Chapter 5

Mechanical and Chemical
Equilibrium in the Living
Cell

“The study of particular problems of the calculus of variations, or, as we shall
say, particular variational problems, is extremely old. It arises from the fact
that for human beings, in many instances, only the best can be good enough.”
-L. C. Young

Chapter Overview: In Which We Examine How Cells Manage Energy
and How Scientists Compute Energy Transformations

Energy consuming and liberating chemical transformations are one of the
hallmarks of living systems. Living cells follow the same principles of conser-
vation of matter and energy as do all other physical systems, though they also
operate under an additional set of constraints imposed by their evolutionary
history. In this chapter, we first summarize how cells manipulate and store
chemical energy in ways that can be used to perform material transformations
such as macromolecular synthesis, mechanical work such as muscle contraction
or even production of light energy like in a firefly’s abdomen. In order to develop
the mathematical tools necessary to model these kinds of biological transforma-
tions, we exploit the useful simplification that many chemical and mechanical
systems can be treated as if they are close to an equilibrium state. As we will
see, many real world situations can be surprisingly well modeled using equilib-
rium assumptions. This perspective alone is enough to provide useful insight
into biological phenomena as fundamental and diverse as protein folding, bind-
ing reactions and formation of lipid bilayers. This useful oversimplification will
form the substance of the next several chapters.
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5.1 Energy and the Life of Cells

Much of the business of cellular life involves transformations of energy. Most fa-
miliar organisms make their living by eating other living or freshly dead things,
thereby consuming energy-carrying organic molecules that have been generated
and shepherded by other living organisms. This material transfer process makes
all forms of life on Earth an interconnected and interdependent web where a
key mode of communication is energy transfer. Humans consume food made up
largely of fats, proteins and carbohydrates, initially synthesized in other organ-
isms, mostly plants, animals and fungi. They use the molecules they consume
not only to create material but also to fuel the energy-requiring processes of
daily life including muscle contraction, heat generation and brain activity.

Ultimately, it would not be possible for life to survive merely by recycling or
exchanging energy among organisms - there must be an outside energy source.
For most ecosystems on earth, the ultimate energy source is sunlight which is
harvested by various cells in plants, in many unicellular eukaryotes and many
kinds of bacteria. See Morton (2007) in “Further Reading” for a fascinating
discussion of life and light. The light gathered by these cells serves not only
their own energy needs, but eventually provides the energy for the remainder of
the interdependent web of life. These cells exploit the energy of sunlight using
specialized light-harvesting molecules to transfer ions across membranes. The
ion gradients store energy in a battery-like form that can then be coupled to
enzymes that can, for example, convert COy (and HyO) from the air into sugar
and indirectly into all other biomolecules including proteins, lipids and nucleic
acids.

Four key kinds of energy are relevant in biological systems: chemical energy,
mechanical energy, electromagnetic energy and thermal energy. Each of these
forms of energy may be converted by living organisms into each of the others,
with the interesting and important exception that thermal energy is generally
a dead end since the second law of thermodynamics prohibits harnessing ther-
mal (random) motions to carry out useful work. For example, electromagnetic
energy in the form of a photon from the sun can be harnessed by a cell during
photosynthesis to generate chemical energy that may be used for metabolic pro-
cesses. Conversely, fireflies and other bioluminescent organisms convert chemical
energy into photons. Energy gathered by organisms from their environments
can be stored for later use, primarily in chemical form. Energy-storing molecules
are used by all organisms for a host of important cellular processes. For exam-
ple, ATP is used to pump molecules across membranes, to create the specialized
polymeric apparatus of cellular motility and to power the motors that allow our
muscles to twitch.

Throughout the book, we will invoke a wide range of different models to
explore how these energy transformations take place. The main goal of this
chapter is to demonstrate how the principles of energy minimization and free
energy minimization can be used to predict the direction of transformations oc-
curring in living systems. In considering energy minimization calculations, we
will often make an explicit or implicit assumption that the system is operating
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close to equilibrium, such that any small excursion of the system will typically
result in it returning to its original state. How do we reconcile the mathemat-
ically convenient equilibrium assumption with the real world observation that
biological systems are constantly dynamic and changing? The key insight is
that different processes occur at different time scales, and so we can frequently
isolate some small part of a biological process occurring at a relatively rapid
time scale and pretend that it is at equilibrium with respect to its effects on
processes that occur more slowly.

The next several chapters will build up the tools of equilibrium thermo-
dynamics and statistical mechanics for treating equilibrium problems. Before
embarking on our journey through the biological uses of statistical mechanics,
we begin by taking stock of the interplay of thermal and deterministic forces
(and energies) in biology and we examine the chemical basis for biological energy
storage.

5.1.1 The Interplay of Deterministic and Thermal Forces

One of the important characteristics of the cellular interior that makes it so
different from the world of everyday experience is the fact that thermal and de-
terministic forces are on equal footing. By thermal forces, we refer to the forces
exerted on macromolecular structures as a result of the incessant jiggling of all
of the molecules (such as water) that surround them. When we are considering
the transformations that a biological system can undergo, it is useful to picture
the range of available possibilities in terms of an energy landscape. For exam-
ple, a protein may exist in a large number of possible conformations but some
will be energetically preferred over others. In any given biological system, the
shape of the peaks and valleys on the free energy landscape can be changed by
an energy input. For example, mechanical stretching of a membrane containing
an ion channel will tend to make the open conformation of the channel more
favorable relative to the closed conformation. At the same time, the rates at
which molecules explore the energy landscape tend to be primarily determined
by thermal forces. These different effects can be quantitatively related to one
another through use of common units.

