
– il existe 8 combinaisons non-incolores → 8 gluons



Diagrammes de Feynman en QCD
• 3 processus élémentaires:

• La flèche du quark représente le flux du nombre baryonique +1/3
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g

q

q
g

g

g

g
g

g
g

couplage quark-gluon auto-couplage du gluon

annihilation 
quark-antiquark

quark émettant 
un gluon

antiquark absorbant 
un gluon

création paire 
quark-antiquark

t

g

q

q

Diagrammes de Feynman en QCD (suite)
• La couleur est conservée à chaque vertex:

• La constante de couplage
à chaque vertex est beaucoup
plus grande qu’en QED
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g
g

g

g

g

g
g

g
g

αQCD ~1 >> αQED ~
1
137

l’amplitude de probabilité d’un 
diagramme en QCD ne décroit 
pas avec le nombre de vertex

→



• Naïvement:

• Mais, si on y regarde 
de plus près
(sans couleurs) …

Hadrons
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baryon
méson

proton

proton

Hadrons “exotiques”
• Boules de glu:

– 0 quark 

• Tétraquarks
– 2 quarks + 2 antiquarks

(comme deux mésons liés)

• Pentaquarks
– 4 quark + 1 antiquark

(comme un baryon et un méson liés)

• Hybrides

… mais toujours incolores !
OS, 21 mai 2025 208



Hadrons “exotiques”
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Forces de couleur entre quarks
• Liberté asymptotique

– à très faible distance (ou haute énergie) 
les quarks sont comme libres !

• Confinement
– à grande distance (basse énergie) la

force devient si intense que les quarks 
ne peuvent pas sortir de leur hadron

→ on ne peut pas isoler un quark !
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baryon

baryon

1) nucléon 2) on essaie 
    d’arracher
    un quark

3) ça casse ! 4) l’énergie fournie a créé de la masse 
    (paire quark-antiquark): on se 
    retrouve avec un nucléon et un pion



Forces fortes entre hadrons

• Echange d’un pion de Yukawa 
entre un proton et un neutron

• Cette interaction résulte 
des forces de couleur !
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tp

np

n

π+

π+

Exemples: interaction forte
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t

π+p→Δ++→π+p

φ→K+K−



Processus de Drell-Yan
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Drell & Yan
1971

• Création paire leptons chargés par annihilation quark-antiquark

• Ce processus est possible dans une 
collision entre deux nucléons, car un
hadron contient toujours des paires
virtuelles qq (quarks de la “mer”)
en plus des quarks de valence

pp→ ppe+e−qq→ e+e−

_

Découvertes (simultanées) du J/ψ

• Ting et al. à Brookhaven
– expérience avec faisceau de protons (28 GeV) sur cible de béryllium
– découverte d’une résonance étroite, 

baptisée J, avec mJ ~ 3.1 GeV/c2

• Richter et al. à SLAC
– expérience au collisioneur e+e– SPEAR
– découverte d’une résonance très étroite, 

baptisée ψ, avec Γψ < 1.3 MeV
et mψ = 3.105 ±0.003 GeV/c2

• Les deux découvertes sont publiées simultanément le 2.12.1974
– Prix Nobel décerné en 1976 à Ting et Richter pour la découverte du J/ψ
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été 
1974

p+Be→ J+ hadrons
                J→ e+e−

e+e− → ψ→
e+e−
µ+µ−

hadrons

⎧
⎨
⎪

⎩⎪



nouvelle 
résonance
J → e+e–
très étroite 

(résolution 
exp ~ 20 
MeV/c2)

J

• Un des deux bras du spectromètre e+e–

 pour étudier les collisions p(28 GeV) + Be
– identification des électrons
– mesure de leurs quantités de mouvement
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J.-J. Aubert et al.,
Phys. Rev. Lett. 33 
(1974) 1404

aimants

compteurs 
Cherenkov

chambres 
proportionnelles 
multiflaires

cible Be calorimètre

Découverte J

=√s

Découverte ψ
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J.-E. Augustin et al.,
Phys. Rev. Lett. 33 
(1974) 1406

e+e− → hadrons
e+e− → e+e−

e+e− →µ+µ−, π+π−, K+K−

Γψ < 1.3 MeV
mψ = 3.105 ±0.003 GeV/c2

ψ
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FIG. 1, Search-mode data (relative hadron yield) tak-

en (a) in a 1-h calibration run over the $(3105) (average
luminosity of 2x 102~ cm 2 sec ~), and (b) during the
run in which the $(3695) was found (average luminosity
of 5x10 ~ cm sec ').

