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Figure 33.5: Mean excitation energies (divided by Z) as adopted by the ICRU [11].
Those based on experimental measurements are shown by symbols with error flags;
the interpolated values are simply joined. The grey point is for liquid H2; the black
point at 19.2 eV is for H2 gas. The open circles show more recent determinations by
Bichsel [13]. The dash-dotted curve is from the approximate formula of Barkas [14]
used in early editions of this Review.

The remaining relativistic rise comes from the β2γ growth of Wmax, which in turn is
due to (rare) large energy transfers to a few electrons. When these events are excluded,
the energy deposit in an absorbing layer approaches a constant value, the Fermi plateau
(see Sec. 33.2.8 below). At even higher energies (e.g., > 332 GeV for muons in iron, and
at a considerably higher energy for protons in iron), radiative effects are more important
than ionization losses. These are especially relevant for high-energy muons, as discussed
in Sec. 33.6.

33.2.6. Energy loss at low energies :

Shell corrections C/Z must be included in the square brackets of of Eq. (33.5) [4,11,13,14]
to correct for atomic binding having been neglected in calculating some of the contribu-
tions to Eq. (33.5). The Barkas form [14] was used in generating Fig. 33.1. For copper it
contributes about 1% at βγ = 0.3 (kinetic energy 6 MeV for a pion), and the correction
decreases very rapidly with increasing energy.

Equation 33.2, and therefore Eq. (33.5), are based on a first-order Born approximation.
Higher-order corrections, again important only at lower energies, are normally included
by adding the “Bloch correction” z2L2(β) inside the square brackets (Eq.(2.5) in [4]) .

An additional “Barkas correction” zL1(β) reduces the stopping power for a negative
particle below that for a positive particle with the same mass and velocity. In a 1956
paper, Barkas et al. noted that negative pions had a longer range than positive pions [6].
The effect has been measured for a number of negative/positive particle pairs, including
a detailed study with antiprotons [18].

A detailed discussion of low-energy corrections to the Bethe formula is given in
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numéro atomique z

I/z 

[eV]

Element I/z 
[eV]

H 19.2
He 20.9
Be 15.9

z ≥ 15 9 – 11

Perte d’énergie spécifique
• Calcul simplifié 

de Bohr

• Calcul quantique 

relativiste
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Figure 33.2: Mean energy loss rate in liquid (bubble chamber) hydrogen, gaseous
helium, carbon, aluminum, iron, tin, and lead. Radiative effects, relevant for
muons and pions, are not included. These become significant for muons in iron for
βγ >∼ 1000, and at lower momenta for muons in higher-Z absorbers. See Fig. 33.23.

in the figure is due to the density-effect correction, δ(βγ), discussed in Sec. 33.2.5. The
stopping power functions are characterized by broad minima whose position drops from
βγ = 3.5 to 3.0 as Z goes from 7 to 100. The values of minimum ionization as a function
of atomic number are shown in Fig. 33.3.

In practical cases, most relativistic particles (e.g., cosmic-ray muons) have mean energy
loss rates close to the minimum; they are “minimum-ionizing particles,” or mip’s.

Eq. (33.5) may be integrated to find the total (or partial) “continuous slowing-down
approximation” (CSDA) range R for a particle which loses energy only through ionization
and atomic excitation. Since dE/dx depends only on β, R/M is a function of E/M or
pc/M . In practice, range is a useful concept only for low-energy hadrons (R <∼ λI , where
λI is the nuclear interaction length), and for muons below a few hundred GeV (above
which radiative effects dominate). R/M as a function of βγ = p/Mc is shown for a
variety of materials in Fig. 33.4.

The mass scaling of dE/dx and range is valid for the electronic losses described by the
Bethe equation, but not for radiative losses, relevant only for muons and pions.
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Figure 33.4: Range of heavy charged particles in liquid (bubble chamber)
hydrogen, helium gas, carbon, iron, and lead. For example: For a K+ whose
momentum is 700 MeV/c, βγ = 1.42. For lead we read R/M ≈ 396, and so the
range is 195 g cm−2 (17 cm).

tion [15]:

δ(βγ) =















2(ln 10)x − C if x ≥ x1;
2(ln 10)x − C + a(x1 − x)k if x0 ≤ x < x1;
0 if x < x0 (nonconductors);
δ0102(x−x0) if x < x0 (conductors)

(33.7)