Thermal Jostling of Particles Must Be Accounted For in Biological
Systems

Perhaps the most famed example of thermal effects is that of Brownian mo-
tion (the microscopic basis of diffusion) already introduced in chap. 3 (pg. 160).
Observation of small particles (= 1um), fluorescently labeled molecules and even
macromolecules within cells reveals the fact that they suffer excursions which
are, to all appearances, completely random. This jostling is a reflection of the
fact that in addition to whatever deterministic forces might be applied to the
particle or molecule of interest (such as electrostatic interactions, attachment to
springs, etc.), they are also subjected to forces due to constant collisions with
the molecules that make up the surrounding medium, which in turn constantly
collide with one another.
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To get a sense of the relative importance of thermal and deterministic forces,
we need a numerical measure of the contribution of thermal effects. One way
to compare the thermal and deterministic scales is through ratios of the form
Eg4et/ kBT, where Ege; represents the scale of deterministic energies in the prob-
lem of interest. For example, we might ask for the energy scale associated with
breaking a hydrogen bond, or the energetic cost of bending a DNA molecule. In
chap. 6 we will show that the probability of a given “microstate” of a system is
proportional to the Boltzmann factor, exp(—FEqe:/kpT), revealing the quanti-
tative interplay of thermal and deterministic energies. The natural energy unit
for a single molecule inside a cell is set by the thermal energy scale at room
temperature, namely,

kT = 4.1pN nm. (5.1)

We can see that this energy scale will be of central importance to the life and
times of macromolecules such as lipids, proteins and nucleic acids because the
energy delivered by ATP hydrolysis is tens of kT and many of the motors
that perform the functions of the cell exert piconewton forces over nanometer
length scales. For other kinds of biological transformations, it is sometimes more
useful to consider the thermal energy scale in different units. For example,
for biochemical reactions kT = 0.6 kcal/mole or 2.5 kJ/mole and when
considering thermal motions of charge, we will use kgT = 25 meV.

These ideas on the relative importance of thermal and deterministic forces
are made more concrete in fig. 5.1. The horizontal line in the figure corresponds
to the thermal energy scale, represented here as kpT = 4.1 x 1072! joules. The
other lines illustrate the energy cost associated with particular deterministic
scenarios such as stripping a fraction of the charge off of spheres of different size,
bending rods of different sizes and confining electrons within boxes of different
sizes which is meant to convey a feeling for the energy scale of binding (which is
also captured explicitly as the energy of hydrogen and van der Waals bonding
in the figure). The key point of the figure is to note that at the nanometer
scale (precisely the scale of the macromolecules of the cell) thermal energies
and the deterministic energies of properties like charge rearrangement, bonding
and molecular rearrangement are comparable, unlike the familiar centimeter or
meter scales where deterministic forces predominate.

Because each of these forms of energy is of comparable scale and effectively
interchangeable at the molecular level, a living organism which needs to gener-
ate motion, heat, electricity and biomolecular synthesis is expert at energetic
interconversions. For the most part, energy used by living cells is derived from
chemical energy in food and used to generate all the other forms. An interest-
ing exception is photosynthesis where electromagnetic energy is first converted
into chemical energy and then into everything else. To develop a feeling for the
numbers we will now consider the molecular basis for generation and storage of
chemical energy in cells.
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Figure 5.1: Energy as a function of length scale for a number of different en-
ergetic mechanisms. The graph shows how thermal, chemical, mechanical and
electrostatic energies associated with an object scale with the size of the object.
As the characteristic object size approaches that of biological macromolecules,
all of the energy scales converge to a single regime. The horizontal line shows
the thermal energy scale. The bending energy is estimated by considering an
elastic rod with an aspect ratio of 20:1 which is bent into a semicircular arc.
The electrostatic energy is estimated for a model spherical protein with polar
residues on its surface and for which all of the polar residues are stripped of a
single charge (see chap. 9). Chemical energy as a function of length, or binding
energy, is estimated approximately by considering the effects of confining a free
electron in a box of that length scale. For comparison, measured binding en-
ergies are shown for three chemical bonds (hydrogen bonds, phosphate groups
in ATP and covalent bonds). On this log-log scale they all appear very similar
to one another at the point of convergence. (Adapted from R. Phillips and
S. Quake, Phys. Today, 59:38, 2006.)
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5.1.2 Constructing the Cell: Managing the Mass and En-
ergy Budget of the Cell

In chap. 2 (pg. 59), we estimated the number of all the different kinds of macro-
molecules in a cell and worked out the number of glucose molecules required
to build these constituents if glucose is the sole carbon source. What we ne-
glected was the significant metabolic work that must be performed to transform
the carbon atoms of glucose into the carbon atoms of amino acids, nucleotides,
fatty acids, etc. Metabolism is the general term used to refer to cellular trans-
formations of one molecule into another. The specific transformation of glucose
into the amino acid lysine, for example, requires the ordered action of many en-
zymes, several of which consume energy while performing the necessary trans-
formations. In living cells, energy is stored and transferred in several forms,
most commonly in the form of a high energy chemical bond on the molecule
ATP (we will discuss cellular energy in more detail below). The ultimate source
of the energy used to synthesize ATP in fact comes from metabolic breakdown
of glucose in a pathway known as glycolysis and illustrated schematically in
fig. 5.2. For E. coli growing in the presence of oxygen, a single molecule of
glucose can be metabolically broken down to form up to thirty molecules of
ATP from ADP since in this case, the pyruvate emerging from the glycolysis
pathway can be used to fuel further energy producing reactions. This process
results in carbon dioxide as a waste product. One interesting question is what
fraction of the glucose taken on by the cell is used to make new molecules and
what fraction is used to provide the energy to make those new molecules? In
this section, we will estimate the energy budget of a single E. coli proceeding
through one round of its cell cycle.

