
Conjugaison de charge C
• Opération consistant à changer le signe de toutes les charges 

d’une particule X pour obtenir son anti-particule X

• Si qi = 0, alors X est sa 
propre antiparticule 
→ deux cas:

• Les interactions forte et é.m. conservent C
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X
charges qi

X
charges –qi

–C

Nombre 
quantique

Exemple

C = +1 π0

C = –1 γ

X +XC

X –XC

π0→ γγ π0→ γγγ/

–

Nucléon (= proton ou neutron)
• Le nucléon a un spin s = ½ 

– Espace des états de spin de dimension 2s+1 = 2
– Base de l’espace des états de spin
 formée d’états propres de s 2 et sz 

• Le nucléon est un fermion
– il obéit à la statistique de Fermi-Dirac, 

et donc au principe d’exclusion de Pauli
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↑ , ↓{ }

rs2 ↑ = s(s+1)h2 ↑ = 3
4
h2 ↑ sz ↑ = + 1

2
h ↑

rs2 ↓ = s(s+1)h2 ↓ = 3
4
h2 ↓ sz ↓ = − 1

2
h ↓

En mécanique quantique, deux particules identiques sont 
indistinguables. L’état quantique d’un système de deux particules 

identiques doit être soit antisymétrique (cas des fermions) soit 
symétrique (cas des bosons) sous l’échange des deux particules.



Système de deux nucléons de spin ½ 
• Base de l’espace de états de spin de dim. 4:

– pas états propres du spin total  S = s1 + s2
• Nouvelle base d’états 

propres du spin total: 

Si l’état de mouvement est symétrique (ℓ pair, par ex. ℓ=0)
– un système pp ou nn (fermions identiques) doit être dans un état 

antisymétrique, donc avoir S=0 (S=1 interdit) 
– un système pn (fermions différents) peut avoir S=0 ou S=1
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↑↑ , ↑↓ , ↓↑ , ↓↓{ }

S; MS{ },   S= 0,  1,    −S≤ MS ≤ S

0; 0 = 1
2

↑↓ − ↓↑( )
1; +1 = ↑↑

1; 0 = 1
2

↑↓ + ↓↑( )
1; −1 = ↓↓

état singulet S=0, antisymétrique

triplet d’états S=1, symétriques
sous l’échange des deux nucléons

Interaction nucléon-nucléon:
faits d’expérience

• Deuton:

• Indépendance de charge des forces nucléaires:
– si les deux nucléons sont dans le même état de mouvement relatif 

et de spin total, et si on ignore les forces de Coulomb, alors

– de plus: 
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le seul système lié de deux 
nucléons est le système pn 
dans l’état S=1 et ℓ=0

le force entre un 
proton et un neutron 
dépend du spin

⇒

force entre p et p = force entre n et n = force entre p et n

mp ≃ mn

Le proton et le neutron sont très semblables;
ils seraient indiscernables si la seule force en 
jeu était la force nucléaire forte

⇒
la force é.m. 
“lève la 
dégénerescence”

p n



Isospin du nucléon
• Le nucléon a un isospin I = ½ 

– Le nucléon a 2I+1 = 2 états de charge possible
• état proton

• état neutron

– Espace des états d’isospin de dimension 2I+1 = 2
– Base de l’espace des états de spin
 formée d’états propres de I 2 et I3 

– opérateur de charge pour le nucléon:   Q = I3 + 1/2
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p , n{ }
r
I 2 p = I(I+1) p = 3

4
p I3 p = + 1

2
p

r
I 2 n = I(I+1) n = 3

4
n I3 n = − 1

2
n

Q p = +1 p    valeur propre +1
Q n = 0 n    valeur propre   0

même 
formalisme 
que le spin

p
n “doublet d’isospin”

Composition de deux isospins ½

• Même formalisme que pour la compositions de deux spins ½

• Isopsin total:

• Les états propres de I2 et I3 forment une base de l’espace des 
éats d’isospin
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I; MI{ },   I = 0,  1,    − I ≤ MI ≤ I

0; 0 = 1
2
pn − np( )

1; +1 = pp

1; 0 = 1
2
pn + np( )

1; −1 = nn

état singulet I=0, antisymétrique

triplet d’états I=1, symétriques
sous l’échange des deux nucléons

r
I =

r
I (1)+

r
I (2)



Système de deux nucléons

• Etat de spin

• Etat d’isospin

• Etat de mouvement relatif

• L’état complet                                         doit être antisymétrique 
pour des fermions
– Cas ℓ=0 (|ψ> symétrique): 6 états internes possibles
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S; MS ,   avec S= 0 ou 1

ψ
I; MI ,    avec I = 0 ou 1

ψ ⊗ S; MS ⊗ I; MI

S= 0; MS = 0 ⊗ I =1; MI       
0;0 ⊗ 1;+1
0;0 ⊗ 1; 0
0;0 ⊗ 1;−1

⎧

⎨
⎪

⎩⎪

S=1; MS ⊗ I = 0; MI = 0
1;+1 ⊗ 0;0
1; 0 ⊗ 0;0
1;−1 ⊗ 0;0

⎧

⎨
⎪

⎩⎪

antisym.               sym.

sym.                  antisym.

