
Scintillateurs
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cristaux

fibres

plastiques

Rising Time of Cherenkov & Scintillation 
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Cristaux scintillants (inorganiques)
• Exemples:

– NaI(Tl)
– CsI(Tl)

– LiI(Eu)
– BaF2(Eu)

OS, 2 avril 2025 76

E
niveaux d’énergie atomiques

bande de conduction (vide)

bande de valence (pleine)

niveau métastable (piège)

ΔE

excitation d’un électron
(au passage de la particule chargée)

piégeage désexcitation 
(τ ~ 200–1000 ns)

hν

Photon émis: hν < ΔE → ne peut pas être réabsorbé
hν ~3 eV pour NaI



Scintillateurs organiques
• Exemples:

– anthracène
– stilbène

– plastiques
– solutions 

organiques
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E
niveaux d’énergie moléculaires

(bandes de rotations ou vibrations)

ΔE

excitation d’un électron
(au passage de la particule chargée)

→ énergie transmise à l’électron = ΔE+ε

désexcitation 
(τ ~ 30 ns)

hν

Photon émis: hν = ΔE

ΔE ~ quelques eV ~ 10 ε

ε

Scintillateurs
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1

Scintillateur ⌘ ⌧ �
(rel) ns nm

Anthracène 100 30 447

Plastic NE 102 65 2.4 423

NE 111 55 1.6 370

Liquide NE 220 65 3.8 425

NE 311 65 3.8 425

NE 313 62 4.0 425

Cristaux NaI(Tl) 230 230 413

CsI(Tl) 95 1100 580

BaF2(Eu) 110 1000 435

BGO 35 300 480

organique

inorganique

→ hν = 3.0 eV

E = pc = hν = hc
λ
= 2π hc

λ
          hc =197 MeV fm =197 eV nm 

η = rendement de
 scintillation

τ = durée de vie
 moyenne des
 niveaux excités

λ = longueur d’onde
 au maximum du
 spectre d’émission 



Photomultiplicateur
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γ

ε = efficacité quantique (15–25%)

ΔV ~ 1 kV

courant i(t) = q exp(–t/τ)/τ

q = i(t)dt
0

∞

∫ =Nphotons f εG e
f = facteur de collection lumineuse
G = gain photomultiplicateur ~ 107

Détecteurs d’ionisation à gaz

• Condensateur 
cylindrique rempli 
d’un gaz isolant:

– champ électrique:

– mobilité des charges μ:
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fil d’anode

cathode

V0 > 0
particule 
chargée
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E(r) = 1
r

V0

ln(b / a)
 

b = diamètre tube
a = diamètre fil

rv(r) =µ
r
E(r)

μe– ~1000 μion+

Au voisinage du fil d’anode, 
multiplication des électrons par avalanche (   )

gaz



Détecteurs d’ionisation à gaz
Modes opératoires

I: recombinaison
 des charges

II: chambre
 d’ionisation
III: compteur
 proportionnel
IV: compteur
 Geiger-Müller
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Détecteurs à traces

• Anciens (technique photographique)
– chambre à brouillard
– chambre à bulles

– émulsions

• Modernes (technique électronique)
– chambre proportionnelle multifilaire (MWPC)
– chambre à dérive

– chambre à projection temporelle (TPC)
– détecteur à microstrips (ou pixels) de Si

– …
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… on en invente encore aujourd’hui



Photographie dans une chambres à bulles

• Hydrogène liquide, B = 1.5 T
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faisceau de 
pions chargés 
de 16 GeV/c

“double” condensateur 
à plaques parallèles

Chambre proportionnelle multifilaire
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⇒      mesure de la coordonnée x du 
point de passage de la particule 

chargée à travers le détecteur

condensateur 
cylindrique

MIP = particule chargée
au minimum d’ionisation

cathode 
(V=0)

fil 
d’anode 
(V>0)

gas

r
E

r
E
r
E gas

cathode (V=0)

cathode (V=0)



Chambre proportionnelle multifilaire
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Invention de Georges 
Charpak (années 68–70)
→ prix Nobel en 1992

champ électrique 
~uniforme, sauf au 
voinage des fils 
d’anode où E ~ 1/r

lignes de champ électrique et equipotentielles

grand nombre de fils d’anode (canaux) 
→ lecture  électronique des signaux

Chambre à dérive
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détection 
à t=0 en x

détection 
sur l’anode 

à t=Δt en x=0

Scintillateur    

xx0

v = vitesse de dérive des électrons (~constante) 
x = vΔt



Chambre à dérive de CDF
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particule 
chargée