Eq ~ (GeV)
FIG. 2. Total cross section for e e —Iladrons cor-

rected for detection efficiency. The dashed curve is
the expected resolution folded with the radiative correc-
tions. The errors shown are statistical only.

every 3 min. The data taken during each step
are analyzed in real time and the relative cross
sections computed at the end of each step. Fig-
ure 1(a) shows the search-mode data taken dur-
ing a calibration scan over the previously dis-
covered ((3105). Figure 1(b) shows the data tak-
en during the first scan which began at a ring en-
ergy of 1.8 GeV. A clear indication of a narrow
resonance with a mass of about 3.70 GeV is seen.
It should be emphasized that we have not yet
scanned any mass region other than that between
3.6 and 3.71 GeV.
On finding evidence of a resonance in the e'e
-hadron cross section, we switched to the nor-
mal SPEAR operating mode of longer runs at
fixed energy. In this mode, smaller energy
changes are possible than in the search mode.
Figure 2 shows the cross section for e 'e -had-
rons, corrected for the detection efficiency of
about 55% over the energy region shown.
Our mass resolution is determined by the ener-

gy spread in the colliding beams, which depends
on the energy of the beams. The expected Gauss-
ian c.m. energy distribution (v=1.2 MeV) folded
with the radiative processes' is shown as the
dashed curve in Fig. 2. The width of the reso-
nance must be smaller than this spread; thus,

Mass
(GeV)

r (FwHM)
(MeV)

g(3105)
y(3695)

3.105+0.003
3.695+ 0.004

&1.9 (Ref. 6)
&2,7

We are continuing the search for others.
We thank the SPEAR operations staff for the

technological tour de force they accomplished
whereby we are able to scan the machine energy
in small, well-defined steps. We also acknowl-
edge the cooperation of the Stanford Center for
Information Processing in expediting the compu-
tation needs of this experiment.

*Work supported by the U. S. Atomic Energy Com-
mission
)Accepted without review under policy announced in
Editorial of 20 July 1964 t Phys. Rev. Lett. 13, 79
(1964)].
f.Permanent address: Centre d'Etudes Nucleaires

de Saclay, Saclay, France.

an upper limit to the FWHM is 2.7 MeV.
In summary, the colliding-beam data now show

two narrow resonances in the hadron production
cross section. Our determination of the parame-
ters of the resonance are as follows:

1454

Découverte ψ’
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G.S. Abrams et al.,
Phys. Rev. Lett. 33 
(1974) 1453

e+e− → hadrons

=√s

Γψ’ < 2.7 MeV
mψ’ = 3.695 ±0.004 GeV/c2

ψ’

J/ψ rebaptisé  J/ψ(1S)
ψ’   rebaptisé  ψ(2S)

Qu’est-ce que le J/ψ ou ψ(2S) ? 
• Ne peut s’interpréter qu’à l’aide d’une nouvelle saveur de 

quark, le quark “c” (= charme)
– J/ψ est un méson cc (état fondamental), 
– ψ(2S) est un méson cc (état excité)

– Glashow et Bjørken avaient supposé l’existence d’un quatrième quark 
en 1964 déjà (4 quarks, car 4 leptons)

– En 1970, Glashow-Illiopoulos-Maiani (GIM) ont montré qu’un 4ème 
quark doit exister pour expliquer la non-observation de !!" → ###–OS, 21 mai 2025 218

γ

e–

e+
γ

e+

e–
c

c
_

t

J/ψ ou ψ(2S) 

–
–



Charme

• 1975–1977: découvertes de baryons et mésons contenant
                    un quark c (ou antiquark c)

• Le charme, comme l’étrangeté, est stable vis-à-vis de 
l’interaction forte, mais se désintégre par interaction faible
– “longue” durée de vie moyenne: τ ~10–13–10–12 s

• Nouveau nombre quantique, le charme (qc)

• Nouvelle loi de conservation du charme,
violée par l’interaction faible
et respectée par les autres interactions
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–

Multiplets de mésons de SU(4)
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JP = 0– (ℓ=0) JP = 1– (ℓ=0)