In order to perform this estimate, we need to understand the nature of
energy storage in cells, the typical amounts of energy required for metabolic
transformations and the ways in which cells allocate their energy and material
resources. In most cells, energy is stored in a variety of forms which can be
interconverted with very high efficiency. The three most commonly used are
ATP, NADH (NADPH) and transmembrane H* gradients as shown in fig. 5.3.
ATP (adenosine triphosphate) is often referred to as the energy currency of the
cell because it can be easily converted into goods and services. The energy
liberated by hydrolysis of the y-phosphate bond on ATP to generate a molecule
of ADP (adenosine diphosphate) and an inorganic phosphate ion P; ( PO?™) is
approximately 20k T (though it depends upon the concentrations of all of ATP,
ADP and P; as will be shown in section 6.4.4 (pg. 350)). ATP is a useful energy
currency because this amount of energy is comparable to the energy consumed in
many kinds of biochemical transformations and is intermediate between thermal
energy (kgT) and the energy of a typical covalent bond (100kgT). ATP can be
considered as the twenty dollar bill of the cell because of its intermediate value
in the overall energy economy of the cell. Spending money in large chunks such
as a hundred dollar bill is unwieldy because they are hard to break. On the
other hand, paying with just dollar bills is a nuisance because it takes many of
them to buy anything useful.
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Figure 5.2: A schematic outlining the overall organization of the glycolytic

pathway.

The outcome of the ten steps of glycolysis is the conversion of a

single molecule of glucose into two molecules of pyruvate and the concomitant
net production of two molecules of ATP and two of NADH. (Adapted from
B. Alberts et al., Molecular Biology of the Cell, 4th ed. New York: Garland

Science, 2002.)
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Figure 5.3: Three important forms of biological energy. (A) Energy for chemical
synthesis and for force generation is stored in the form of ATP which can be
converted to ADP + P; releasing roughly 20 kgT of useful energy. ADP +
P; can then be converted back to ATP. While many enzymes use ATP itself,
others use GTP, UTP or CTP, but the energies are equivalent. (B) Reducing
potential is carried in the form of transferrable high-energy electrons on NADH
(or the very similar molecule NADPH). Two electrons can be transferred from
NADPH to reduce an oxidized organic compound liberating one hydrogen ion
(H*) and the oxidized form of the carrier molecule NADP™. In this case, the
energy liberated by oxidation of one mole of NADH can be used to synthesize
roughly three moles of ATP. (C) Transmembrane ion gradients, particularly in
the form of HT gradients, are also used to store energy. (A-C, adapted from
B. Alberts et al., Molecular Biology of the Cell, 4th ed. New York: Garland
Science, 2002.)
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A second form of chemical energy important for metabolic transformations
is carried in the form of easily transferrable electrons on the molecules NADH
and NADPH. Many metabolic transformations require that an organic molecule
be altered in its level of oxidation. Oxidation and reduction reactions refer to
the transfer of electrons between compounds. A compound is oxidized when
electrons are removed and reduced when electrons are added. For organisms
growing in an oxygen-rich environment of the modern Earth, oxidation reactions
are usually spontaneous. However, reduction reactions require energy input.
For reductive biosynthesis, a pair of electrons are usually donated by NADPH
creating an oxidized form of this carrier molecule NADPT. Hence, NADPH
gives up its hydride ion (H ™) in the same way that ATP gives up P;, in both
cases liberating energy for doing useful biochemical work.

Another use of reducing energy in cells is to establish HT gradients across
membranes. This is an example of the third major form of biological energy
storage. The electrical consequences of charge separation by transmembrane ion
gradients will be the focus of chap. 17. Ton gradients are easily interconvertible
with either ATP energy or NADH energy. NADH can donate its high energy
electrons to electron carrier molecules in the plasma membrane of bacterial cells
or in the inner mitochondrial membrane of eukaryotic cells, that ultimately
liberate HT ions on the opposite side generating a gradient. The energy stored
in this kind of ion gradient can be converted into ATP through the action of the
enzyme F1-FO ATP synthase. Energy release is effected here by letting ions flow
across the membrane through transmembrane proteins, such as ATP synthase.
This is very analogous to the way a hydroelectric plant uses the kinetic energy of
water supplied by gravity. Here the role of water is played by HT ions. However,
instead of gravity, electrostatic and entropic forces drive the flow of ions and
the ATP-synthase plays the role of the turbine.

How do all of these forms of energy contribute to the synthesis of the bio-
logical molecules that make up the cell? Conversion of a carbon source such as
glucose into carbon skeletons of any of the other necessary organic molecules
(amino acids, nucleotides, phospholipids, etc) proceeds through an intricate
series of stepwise chemical transformations where metabolic enzymes catalyze
the rearrangement of atoms within a substrate molecule, the cleavage of cova-
lent chemical bonds in the substrate and the formation of new covalent bonds.
Fig. 5.4 gives a schematic of the chain of reactions connecting the food source
(for example, glucose) to the final product, namely, two cells. The product of
one biochemical reaction in this kind of biochemical pathway goes on to be the
substrate in the next reaction. In the diagram, this chain of reactions is denoted
by “fueling products”, “building blocks”, “macromolecules” and “structures”.
All organic molecules within the cell are linked to one another through an in-
tricate and highly-interconnected network or web of metabolic reactions. The
overall architecture of the network is dominated by the existence of critical
nodes represented by important intermediate molecules (such as the precursor
metabolites shown in fig. 5.4) that can be in turn converted into various final
products.