CDF = Collider
 Detector
 at Fermilab
 (~1988–2011)

Chambre à projection temporelle
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chambre proportionnelle multifilaire + chambre à dérive:
“chambre à bulles électronique”

(multiplication gazeuse)

mesure:
x, y, z, dE/dx



Chambre à projection temporelle
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TPC = Time Projection Chamber

Amélioration de
l’expérience ALICE
au LHC (prête en 2022)

Semi-conducteurs
Intrinsèque (= pur)
Type I 
• par exemple Si, Ge

• atomes tétravalents
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Extrinsèque (= dopé)
Type N 
• dopant (P, As, …) 

pentavalent
donneur d’e–

Extrinsèque (= dopé)
Type P 
• dopant (B, Al, Ga, …) 

trivalent
accepteur d’e–

Porteurs de charge libres 
(même pour le type I, qui est 

toujours légèrement de type N)



Détecteur à semi-conducteur

• Avantages sur les détecteurs à gaz:
– plus compact, pas besoin de haute tension ni de bonbonnes de gaz
– meilleure résolution

• Energie pour créer une paire électron-trou (3.6 eV dans le Si)
bien plus petite que celle pour ioniser un gaz  (15–30 eV dans Ar)

• Mais … un semi-conducteur n’est pas isolant !
– il contient des porteurs de charge libres
– on ne peut pas simplement remplacer le gaz isolant par du silicium
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Jonction P–N
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Jonction P–N

• Cristal de Si de haute résistivité (presque type I, légèrement N)

• Sur une face: dopage P très fort (P+) par implantation d’ions
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Diode PIN

• Jonction P–N avec fort dopage N sur l’autre face (N+)

• Métallisation des deux faces (contact ohmique)
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Détecteur Si à micro-bandes
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Détecteur de vertex de CDF
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Calorimètres
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• Un bon calorimètre doit être assez épais pour stopper la 
particule incidente et contenir toute la gerbe

• Mesures: énergie déposée par la particule, position de la 
gerbe, forme de la gerbe (profondeur, extension latérale)

Calorimètres
• Calorimètre électromagnétique

– détection de photons, électrons, positons
qui forment des gerbes électromagnétiques

– également π0 → γγ
– épaisseur > 20 X0

(X0 = longueur de rayonnement)

• Calorimètre hadronique

– détection de hadrons 
(protons, neutrons, pions, …) 
qui forment des gerbes hadroniques

+ gerbes é.m. initiées par les π0

– épaisseur > 5 λ    
(λ = longueur d’absorption
        nucléaire ~ 1/σabs)
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pour des hadrons de haute énergie 
(> 5 GeV) dans la matière:
interactions é.m. << interaction forte

gerbe é.m. 5 GeV

π– 

gerbes de 100 GeV
e– 

μ– 



Détecteur 
ALEPH

OS, 2 avril 2025 99

Expérience ALEPH 
au LEP (1989–2000)

Etude collisions e+e– 
à √s = 90–209 GeV

Détecteur ALEPH
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Détecteur CMS au LHC (depuis 2008)
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calorimètre hadronique

Détecteur CMS au LHC (depuis 2008)
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Chapitre 4: Accélérateurs
• Il faut des faisceaux de plus en plus énergétiques et intenses pour:

– sonder la matière sur des distances de plus en plus petites (λ = h/p)
– produire de nouvelles particules massives (réelles)

– explorer des phénomènes rares (avec des sections efficaces très petites)

•  Il faut donc des accélérateurs:
– l’Univers (rayons cosmiques): intensité limitée à (très) haute énergie
– accélérateurs terrestres: énergie limitée (technologie, coût, …)

• Seules les particules chargées “stables” peuvent être accélérées: 
– e–, e+, p, p, ions, muons μ± (τ ~ 2 μs)

• Composantes d’un accélérateur
– source de particules chargées
– accélération (par des champs électriques)

– tube à vide
– guidage et stockage des faisceaux (par des champs magnétiques)
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–

Guidage des faisceaux

Force de Lorentz:

• Déflection
– aimants dipolaires 
– tout le faisceau dévié 

dans la même direction

• Focalisation 
– aimants quadrupolaires
– focalisation dans un plan 

transverse, défocalisation 
dans l’autre

– Note: un doublet de 
quadrupôles focalise 
dans les deux plans
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r
F = qrv×

r
B



Aimant quadrupolaire
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Double quadrupôle pour les 2 faisceaux du LHC