16 mésons pseudoscalaires                     16 mésons vecteurs

I3

Y

qc



18 15. Quark Model

for the excitation spectrum discussed in Sec. 15.8. The results are basically consistent with the
level counting of SU(6)¢O(3) in the standard non-relativistic quark model and show no indication
for quark-diquark structures or parity doubling. Consequently, there is as yet no indication from
lattice that the mis-match between the excitation spectrum predicted by the standard quark model
and experimental observations is due to inappropriate degrees of freedom in the quark model.
15.5.2 Charmed and bottom baryons

The naming scheme for baryons with c or b quarks follows that of the light baryons: the » is an
isosinglet and the À an isotriplet with one heavy (s, c or b) quark. The … is an isodoublet which
contains two heavy quarks, and the œ an isosinglet with three heavy quarks. The number of c or
b quarks is indicated by the subscripts c or b. Hyperons are baryons with at least one s quark.

For charmed baryons the addition of the c quark to the light quarks extends the flavor symmetry
to SU(4)f . Due to the large mass of the c quark, this symmetry is much more strongly broken
than the SU(3)f of the three light quarks. Nevertheless, the SU(4)f representation is still useful
for bookkeeping purposes. With the additive charm quantum number C the baryons are classified
in a 3-dimensional representation with the three coordinates ( I z, Y , C ). Figure 15.5 shows the
SU(4)f weight diagrams.

Figure 15.5: SU(4)f multiplets of ground state baryons made of u, d, s, and c quarks. (a) The
spin 1

2 20-plet extends the charmless SU(3)f octet to C = 1,2; (b) the spin 3
2 20-plet extends the

SU(3)f decuplet to C = 1, 2, 3.

With four quarks the 64 possible configurations decompose into

4 ¢ 4 ¢ 4 = 4̄A ü 20S ü 20MS ü 20MA, (15.29)

(for a review on SU(N) symmetries see e.g. [69]). The subscripts S and A refer to the symmetry
and antisymmetry properties of the flavor wave functions. The flavor symmetric 20S multiplet,
associated with spin-3

2 baryons, contains the charmless SU(3)f decuplet at the bottom level. The
20MS and 20MA multiplets correspond to the mixed symmetric and mixed antisymmetric flavour
wave functions of the spin-1

2 baryons, with the charmless octet baryons at the bottom level. There
are two dsc and two usc spin-1

2 states, labeled …
0
c , …

Õ
c

0 and …
+
c , …

Õ+
c . This is because one of the

qq pairs can have spin 1 (symmetric) or spin 0 (antisymmetric), giving both the total spin j = 1
2

with the third quark (see also Fig. 15.6 below).
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Multiplets de baryons de SU(4)
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JP = 1/2+ (ℓ=0) JP = 3/2+ (ℓ=0)

20 baryons de spin 1/2                     20 baryons de spin 3/2

2017
pas 
encore 
observé

I3

Y
qc

dcc uccscc

ddc udc uuc
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udd uud
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ddc udc uuc
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ssc

udd uud
dds uds uus 

uss dss 

uuuddd

sss 

Découverte du lepton τ
• Perl et al. à SLAC

– étude de la production de J/ψ et ψ(2S) au collisionneur e+e– SPEAR
– observation

sans hadron ou photon dans l’état final, 
mais seulement pour √s > 3.56 GeV (effet de seuil)

– confirmation en 1976 par la collaboration PLUTO à DESY

• Interprétation des événements eμ
– τ = nouveau type de lepton chargé
– υτ = neutrino associé

– mτ = 1.78 GeV/c2 → très massif
– ττ = 3 x 10–13 s 

[s’il y a 6 leptons, pourquoi pas 6 quarks ?]
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e+e− → e+µ–  ou  e−µ+

µ– νµντ
e+νeντ

e+e− → τ+τ–

M.L. Perl et al.,
Phys. Rev. Lett. 35 
(1975) 1489



Découverte !