!
" | ↑↓> −| ↓↑> ⊗ |'' >
!
" | ↑↓> −| ↓↑> ⊗ !

" |'( > +|(' >
!
" | ↑↓> −| ↓↑> ⊗ |(( >

| ↑↑>⊗ !
" |'( > −|(' >

!
" | ↑↓> +| ↓↑> ⊗ !

" |'( > −|(' >
| ↓↓>⊗ !

" |'( > −|(' >

Interaction forte et isospin
• Interaction dépend de l’isospin total

– état lié pn, avec ℓ=0 et S=1 ⇒ I=0
– états pp et nn ont nécessairement I=1 

puisque I3 = ±1; 
or pp ou nn n’est pas un état lié 
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Système
avec ℓ=0

I MI S

pp 1 +1 0 même force 
entre les deux 
nucléons

pn 1 0 0

nn 1 –1 0

pn (deuton) 0 0 1 force différente

Les forces nucléaires:
– peuvent dépendre de I
– sont indépendentes de MI
– conservent l’isospin 

indépendance de charge

invariance par rotation dans l’espace 
d’isospin (ou espace de charge)
⇔ I conservé
⇔ [H, I1] = [H, I2] = [H, I3] = 0

NB: les forces é.m et faible ne conservent pas (violent) l’isospin !



Isospin du pion

• Le pion de Yukawa (= méson π) a un isospin I = 1 
– Il a donc 2I+1 = 3 états de charge possibles

– opérateur de charge pour le pion:  Q = I3
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r
I 2 π+ = I(I+1) π+              I3 π

+ = + π+    valeur propre +1
r
I 2 π0 = I(I+1) π0 I3 π

0 = 0 π0 valeur propre   0
r
I 2 π– = I(I+1) π– I3 π

– = – π– valeur propre –1

π+ , π0 , π−

base de l’espace des états d’isospin du pion

“triplet d’isospin”

Tout hadron a un isospin
• Exemples:
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Hadron Isospin 
I

Etats 
de 

charge

Valeur 
propre 
de I3

Masse 
[MeV/c2]

Spin et 
parité 

JP

N
(nucléon)

1/2
p
n

+1/2
–1/2

938.3
939.6

1/2+

π
(pion)

1
π+

π0

π–

+1
0
–1

139.6
135.0
139.6

0–

ρ
(rho)

1
ρ+

ρ0

ρ–

+1
0
–1

~770 1–

ω
(omega)

0 ω0 0 781.9 1–

Δ
(delta)

3/2

Δ++

Δ+

Δ0

Δ–

+3/2
+1/2
–1/2
–3/2

~1232 3/2+

hadron = 
particule 
sensible à 

l’interaction 
forte



Conservation de l’isospin total

• Le formalisme d’isospin est le même que le formalisme 
des moments cinétiques

• Somme (vectorielle) de deux isospins:
– Règle de composition:

!! − !" ≤ ! ≤ !! + !", par pas de 1

• Exemples de processus d’interaction forte
(avec conservation de l’isospin, c’est-à-dire de I et I3):
– $! + & → Δ!!
– )" → $!+ $#
– *" → $!+ $#+ $"
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,⃗$ ,⃗%

,⃗ = ,⃗$ + ,⃗%
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S
ec

ti
on

 e
ff

ic
ac

e 
to

ta
le

 π
±

p 
(m

b)

masse π±p = √s (MeV)

Interaction 
pion-nucléon

à basse 
énergie

Pourquoi la résonance à 1232 
MeV est-elle plus intense dans 
π+p que dans π–p ?

Pourquoi y a-t-il des résonances 
à 1525 et 1688 MeV dans π–p
mais pas dans π+p ?

Discussion sur la base de:
– conservation de l’isospin
– indépendance de charge
 des forces nucléaires



Interaction pion-nucléon

• Faisceau de pions chargés sur cible d’hydrogène:

• Isospin du pion π:                  Iπ = 1 

• Isospin du nucléon N:             IN = 1/2

• Isospin total du système πN:   I  =  3/2 ou 1/2     

• Etats propres de l’isospin total (I2 et I3):
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à basse 
énergie

I;M = CIπIN
(I,M,

Mπ,MN
Mπ+MN=M

∑ Mπ,MN) Iπ;Mπ ⊗ IN;MN

π+p→π+p        diffusion élastique
π–p→π–p diffusion élastique
π–p→π0n échange de charge

r
I =

r
Iπ +

r
IN

coefficients de Clebsch-Gordan

Coefficients de Clebsch-Gordan
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45. Clebsch-Gordan coefficients 1

45. Clebsch-Gordan Coefficients, Spherical Harmonics, and d Functions

Note: A square-root sign is to be understood over every coefficient, e.g., for −8/15 read −
√

8/15.
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Figure 45.1: The sign convention is that of Wigner (Group Theory, Academic Press, New York, 1959), also used by Condon and Shortley (The
Theory of Atomic Spectra, Cambridge Univ. Press, New York, 1953), Rose (Elementary Theory of Angular Momentum, Wiley, New York, 1957),
and Cohen (Tables of the Clebsch-Gordan Coefficients, North American Rockwell Science Center, Thousand Oaks, Calif., 1974).