A highly schematized diagram of one of the most important metabolic net-
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Figure 5.4: Energy and mass costs to make a new bacterial cell. This diagram
illustrates the flow of materials and energy required for bacterial duplication.
Nutrients are taken from the environment, either organic molecules provided
by other organisms or carbon dioxide and light in the case of photosythetic
bacteria. Together with a few inorganic ions such as phosphate, sulfate and
ammonium, the carbon sources consumed by the bacterium are converted into
precursor metabolites and then into the fatty acids, sugars, amino acids and
nucleotides that are used to build macromolecules. The macromolecules are
further assembled into large scale structures of the cell. The numbers shown
in the “building blocks” column correspond to the rough number of molecular
building blocks of each type. (Adapted from M. Schaechter et al., Microbe,
Washington DC, ASM Press, 2006.)
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works (glycolysis) of E. coli and other cells is shown in fig. 5.2. After the
six-carbon molecule glucose is taken up by the bacterial cell, it is broken down
by the process of glycolysis to form two copies of the three-carbon molecule
pyruvate. This overall set of transformations takes place through ten distinct
chemical steps as shown at the molecular level in fig. 5.5. Pyruvate, in turn,
can be used to synthesize a variety of amino acids or fatty acids. As glucose
is broken down to form pyruvate, some of the chemical energy stored in its co-
valent bonds is used to synthesize ATP and NADH. These high energy carrier
molecules can then donate their energy to drive forward biosynthetic reactions
that are not intrinsically energetically favorable.

A useful way to envision the energetic transformations during glycolysis is to
picture each molecular species as having a characteristic energy and as glucose
goes through its series of transformations, the molecule travels up and down on
a hilly energy landscape. This idea is related to the treatment of enzymes that
we introduced in fig. 3.24 (pg. 161). There we showed that the bent form of
the substrate molecule resides at a slightly higher energy level than the straight
form. For real molecules such as the intermediates in the glycolytic pathway,
the energy of particular species depends not only on its molecular structure but
also on its concentration in the cell. We will consider the exact definition of
these molecular energies in chap. 6.

This general framework has prepared us to estimate the amount of glucose
needed to provide energy for a single round of cell division compared to the
amount required to provide structural building blocks. Accurate estimation of
this number requires a detailed examination of each of the biosynthetic pathways
in E. coli and tabulation of the energy consumed or liberated at every enzymatic
step. Such calculations have been undertaken by brave biochemists. For our
purposes, we will instead attempt a cruder but much simpler scheme in which
we posit “typical” costs and gains associated with each class of molecule as
counted in chap. 2 (proteins, nucleic acids, etc.).

e Estimate: The Energy Budget Required to Build a Cell. Our
estimates of the inventory of a cell given in chap. 2 (pg. 59) provided a
feeling for the numbers of each kind of macromolecule needed to make a
new cell. If the cell has glucose as its sole carbon source, the carbons in
the sugar need to be taken apart and reassembled as useful building blocks
such as amino acids and nucleotides which make the construction of the
macromolecules of the cell possible.

The concept of the estimate we undertake here is represented by the anal-
ogy of considering the cost of constructing a building. Overall costs can
be subdivided into the costs of the physical construction materials them-
selves and the cost of the labor required to put them together. In the cell,
both the construction material (in the form of organic molecules) and the
energy source ultimately are derived from nutrients taken up by the cell.
As with our earlier estimates regarding E. coli in chaps. 2 and 3, we will
consider cells growing in a medium where glucose is its sole source of car-
bon and biosynthetic energy. Previously, in chap. 2, we estimated that the
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Figure 5.5: The molecules of the glycolytic pathway and the energy landscape
for their transformations. (A) By a series of ten chemical steps, one molecule of
glucose is converted into two molecules of pyruvate. Each step is catalyzed by a
specific enzyme, all of which are shown here as spacefilling models. The enzymes
are substantially larger than the small-molecule substrates on which they act.
(Iustration from David Goodsell) (B) The downward energetic progression of
the glycolytic pathway is illustrated graphically where each horizontal bar repre-
sents the relative energy level of one of the glycolytic intermediates. Overall, the
transformation of glucose to pyruvate is extremely energetically favorable. Some
of the energy liberated during each of these transformation steps is captured by
the high-energy carrier molecules, ATP and NADH. Three of the steps in gly-
colysis have such large negative energy changes associated with them that they
are considered irreversible: phosphorylation of glucose to glucose-6-phosphate,
phosphorylation of fructose-6-phosphate to fructose-1,6-bisphosphate, and con-
version of phosphoenolpyruvate to pyruvate with the concomitant synthesis of
ATP. Many of the other steps take place with little net energy change. (A, cour-
tesy of David Goodsell; B, adapted from C. K. Mathews et al., Biochemistry,
San Francisco, Addison Wesley Longman, Inc., 2000.)
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total number of carbon atoms required to construct a new E. coli cell is
approximately 10'%. At 6 carbon atoms per glucose molecule, this means
the cell must take on roughly 2 x 10° glucose molecules simply to provide
the raw construction materials for doubling its mass so that it can divide.
How many additional glucose molecules must the cell take up to convert
to the biosynthetic energy required to refashion all those carbon skeletons
into cellular material?

In E. coli, there are seven major classes of macromolecular components
whose synthesis we must consider: protein, DNA, RNA, phospholipid,
lipopolysaccharide, peptidoglycan and glycogen. Because each of these
kinds of components involves its own elaborate biosynthesis pathways, we
must consider them separately. Rather than going through all, we will
start with the illustrative example of proteins, briefly discuss DNA and
RNA and then assert the final outcome of the energy budget calculation.

