
Projections de l’angle de diffusion
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Théorème central limite

Soient N variables aléatoires Xi indépendantes
avec une loi de distribution commune quelconque 
de moyenne m et écart-type σ

On définit
Alors

– Y est une variable aléatoire de moyenne mN et d’écart-type σ √N
– Z est une variable aléatoire de moyenne m    et d’écart-type σ/√N

et quand N → ∞, 
 Y et Z tendent vers des variables aléatoires gaussiennes !

En pratique, la gaussienne est souvent
une bonne approximation dès N ~ 6
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Diffusion coulombienne multiple

• Pour 1 diffusion:

• Pour N diffusions successives:

• Pour un écran d’épaisseur x:
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 σx = σy ≈
15 MeV

pc β
Z x

X0

 X0 = longueur de
        rayonnement

𝜃! = 𝜃 cos 𝜙 = 𝜃 cos 𝜙 = 0
𝜃!" = 𝜃" cos" 𝜙 = 𝜃" cos" 𝜙 = #

" 𝜃"

Θ! =)
$%#

&

𝜃!,$

Θ! = 𝑁 𝜃! = 0
𝜎!" = Θ!" = 𝑁 𝜃!" = &

" 𝜃"



Effet Cherenkov
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c/n = vitesse de la lumière dans le milieu d’indice de réfraction n (≥1)
 = vitesse de propagation du champ é.m. produit par la particule



Effet Cherenkov
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Effet Cherenkov

• Au seuil:

• Exemple:   pions chargés de 15 GeV/c   ⇒   n=1.0000436 (gaz)
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Interactions des photons dans la matière

• Absorption atomique
γ + A → A* absorption
γ + A → A+ + e– absorption + éjection e–

• Diffusion
γ + A → γ + A* diffusion (cohérente de Rayleigh) sur un atome
γ + e– → γ + e– diffusion sur un électron

• Production de paires (“conversion”)
γ → e+ + e– dans champ Coulombien des noyaux (ou des électrons)

• Absorption nucléaire
γ + AX → AX* 
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effet photoélectrique

effet Compton

matérialisation en e+e–

domine à petit Eγ

domine à grand Eγ

Eγ

(phénomènes é.m. uniquement)



Section efficace
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cible d’aire A et d’épaisseur dx
N “centres” d’aire σ

n      = nombre de centres par unité de volume
n dx = nombre de centres par unité de surface σ

σ
σ

σ
σ

σ
σ

σ

σ
σ

σ
σ

σ

σ
σ

γ incident

dx

A

Probabilité d'interaction = σN
A

= σnAdx
A

= σndx

Section efficace totale σ =      probabilité d’interaction sur une cible     
contenant un centre par unité de surface

Unité:     barn = b = 10–28 m2 = 10–24 cm2



Interactions des photons dans la matière
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33. Passage of particles through matter 23
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Figure 33.15: Photon total cross sections as a function of energy in carbon and lead,
showing the contributions of different processes [50]:

σp.e. = Atomic photoelectric effect (electron ejection, photon absorption)
σRayleigh = Rayleigh (coherent) scattering–atom neither ionized nor excited
σCompton = Incoherent scattering (Compton scattering off an electron)

κnuc = Pair production, nuclear field
κe = Pair production, electron field

σg.d.r. = Photonuclear interactions, most notably the Giant Dipole Resonance [51].
In these interactions, the target nucleus is broken up.

Original figures through the courtesy of John H. Hubbell (NIST).
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Interactions des photons dans la matière
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Coefficient d’atténuation massique μ
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page 39 du polycopié

𝜇 =
𝑛𝜎
𝜌
=
𝑁(
𝐴
𝜎

• n = densité atomique 
[cm–3]

• ρ = masse volumique 
[g/cm3]

• NA = nombre 
d’Avogadro [mol–1] 

• A = masse atomique 
[g/mol]



Effet photoélectrique
• Un électron lié à l’atome absorbe le photon incident 

et est libéré avec une énergie cinétique Te:

• Calcul 
théorique 
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Te ≅ E γ −Eliaison    ⇒     E γ ≥ Eliaison

σp.e.(K) = 32π
3

2 z5α4 mc2

E γ

⎛

⎝
⎜

⎞

⎠
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7/2

  où α = e2

4πε0hc
≈ 1

137

Eliaison(K)Eliaison(L)

Eγ

σp.e.
effet de seuil

Eγ Te



Effet Compton
• Collision d’un photon 

d’énergie Eγ sur un 
électron au repos

• Conservation quantité de 
mouvement et énergie:
– 3 équations pour 4 inconnues 

(E, pe, θ, φ)
– élimination de pe et φ pour 

obtenir une relation entre E et θ 
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E γ

c
= E
c
cosθ+ pe cosφ

0 = E
c
sinθ− pesinφ

E γ +mc
2 = E+ (pec)

2 + (mc2)2
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⎪
⎪

⎩
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Te = Ee −mc
2 = E γ −E =

E γ

1+ mc2
E γ 1− cosθ( )formule de Compton

Te maximum quand θ = π

E = E γ

1+ E γ

mc2
1− cosθ( )

pγ = Eγ/c
p = E/c

pe

θ
φ

e–

γ



Effet Compton
• Calcul en 

électrodynamique 
quantique (QED)
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Création de paire
• Possible seulement dans le champ d’un noyau (ou électron) 

et si Eγ > 2mc2

• Equation de Dirac (équ. du mvt de l’e–):
– solutions d’énergies positives > +mc2    → particule
– solutions d’énergies négatives < –mc2   → antiparticule
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E

mc2
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0

“mer” d’états occupés en respectant 
le principe d’exclusion de Pauli

γ électron e–
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γ e+

e–



Création de paire

• Calcul en électrodynamique quantique (QED):

• Gerbe électromagnétique = succession de processus de 
Bremsstrahlung et de création de paire dans la matière
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Quel point commun ?
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Processus Section efficace
Diffusion de 
Rutherford

Perte d’énergie 
par collisions

Rayonnement 
de freinage

Diffusion 
Compton

Création de 
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Tous des processus électromagnétiques, avec σ ~ (e2)n ~ αn, où n=2 ou 3 

α N
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