OS, 21 mai 2025 223

S.W. Herb et al.,
Phys. Rev. Lett. 39 
(1977) 252

p

400 GeV

matériaux 
pour absorber 

les hadrons μ+

μ–

pN→ϒ + hadrons,   ϒ→µ+µ−

Expérience de 
Ledermann et al, 

Fermilab

cible de 
Cu ou Pt

Méson !
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S.W. Herb et al.,
Phys. Rev. Lett. 39 
(1977) 252

• 1978: confirmation au 
collisionneur e+e– 
DORIS (à DESY) 
par la collab. PLUTO

+ observation $’ (=$(2S))
 

masse μ+μ–

μ+μ–μ+μ+
μ–μ–

fit

masse μ+μ–

μ+μ– – fit

!

m! ~9.5 GeV/c2

C. Berger et al.,
Phys. Lett. B 76 
(1978) 243

m! =9.46 ±0.01 GeV/c2

m!’ =10.02 ±0.02 GeV/c2



Beauté
• Nouvelle saveur de quark: b = “bottom” ou “beauty”

– $=$(1S), $’=$(2S):  mésons bb
– le quark b est très massif  (~5 GeV/c2)

• La beauté, comme l’étrangeté et
le charme, est stable vis-à-vis 
de l’interaction forte, mais se
désintégre par interaction faible
– durée de vie moyenne: τ ~10–12 s

• Nouveau nombre quantique, la beauté (qb)

• Nouvelle loi de conservation de la 
beauté, violée par l’interaction faible, 
et respectée par les autres interactions
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–

B− = ub
B0 = db
B0 = db
B+ = ub
Bs

0 = sb
Bc
+ = cb

⎫

⎬

⎪
⎪

⎭

⎪
⎪

 mésons

Λb
0 = udb

Ξb
0 = usb

Ξb
– = dsb

Ωb
− = ssb

⎫

⎬
⎪

⎭
⎪

 baryons

Exemples de 
hadrons “beaux”:
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Géné-
ration

Saveur 
du quark Q B I3 S=qs qc qb qt

1ère
d = down –1/3 +1/3 –1/2 0 0 0 0
u = up +2/3 +1/3 +1/2 0 0 0 0

2ème
s = strange –1/3 +1/3 0 –1 0 0 0
c = charm +2/3 +1/3 0 0 +1 0 0

3ème
b = bottom –1/3 +1/3 0 0 0 –1 0
t = top +2/3 +1/3 0 0 0 0 +1

Q = I3+
B+qs+qc +qb +qt

2
Géné-
ration

Saveur 
du lepton Q Le Lμ Lτ

1ère
e = électron –1 +1 0 0
νe 0 +1 0 0

2ème
μ = muon –1 0 +1 0
νμ 0 0 +1 0

3ème
τ = tau –1 0 0 +1
ντ 0 0 0 +1

Pour les quarks et les hadrons:

Toutes les charges changent de 
signe pour un antifermion

Direction flèche fermion dans 
un diagramme de Feynman:
– flux de B pour les quarks
– flux de L pour les leptons



Interaction faible
• Tous les fermions y sont sensibles

• Couplages (vertex) 
entre fermions (f) et bosons:

• Lois de conservation respectées 
à chaque vertex f1f2W ou f1f2Z
– Q, B, Le, Lμ, Lτ
– couleur (si f1 et f2 sont des quarks)
– saveur, seulement si « courant neutre » (Z)

• Note: 
– les saveurs de f1 et f2 sont différentes si « courant chargé » (W)
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W

W

Z0

WWγ
WWZ
WWWW
WWZZ
WWZγ 
WWγγ

• Couplages (vertex) 
entre bosons uniquement:

exemple: WWZf2
f1

W± f

f
Z0

f1f2W ffZ

Exemples: interaction faible

OS, 21 mai 2025 228

n→ p e− νe

Λ→ p π− Λ→ n π0

t

>
<



Modèle standard des particules
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Particules de matière (fermions)

6 quarks u c t
(+ 6 antiquarks) d s b

6 leptons e μ τ
(+ 6 antileptons) νe νμ ντ

Particules-force (bosons)

8 gluons g
photon γ

W+, W–, Z0

3 « générations » de 
quarks et de leptons

charges de couleur

Int.
forte

Confinement: pas de quark libre !
mésons: qq
baryons: qqq
hadrons exotiques:

qqqq, qqqqq, ...

–

→ hadrons 
– – –

Modèle standard des particules
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Particules de matière (fermions)

6 quarks u c t
(+ 6 antiquarks) d s b

6 leptons e μ τ
(+ 6 antileptons) νe νμ ντ

Particules-force (bosons)

8 gluons g
photon γ

W+, W–, Z0



charg
e 

élec
triq

ue

Int.
é.m.