For biosynthesis of proteins when glucose is the sole carbon source, the
glucose carbon skeletons must first be converted into amino acids, and
then those amino acids must be polymerized to form new proteins. As
can be easily appreciated by a glance at fig. 2.23 (pg. 96), amino acids
vary significantly in their structure and some are more complicated to
synthesize than others. Over the past 100 years, the metabolic pathways
for synthesis of each of these amino acids has been determined and the
responsible enzymes identified using methods like the pulse-chase method
(see fig. 3.3 on pg. 127) and generation of auxotrophic mutants, which need
to be fed precursor molecules to survive. All of the amino acid synthetic
pathways are connected directly or indirectly to the glycolytic pathway
shown in fig. 5.5. Indeed, all metabolites in the cell are connected to
all others through the elaborate metabolic web which can be graphically
represented in a summary diagram that covers most of a wall and which
resembles the Tokyo subway map but is substantially more intricate. Ala-
nine, for example, can be synthesized from pyruvate in a single step, by a
single enzyme. Tryptophan, in contrast, requires the coordinated action
of twelve enzymes. The net synthesis cost for making each of the amino
acids is summarized in table 5.1. For purposes of calculating the energy
budget, we must also take into account the fact that some amino acids are
much more abundant than others. For example, glycine is approximately
tenfold more abundant than tryptophan. By multiplying the energetic
cost to make each amino acid by its relative abundance in the cell, we
can estimate that the average energetic cost to synthesize an amino acid
is roughly 1.2 ATP equivalents for cells growing aerobically and 4.7 ATP
equivalents for cells growing anaerobically.

After the amino acids are synthesized, they must be strung together to
make proteins. This painstaking assembly work requires a large input
energy to the tune of roughly four ATP equivalents for each amino acid,
including the cost to attach the amino acids to tRNAs and to power the
movement of the ribosome. As a result, the cost for adding each amino
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Amino Acid Abundance | ATP equivalent (anaerobic) | ATP equivalent (aerobic)

alanine (A) 9.8 x 107 -1.0 L5
arginine (R) 5.6 x 107 8.5 11.0
asparagine (N) 4.6 x 107 3.0 5.5
aspartate (D) 4.6 x 107 0.0 2.5
cysteine (C) 1.7 x 107 11.5 14.0
glutamate (E) 5.0 x 107 -3.5 -1.0
glutamine (Q) 5.0 x 107 -2.5 0.0
glycine (G) 12.0 x 107 -2.5 0.0
histidine (H) 1.8 x 107 7.0 7.0
isoleucine (I) 5.5 x 107 8.5 13.5
leucine (L) 8.6 x 107 -10.5 -3.0
lysine (K) 6.5 x 107 6.0 11.0
methionine (M) | 2.9 x 107 24.5 27.0
phenylalanine (F) | 3.5 x 107 2.0 7.0
proline(P) 4.2 x 107 2.5 5.0
serine (S) 4.1 x 107 -2.5 0.0
threonine (T) 4.8 x 107 7.0 9.5
tryptophan (W) 1.1 x 107 7.0 9.5
tyrosine (Y) 2.6 x 107 -0.5 4.5
valine (V) 8.1 x 107 -2.0 3.0

Table 5.1: Amino acid abundance and energetic cost for making the amino acids
under both aerobic and anaerobic growth conditions. A negative value implies
that synthesis of the amino acid from glucose is favorable so energy is generated
rather than consumed. (Data from F. C. Neidhardt et al., Physiology of the
Bacterial Cell, Sunderland, Sinauer Associates, Inc, 1990 and M. Schaechter et
al., Microbe, Washington DC, ASM Press, 2006.)
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acid is 5.2 ATP equivalents corresponding to the 1.2 ATP equivalents it
costs to make the average amino acid and the 4 ATP equivalents it takes
to add the amino acid onto the peptide chain. Multiplying this by the
total number of amino acids that need to be strung together to make a
cell, we find

protein energy cost ~ 5.2ATP x 300 x 3 x 10° ~ 45 x 108ATP equivalents.

(5.2)
We have taken 300 as the number of amino acids in the “average” protein,
and used an approximate number of 3 x 10° proteins per bacterium.

It is possible to perform similar calculations for each of the other six classes
of macromolecules. Interestingly, while we found for proteins that syn-
thesis of the amino acid precursors is relatively energetically inexpensive
and assembly into proteins, relatively costly, the situation is the opposite
for DNA and RNA. Here, the energy required to synthesize a nucleotide
triphosphate precursor is large, on the order of 10-20 ATP equivalents
depending upon growth conditions, but the additional cost required to as-
semble the polymers is small. Whereas amino acid synthesis consumed less
than a quarter of the total energy required to make proteins, nucleotide
synthesis requires nearly 90 % of the energy required to make nucleic acids.

Table 5.2 summarizes the biosynthetic cost for each of the major classes of
macromolecule. As noted above, the exact numbers will vary depending
upon growth conditions, but these will serve as a reasonable estimate for
our standard E. coli growing under standard conditions. Recall that an E.
coli cell must take up roughly 2 x 10° glucose molecules for building mate-
rials to double its mass. Growing with maximum efficiency under aerobic
conditions a single molecule of glucose can generate up to 30 molecules
of ATP with carbon dioxide as the waste product. Comparing the total
amount of biosynthetic energy required by adding up all of the compo-
nents in table 5.2, about 2 x 10'® ATP equivalents are required or about
6 x 10® molecules of glucose. Thus, it requires about one-third as much
glucose just to pay for labor as it does to provide the actual building mate-
rials for constructing a new cell. Under less efficient growth conditions the
cost of biosynthesis can actually exceed the cost of materials by as much
as tenfold. Furthermore, in the estimates above we have ignored the fact
that macromolecules are constantly degraded and replenished inside the
cell. This will surely increase the overall energy budget, but will not affect
our estimates by more than an order of magnitude.

We have seen that much of the useful energy available to cells is stored in the

energy of phosphate bonds. This energy can be released in a variety of different
ways for processes such as those associated with the central dogma, for cell
motility and for setting up ion gradients across cells. One of the tools we will
use to examine these transformations of energy is the theory of mechanical and
chemical equilibrium as embodied in the laws of thermodynamics and statistical
mechanics. That is, the calculus of equilibrium to be set up in this and the
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Class Biosynthetic Cost (aerobic) - ATP equiv.
protein 1.2 x 1010
DNA 3.5 x 108
RNA 1.6 x 10°
phospholipid 3.2 x 10°
lipopolysaccharide 3.8 x 108
peptidoglycan 1.7 x 108
glycogen 3.1 x 107

Table 5.2: Biosynthetic cost in ATP equivalents to synthesize the macro-
molecules of the cell

following chapter is an abstract tool that permits us to predict the direction
and extent of important energy transactions in the cell. With a sense of the
energy scales associated with important biological transformations now in hand,
we turn to an analysis of the tools used to characterize these transformations.