Here x = log10 η = log10(p/Mc). C (the negative of the C used in Ref. 15) is obtained
by equating the high-energy case of Eq. (33.7) with the limit given in Eq. (33.6). The
other parameters are adjusted to give a best fit to the results of detailed calculations
for momenta below Mc exp(x1). Parameters for elements and nearly 200 compounds and
mixtures of interest are published in a variety of places, notably in Ref. 16. A recipe for
finding the coefficients for nontabulated materials is given by Sternheimer and Peierls [17],
and is summarized in Ref. 5.
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Rayonnement de freinage (Bremsstrahlung)

• Particule chargée déviée de sa trajectoire (accélérée)

⇒ émission de photons ⇒ perte d’énergie

• Longueur de rayonnement X0 en cm (ou X0’=ρX0 en g/cm2)

= épaisseur de matière nécessaire pour réduire l’énergie d’un électron
   d’un facteur e ≈ 2.7

• Calcul 

théorique
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Table 33.2: Tsai’s Lrad and L′
rad, for use in calculating the radiation length in an

element using Eq. (33.26).

Element Z Lrad L′
rad

H 1 5.31 6.144
He 2 4.79 5.621
Li 3 4.74 5.805
Be 4 4.71 5.924

Others > 4 ln(184.15 Z−1/3) ln(1194 Z−2/3)

Figure 33.11: Fractional energy loss per radiation length in lead as a function of
electron or positron energy. Electron (positron) scattering is considered as ionization
when the energy loss per collision is below 0.255 MeV, and as Møller (Bhabha)
scattering when it is above. Adapted from Fig. 3.2 from Messel and Crawford,
Electron-Photon Shower Distribution Function Tables for Lead, Copper, and Air
Absorbers, Pergamon Press, 1970. Messel and Crawford use X0(Pb) = 5.82 g/cm2,
but we have modified the figures to reflect the value given in the Table of Atomic
and Nuclear Properties of Materials (X0(Pb) = 6.37 g/cm2).

33.4.3. Bremsstrahlung energy loss by e± :

At very high energies and except at the high-energy tip of the bremsstrahlung
spectrum, the cross section can be approximated in the “complete screening case” as [42]

dσ/dk = (1/k)4αr2
e
{

(4
3 − 4

3y + y2)[Z2(Lrad − f(Z)) + Z L′
rad]

+ 1
9 (1 − y)(Z2 + Z)

}

,
(33.29)
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dépend du 

milieu

1/(ρX0)

ρX0(Pb) = 6.37 g/cm2

X0 et Tc pour les électrons
• Energie critique Tc, = énergie cinétique à laquelle la perte 

d’énergie par rayonnement égale celle par collisions
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 dT
dx rad

= dT
dx coll

    ⇒    Tc
z2

m2 ∝ z   ⇒  Tc∝
m2

z
  

1

Matériau z Tc ⇢X0 X0

MeV g/cm
2

cm

H2 (liq) 1 340 61.28 866

He (liq) 2 220 94.32 756

C 6 103 42.7 18.8

Al 13 47 24.01 8.9

Fe 26 24 13.84 1.76

Pb 82 6.9 6.37 0.56

Air (STP) - 83 36.66 30420

Eau - 93 36.08 36.1

Table 1 – Caractéristiques de divers milieux
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with mean M0. Ne is either measured in electrons/g (Ne = NAZ/A) or electrons/cm3

(Ne = NA ρZ/A). The former is used throughout this chapter, since quantities of interest
(dE/dx, X0, etc.) vary smoothly with composition when there is no density dependence.
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Fig. 33.1: Mass stopping power (= 〈−dE/dx〉) for positive muons in copper as a function
of βγ = p/Mc over nine orders of magnitude in momentum (12 orders of magnitude in
kinetic energy). Solid curves indicate the total stopping power. Data below the break at
βγ ≈ 0.1 are taken from ICRU 49 [4], and data at higher energies are from Ref. 5. Vertical
bands indicate boundaries between different approximations discussed in the text. The
short dotted lines labeled “µ− ” illustrate the “Barkas effect,” the dependence of stopping
power on projectile charge at very low energies [6]. dE/dx in the radiative region is not
simply a function of β.

33.2.2. Maximum energy transfer in a single collision :

For a particle with mass M ,

Wmax =
2mec2 β2γ2

1 + 2γme/M + (me/M)2
. (33.4)

In older references [2,8] the “low-energy” approximation Wmax = 2mec2 β2γ2, valid for
2γme % M , is often implicit. For a pion in copper, the error thus introduced into dE/dx
is greater than 6% at 100 GeV. For 2γme & M , Wmax = Mc2 β2γ.

At energies of order 100 GeV, the maximum 4-momentum transfer to the electron can
exceed 1 GeV/c, where hadronic structure effects significantly modify the cross sections.
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Diffusion coulombienne

• Avec l’approximation θ <<1:

• Angle de déflection quadratique moyen:
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