+2/3

–1/3

–1

Modèle standard des particules
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Particules de matière (fermions)

6 quarks u c t
(+ 6 antiquarks) d s b

6 leptons e μ τ
(+ 6 antileptons) νe νμ ντ

Particules-force (bosons)

8 gluons g
photon γ

W+, W–, Z0

charg
e 

faib
le

Int.
faible

Modèle standard des particules
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Particules de matière (fermions)

6 quarks u c t
(+ 6 antiquarks) d s b

6 leptons e μ τ
(+ 6 antileptons) νe νμ ντ

Particules-force (bosons)

8 gluons g
photon γ

W+, W–, Z0



Production de fermions par e+e–

• Processus de QED
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t

ℓ = lepton chargé (e, μ, τ) q = quark (d, u, s, c, b, t)

A ∝ e ⋅e = e2

σ = A 2
∝ e4∝α2

A ∝ e ⋅eQq = e2Qq

σ = A 2
∝ e4Qq

2∝α2Qq
2

γ

e–

e+

ℓ–

ℓ+

e e

γ

e–

e+

q

q

–
e eQq

Qq = charge du quark q
     = –1/3 (d, s, b) ou +2/3 (u, c, t)

e+e– → hadrons
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t



R = σ(e+e–→hadrons)/σ(e+e–→μ+μ–)

• On définit

où on doit sommer sur tous les quarks pouvant être produits
à l’énergie √s de la collision:
– si √s < ~3 GeV (J/ψ), on produit d, u, s → R = (1/3)2+(2/3)2+(1/3)2 = 6/9
– si 3< √s < ~10 GeV (Y), on produit d, u, s, c → R = … = 10/9
– si √s > ~10 GeV, on produit d, u, s, c, b: → R = … = 11/9

• Il faut tenir compte des couleurs des quarks,
c’est-à-dire multiplier R par le nombre de couleurs (Nc)
– pour Nc = 3, on prédit donc R = 2, 10/3, 11/3 en fonction de √s
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R =
σ e+e− → hadrons( )
σ e+e− →µ+µ−( )

=

σ e+e− → qq( )
q
∑
σ e+e− →µ+µ−( )

= Qq
2

q
∑

R en fonction 
de √s
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R=2

R/3

R=2

R=11/3

R=10/3

R=10/3

→ preuve expérimentale 
de l’existence des

(trois) couleurs



Quark top

• Découvert en 1995 au Tevatron (pp à √s = 1.8 TeV) à 
Fermilab par les collaborations CDF et D0

• La plus massive des particules élémentaires connues:
mt = 172.57 ± 0.29 GeV/c2

• Le quark t se désintégre avant d’avoir eu le temps de 
s’hadroniser (de se lier à d’autres quarks)
– pas de hadron contenant le quark top

• Comme mt > mW, on a 

• Nombre quantique qt, conservé par interactions forte et 
électromagnétique, mais violé par l’interaction faible
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–

t→W+b
t →W− b

désintégration par 
interaction faible

Premier candidat top vu par CDF en 1992
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p p→ t t ...

t → b W−

b→  jet 1 (déplacé)
W− → q q '

→ jet 2 + jet 3

t → b W+

b→  jet 4 (déplacé)
W+→ e+νe

vues dans le plan transverse aux faisceaux



Théorie électrofaible 

• 4 bosons d’échange: γ, Z0, W+, W–

– le méchanisme de Higgs (= brisure 
spontanée de la symétrie de jauge locale)
engendre une masse pour les Z et W:

• mZ0 = 93.8 ±2.5 GeV/c2

• mW± = 83.0 ±3.0 GeV/c2

• Couplages:
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Maxwell: ~ 1864
unification des forces 
électrique et magnétique

Glashow, Salam, Weinberg: 
1961–1968

unification des forces 
électromagnétique et 
faible 

prédictions 
de GSW

W+

W–

γ, Z0

ν

ℓ+
W+

ℓ–

ℓ+
γ, Z0 q

q

γ, Z0

–

q

q’

W+

–
ν

ν

Z0

–

+ couplages 
quartiques

WWWW
WWZZ
WWZγ 
WWγγ

Découvertes des bosons vecteurs W et Z

• 1973: découverte des courants neutres au CERN
          (chambre à bulles Gargamelle)

• 1979: Prix Nobel à Glashow, Weinberg et Salam

• 1983: découverte des W et Z réels au supersynchroton à protons
          du CERN (√s = 540 GeV)

• 1984: prix Nobel à Rubbia et Van der Meer
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νµ +N→νµ +...