5.2 Biological Systems as Minimizers

In the previous section, we considered the energetics of macromolecular synthe-
sis, only one of many activities undertaken by busy cells. In a more general
sense, our consideration of the role of energy and energy transformations in the
processes of life can also be applied to many other kinds of problems beyond
biosynthesis. What determines the shape of a red blood cell? Given a particular
oxygen partial pressure in the lungs, what is the fractional binding occupancy of
the hemoglobin within red blood cells? How much force is required to package
the DNA within the capsid of a bacteriophage? What fraction of Lac repres-
sor molecules in an E. coli cell are bound to DNA and what is the probability
that one such molecule is bound specifically? Each of these questions is ulti-
mately a question about energy transactions and can be couched in the form of
a minimization problem in which we seek the least value of some function. For
example, as will be shown in chap. 11, the question of the shape of red blood
cells will be formulated mathematically as the problem of minimizing the free
energy of the membrane and associated architectural filaments which bound
the cell. Similarly, our discussion of chemical equilibrium and equilibrium con-
stants for problems ranging from the occupancy of hemoglobin by oxygen to
the binding of Lac repressor to DNA will be founded upon equality of chemical
potentials, which is a simple consequence of minimizing the free energy. As we
will see, questions in both mechanical and chemical equilibrium can be stated
in the language of minimization principles.

The remainder of this chapter commences our efforts to develop mathemat-
ical models of biological energy transformations viewed through the prism of
minimization principles. A complementary view of transformations will be de-
veloped in chap. 15, when we explicitly consider rates and dynamics. The key
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point of the present discussion is how our understanding of the equilibrium
configurations of systems ranging from DNA-protein complexes to bones under
stress can be built around the idea of minimizing an appropriate energy quan-
tity. The quest to develop this intuition will lead us to the mathematics of the
calculus of variations and will culminate in the elucidation of Gibbs’ calculus of
equilibrium in the form of the principle of minimum free energy.

5.2.1 Equilibrium Models for Out of Equilibrium Systems

Given that living organisms are one of the quintessential examples of systems
that are out of equilibrium, it is natural to ask to what extent the tools of
equilibrium physics are of any use in biology. Perhaps surprisingly, in fact there
is a wealth of examples where the use of equilibrium ideas is well justified.
Equilibrium Models Can Be Used for Nonequilibrium Problems If
Certain Processes Happen Much Faster Than Others

The decision of whether an equilibrium description is appropriate for a given
problem often comes down to a question of time scales. As a simplest example,
we examine the validity of treating a cell as though it is in mechanical equilib-
rium. Mechanical equilibrium is characterized by the absence of any unbalanced
forces in a system. However, a more nuanced description of mechanical equilib-
rium appropriate for some biological problems is the idea that all of the forces
in the system are balanced on the time scales at which the biological process
is taking place. For example, as a cell crawls across a surface, the cytoskeleton
is pushing on parts of the plasma membrane. In some cases, the response of
the membrane can be thought of as so fast on the time scale of the underly-
ing cytoskeletal dynamics that at every instant the membrane has equilibrated
mechanically with respect to the forces produced by the cytoskeleton.

Similar arguments apply in the case of chemical equilibrium. For concrete-
ness, consider the reaction,

k
A= BLCO. (5.3)
ko
where we have assumed for simplicity that the backwards reaction from C to B
has a negligible rate (this approximation is useful for thinking about processes
such as transcription and translation). The basic argument being made verbally
in this section and mathematically later (in chap. 15) is that if the rates asso-
ciated with the conversion between A and B are sufficiently fast in comparison
with the rate at which B is depleted as a result of conversion into C', then we can
think of the reaction A = B as being in equilibrium. The concrete signature of
this rapid preequilibrium is that the amount of A and B occurs in a fixed ratio
determined by the ratio of the forward and backward rates for the reaction.

The outcome of this kind of analysis is shown in fig. 5.6. The key point
of the calculation is embodied in the fact that after an initial transient period,
the ratio [A]/[B] (we use the notation [A] to mean “concentration of A”) is
constant for all subsequent times even though the absolute number of A and B
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Figure 5.6: Rapid approach to equilibrium of a subprocess. Plot of the time
dependence of the concentrations in the reaction A = B — C of A(t), B(t)
and C(t). (A) For the case in which the rate for converting B to C is slow
in comparison to the rates for the reaction between A and B, after an initial
transient period, A and B reach their equilibrium values relative to each other
for the remainder of the process. (B) Plot showing the case in which there is no
rapid pre-equilibrium.

molecules is decreasing over time. This fixed ratio is the equilibrium constant
for the reaction A = B. If the rate of conversion to the product C is too fast,
the rapid preequilibrium condition is no longer satisfied yielding a situation like
that shown in fig. 5.6(B).

As will become clear in subsequent chapters, there are many cases in which
the numbers associated with various kinetic processes justify the use of equilib-
rium arguments like those to be developed in this chapter. The mindset that
justifies this approach is one of time scales; namely, when the rate constants
for some initial reaction in a series of reactions are fast (in a way that can be
evaluated mathematically), then that reaction can be treated as an equilibrium
reaction.