j1      j2   

j1    j2   



Système pion-nucléon

• Quadruplet d’isospin total I = 3/2:

• Doublet d’isospin total I = 1/2:
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3
2
; + 3

2
= 1;+1 ⊗ 1

2
;+ 1
2

= π+p

3
2
; + 1

2
= 1

3
1;+1 ⊗ 1

2
;– 1
2
+ 2

3
1;0 ⊗ 1

2
;+ 1
2

= 1
3
π+n + 2

3
π0p

3
2
; − 1

2
= 2

3
1;0 ⊗ 1

2
;– 1
2
+ 1
3
1;−1 ⊗ 1

2
;+ 1
2

= 2
3
π0n + 1

3
π−p

3
2
; − 3

2
= 1;−1 ⊗ 1

2
;− 1
2

= π−n

1
2
; + 1

2
= 2

3
1;+1 ⊗ 1

2
;− 1
2
− 1
3
1;0 ⊗ 1

2
;+ 1
2

= 2
3
π+n − 1

3
π0p

1
2
; − 1

2
= 1

3
1;0 ⊗ 1

2
;– 1
2
− 2

3
1;−1 ⊗ 1

2
;+ 1
2

= 1
3
π0n − 2

3
π−p
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8/15.
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Figure 45.1: The sign convention is that of Wigner (Group Theory, Academic Press, New York, 1959), also used by Condon and Shortley (The
Theory of Atomic Spectra, Cambridge Univ. Press, New York, 1953), Rose (Elementary Theory of Angular Momentum, Wiley, New York, 1957),
and Cohen (Tables of the Clebsch-Gordan Coefficients, North American Rockwell Science Center, Thousand Oaks, Calif., 1974).

π+p   
π+n
π0p   

π0n
π–p   

π–n

• On exprime |π+p>, |π–p>, |π0n> dans la base d’états propres
de l’isospin total

• Par la règle d’or de Fermi:

avec α1=α2=α3=α
car les 3 réactions font intervenir des
particules de mêmes masses et mêmes spins
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π+p   
π+n
π0p   

π0n
π–p   

π–n

Système pion-nucléon (suite)
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π+p = 3
2
;+ 3
2

π−p = 1
3
3
2
;− 1
2
− 2

3
1
2
;− 1
2

π0n = 2
3
3
2
;− 1
2
+ 1
3
1
2
;− 1
2

σ π+p→π+p( ) = α1 π+p H π+p
2

σ π−p→π−p( ) = α2 π−p H π−p
2

σ π−p→π0n( ) = α3 π0n H π−p
2

3
2
;M H 1

2
;M' = 0

3
2
;M H 3

2
;M ≡A3/2

1
2
;M H 1

2
;M ≡A1/2

Conservation de l’isospin:

L’indépendance de charge 
permet de poser:



Interaction pion-nucléon (suite)
• Ainsi:

• On définit:

OS, 7 mai 2025 176

σ π+p→π+p( ) = α A3/2
2

σ π−p→π−p( ) = α 13A3/2 +
2
3
A1/2

2

σ π−p→π0n( ) = α 2
3
A3/2 −

2
3
A1/2

2

R =
σ tot π

+p( )
σ tot π

–p( )
=

σ π+p→π+p( )
σ π−p→π−p( )+σ π−p→π0n( )

=
A3/2

2

1
3

A3/2 +
2
3

A1/2

2

+ 2
3

A3/2 −
2

3
A1/2

2 =
3 si A3/2 >> A1/2

1 si A3/2 ≈ A1/2

0 si A3/2 << A1/2

⎧

⎨
⎪

⎩⎪
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 π
±

p 
(m

b)

masse π±p = √s (MeV)

Interaction 
pion-nucléon 

(fin)

On observe:

    R~3 à √s=1232 MeV
    ⇒ résonance d’isospin 3/2

    R~0 à √s=1525, 1688 MeV
    ⇒ résonance d’isospin 1/2

I=3/2

I=3/2

I=1/2



Nombre (charge) baryonique B

• La conservation du nombre baryonique 
explique pourquoi certaines réactions ne 
sont jamais observées:
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Particules B
nucléons +1
anti-nucléons –1
pions, leptons, γ, Z, W 0

• Quelques réactions 
observées (B conservé)
pp→ ppπ0
pp→ pnπ+

pp→ nnπ+π+π0π0
pp→ pppp
pp→ nn
n→ pe− νe
π–→µ− νµ
π0→ γγ

pp→ ppπ+π+
pp→ ppn
n→π+π0π–

/
/
/

• Quel est le nombre baryonique
de la résonance Δ ?

• Charge électrique
– Q = I3 + 1/2 pour N, Δ, ... avec B=1
– Q = I3           pour π, ω, ... avec B=0
– Généralisation: Q = I3 + B/2 

π N→ Δ →π N
0 + 1 =  B(Δ) = 0 +1    ⇒ B(Δ) = 1

nombre 
quantique 

additif