νμW

N

νμ μ–

Z

N

νμ νμ

courant chargé courant neutre

p+ p→ W±+... mW ≈ 80 GeV / c2

p+ p→ Z0+... mZ ≈ 91 GeV / c2
Rubbia et al.    (UA1)
Darriulat et al. (UA2) 

t



Production de W et Z réels

• Dans les collisions pp au SPS (1983–), puis Tevatron …

• Dans les collisions e+e– au LEP
– 1989–1995: √s ~mZc2

– 1995–2000: : √s > 2mZc2
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νe

e+
d

u
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–

fermion

anti-fermion
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e– W–

e+

e–

Z0 W+

W–

Z0
e

e+

e– Z0

t

réel réel

virtuel

réel

σ(e+e– → Z0 → qq) –

Nombre de neutrinos
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Γinv = ΓZ − Γhad −3 Γl+l−

Nν =
Γinv
Γ
l+l–

Γ
l+l–

Γνν

⎛

⎝
⎜

⎞

⎠
⎟
MS

• Nv = nombre de types 
de neutrinos légers
(mν<mZ/2) ayant un
 couplage avec le Z0 

– détermination à partir de toutes 
les données du LEP:

Nv = 2.9963 ±0.0074 
√s =



Z→μ+μ–
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chambre à 
projection 
temporelle 

calorimètre 
hadronique

calorimètre 
électro-

magnétique

chambres 
à muons

muon

particule 
chargée

Z→e+e–
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Z→τ+τ–
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!– → #–%̅"%#

!$ → &$&–&$%̅#

Z→μ+μ–γ
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Z→qq
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–

Z→qqg
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–



Z→qqgg ou q1q1q2q2
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– – – 

Théorie électrofaible

• Théorie quantique des champs 
avec invariance de jauge locale
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Unification des forces
électromagnétique 
et nucléaire faible
(Glashow, Weinberg, Salam)

Bosons de jauge de masses nulles (spin 1) W1, W2, W3, B

W+, W–, Z0, γ

H0

Méchanisme de Higgs 
(brisure spontanée de la 
symétrie de jauge locale)

Bosons de jauge physiques (spin 1)
– W et Z massifs
– γ de masse nulle

Boson de Higgs (spin 0)



Boson de Higgs H0

• Le boson de Higgs est responsable de la masse des bosons W et Z
... mais également de tous les fermions
– constante de couplage

~ masse du fermion ou masse2 du boson

• Jusqu’en 2012, le boson de Higgs est resté la 
« pièce manquante du modèle standard »
– recherche du Higgs à LEP2 dans les 

collisions e+e– à √s > mZ (1996–2000)
• mH > 114.3 GeV/c2 (95% CL)

• Découverte en 2012 au LHC par les expériences ATLAS et CMS
– prix Nobel en 2013 à 

François Englert et Peter Higgs
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« Higgs-strahlung » du Z0

e+

e–

Z0
H0

Z0

b

b
–

f

f
–

f

f

H0

–

mH = 125.1 ± 0.14 GeV/c2

H0
Z,W, H0

Z,W, H0

La cohérence du modèle standard
• Le modèle standard ne 

prédit pas la masse du 
Higgs, mais pour une 
valeur donnée de mH, 
il prédit une relation 
entre mW et mt:
– mesures directes de 

mW et mt

– autres mesures pouvant 
être reliées mW et mt
dans le cadre du 
modèle standard

– prédiction du modèle 
standard pour mH = 
114, 300, 1000 GeV/c2
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Masse du Higgs (mars 2012)
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Découverte du Higgs (2012)
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γ

γ

CMS

H → γγ 



Découverte du Higgs (2012)
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Découverte du Higgs (2012)
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ATLAS: mH = 126.0 ±0.4 ±0.4 GeV/c2
CMS: mH = 125.3 ±0.4 ±0.5 GeV/c2

pdglive.lbl.govValeur récente: mH = 125.25 ±0.17 GeV/c2

=σ
/σ
SM

CMS, PLB 716, 30 (2012)ATLAS, PLB 716, 1 (2012)