5.2.2 Proteins in “Equilibrium”

To set the stage concretely for some of the ways in which we will invoke equilib-
rium models to think about problems of biological interest, fig. 5.7 shows some
examples where we treat proteins from an equilibrium perspective. In some
instances (figs. 5.7(A) and (B)), our analysis can be built strictly around the
notion of mechanical equilibrium. The examples of chemical equilibrium begin
with the claim that it is useful to think of the folded state of a protein as a free
energy minimizer. The next example of protein properties from an equilibrium
perspective is the treatment of the way in which the charge state of a protein
depends upon the pH of the solution. Here the idea is that the charge state
of the protein reflects a competition between the entropy gained by permitting
charges to wander in solution and the corresponding energy cost associated with
removing those charges from their protein host. Yet another example that will
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Figure 5.7: Proteins in equilibrium. Schematic showing many examples of the
way in which proteins are approximated as being in equilibrium.

arise repeatedly throughout the book is the treatment of binding where in the
case of a protein we can think of it as being complexed with some ligand of
interest. Here too the basic picture is one of an interplay between the entropy
associated with free ligands and the energetic gain they garner as a result of be-
ing bound to their protein host. A final example where at times it is convenient
to think of a protein as being in equilibrium is when that protein coexists in an
active and inactive form and where the relative probability of these states is dic-
tated by some external influence. For example, as will be discussed in chap. 7,
phosphorylation of a protein can shift it from an inactive to an active state. A
second example also to be examined in chap. 7 is the gating of ion channels.
Here too, channel gating can sometimes be treated as an equilibrium problem
where some tuning parameter such as the external tension in the membrane or
an applied voltage can alter the probability that the channel is open.

Protein Structures Are Free Energy Minimizers

As a result of the sequencing of an ever-increasing number of genomes, the
challenge to assign meaning to that genomic information has also increased. In
particular, with the genetic sequence in hand, what can be said about the struc-
ture and function of the various proteins coded for in these genomes? Assuming
that a particular gene within a genome has been identified, the question can be
posed differently. We have already seen in fig. 1.4 (pg. 30) that the languages of
nucleic acids and proteins are related by the universal genetic code which tells us
how to translate the DNA sequence into a corresponding amino acid sequence.
However, once the relevant amino acid sequence has been determined, we still
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Figure 5.8: Schematic of the way in which protein folding sequesters hydropho-
bic amino acids while leaving their polar counterparts in contact with the sur-
rounding solution.

don’t know the structure implied by that given primary sequence.

A first step in solving this problem corresponds to answering the question:
of all of the possible ways that that particular set of amino acids can fold up,
which has the lowest free energy? From an intuitive perspective, we already pos-
sess heuristic ideas for thinking about protein folding as illustrated in fig. 5.8.
In particular, the key idea is that certain amino acid side chains can happily
participate in the hydrogen bonding network of the surrounding solution, while
those residues with hydrophobic side chains are sequestered from the surround-
ing solution. From a quantitative perspective, these structural preferences have
a corresponding free energy benefit.

A second way in which proteins are conveniently viewed from the equilibrium
perspective has to do with their charge state. As the pH of the solution is varied,
the charge on different amino acid residues in a particular polypeptide chain
will vary. An example from the amino acid glycine is shown in fig. 5.9. We can
think about the liberation of charge in solution as a result of the competition
between the energetic favorability of keeping unlike charges near to each other
and the entropic benefit of letting the charges stray from their protein host.
The reason for bringing up these protein examples is to highlight the way in
which equilibrium ideas are often a starting point for the analysis of important
biological problems.

5.2.3 Cells in “Equilibrium”

We have seen that there are many circumstances in which the molecules and
macromolecular assemblies of the cell can be viewed from an equilibrium per-
spective. At the larger scales representative of cells themselves, there are many
cases in which we can consider some particular part of the cell (such as the
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Figure 5.9: Titration curve showing the charge state of the amino acid glycine as
a function of the pH of the solution. Low pH corresponds to a high concentration
of HT ligands resulting in saturation of the glycines. (Adapted from K. Dill and
S. Bromberg, Molecular Driving Forces, New York, Garland Press, 2003.)

membrane) as being in local mechanical or chemical equilibrium. One example
of this kind of thinking is that of the equilibrium shapes of red blood cells. As
shown in fig. 5.10, the shapes of such cells have been precisely characterized
experimentally and can similarly be calculated.

As will be introduced in the remainder of the chapter and driven home as a
key part of the rest of the book, in problems of free energy minimization there
are two key steps: first, the selection of a class of competitors and second, the
determination of the free energy associated with each such competitor. In the
setting of red blood cells of interest here, the class of competitors is the set of
all shapes satisfying two geometric constraints, namely, that the overall area of
the red blood cell surface be the same from one shape to the next and also,
that the volume enclosed by that area be the same. Fig. 5.10 shows in the
right panel the shapes that have the lowest free energy for different choices of
a control parameter which is the difference in area between the two leaflets of
the membrane.

5.2.4 Mechanical Equilibrium From a Minimization Per-
spective

As argued above, there are a variety of different biologically interesting examples
which, when examined in physical terms, amount to problems in minimization.
One class of problems which can be thought of in this way center on mechanical
equilibrium.

The Mechanical Equilibrium State Is Obtained by Minimizing the
Potential Energy



260CHAPTER 5. MECHANICAL AND CHEMICAL EQUILIBRIUM IN THE LIVING CELL

Figure 5.10: Red blood cell shapes. The left column shows shapes of red blood
cells as observed experimentally and the right column shows calculations of the
shapes. (Adapted from G. Lim et al., Proc. Nat. Acad. Sci., 99:16766, 2002.)
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One way to think about the mechanics of bodies at rest is Newton’s first law
of motion, namely, that if a body is in equilibrium, then there are no unbal-
anced forces on that body. Stated mathematically, the condition of translational

equilibrium is
> F; =0, (5.4)

where F; is the i*? force acting on the body. The use of the bold face letter
in writing the forces F; reflects the fact that the force is a vector quantity.
For example, if we consider the hook shown in fig. 5.11, there is a force acting
on that hook due to a spring and a second force due to the hanging weight
and these forces balance each other. Their force vectors have the same length
and point in opposite directions. However, it is not always most convenient or
enlightening to consider equilibrium problems in the vectorial language of forces.
The alternative that will often be favored throughout the remainder of the book
is the equivalent formulation of the problem of mechanical equilibrium as one
of minimization. The principle of minimum potential energy asserts that the
mechanical state of equilibrium is the one (out of all of the possible alternatives)
that has the lowest potential energy.

To write the equilibrium of the system shown in fig. 5.11 in terms of energy,
we can write the potential energy as a sum of two terms, one of which captures
the energy of the stretched spring and the other of which describes the “loading
device”, namely, the lowering of the weight. Given these concepts, the potential
energy can be written as

U(z) = 1k(sc —20)? — mg(z — x0) , (5.5)
—_———

2
m PE of weight

where z¢ is the length of the spring when it is unstretched and will also serve
as our zero point for the potential energy of the hanging weight. We use the
label “PE” for potential energy. These two terms are shown in fig. 5.11(B) and
we see that their sum has a minimum (i.e. the equilibrium point). To actually
find the point x., at which the minimum occurs, we note that at z.4, the slope
of the function U(x) is zero - this condition corresponds to the mathematical
statement dU/dx = 0 as will be shown in more detail below. Minimization of
the potential energy in this case corresponds physically to finding that choice of
the displacement z., that leads to the lowest energy and is determined by the
condition

dU
dx
This result can be rewritten as

= k(Xeqg — o) — mg = 0. (5.6)

Teq = T0 + %, (5.7)

which tells us the size of the excursion made by the spring about its equilibrium
postion. The result jibes with our intuition in the sense that larger weights (mg
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Figure 5.11: Mechanical equilibrium as potential energy minimization. (A)
Schematic showing how the mechanical equilibrium of a system can be thought
of from the point of view of minimization of the potential energy. (B) Potential
energy of spring and weight and their sum as a function of the displacement.

big) leads to larger excursions and a stiffer spring (k large) results in a smaller
excursion.

The idea of the potential energy of the loading device introduced above is
pervasive and will be used repeatedly in the book. As shown in fig. 5.12 we
will think about the energy associated with deforming cantilevers such as in the
atomic-force microscope, polymers and membranes. In all of these cases, when
we write down the total energy (or free energy) of the system, we will have to
account for the way in which the deformation of our system of interest (i.e. the
polymer or membrane) leads to an attendant change in the energy of the loading
device, as depicted here by the lowering of a weight.

As noted as early as fig. 1.12 (pg. 45) in chap. 1, “springs” show up in a
surprising variety of circumstances. One example that we are particularly fond
of is the use of laser light to make a spring in the form of optical tweezers
(introduced in fig. 4.11 on pg. 198) such as shown in fig. 5.13. In particular, we
consider the case of a bead in an optical trap which is subject to a load due
to a piece of tethered DNA. We ask what displacement the bead suffers in the
trap as a result of the applied load? We can write down the potential energy
function in the form

Ulz) = %ktmpﬁ ~ Fa, (5.8)
where we have assumed that the optical trap can be treated as a spring with
stiffness kirqp and that the applied force is characterized by a magnitude F'.
If we now seek the energy minimizing choice of x, obtained through solving
dU/dxz = 0, we find that the equilibrium displacement in this case is given by

F

ktrap

(5.9)

Teq

The characteristic scales for an experiment like this are forces in the range
of tens of piconewtons. This kind of experiment permits the measurement of
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Figure 5.12: Mechanics of loading devices. (A) mass-spring system, (B) beam
under the action of an applied force, (C) polymer chain subjected to a load, (D)
membrane subjected to an applied tension.
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Figure 5.13: Representation of an optical trap as a mass-spring system. (A)
Schematic showing how force removes the bead from the center of the trap. (B)
Replacement of the optical problem with a corresponding effective spring. (C)
Energy of the bead in the trap as a function of its position in the trap. Note
that the energy is only quadratic for sufficiently small displacements.

laser beam

a variety of interesting single-molecule properties such as the force-extension
characteristics of macromolecules (DNA, RNA, proteins, etc..) and the force-
velocity characteristics of molecular motors. Several examples of this kind of
experiment were already introduced in fig. 4.12 (pg. 198). An example of force-
extension data for DNA obtained by using single-molecule methods (in this case
a magnetic tweezers rather than an optical tweezers) is shown in fig. 5.14. This
experiment allows for applying a range of different forces to DNA and examining
the corresponding elongation of the DNA molecule. At low forces, the extension
increases linearly with force while at high forces the extension saturates since the
molecule has been stretched to its full contour length. As will be seen in chap. 8,
these experiments can be compared directly with our theoretical understanding
of DNA mechanics.

These examples on mechanical equilibrium provide an introduction to the
key precept of the present chapter which is the idea that equilibrium structures
are minimizers of potential energy (zero temperature) or free energy (finite tem-
perature). To perform such a minimization, we need to write the energy or free
energy in terms of some set of variables that characterize the geometric state
(i.e. the structure) of the system. Once we have written the energy or free
energy in terms of the parameters characterizing the system, then our task is
reduced to the mathematics of determining which out of all of the various struc-
tural competitors leads to the lowest value of the potential energy or free energy.
For the simple mass-spring systems introduced in this section, the minimization
required the evaluation of a derivative. However, more generally we must ad-
dress the mathematical question: given a function, out of all of the possible
competitors, how do we find the one that minimizes the value of that function?
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Figure 5.14: Force-extension curve for double-stranded DNA. Data for force
vs extension for double stranded DNA from A-phage (with the DNA molecule
here resulting from linking two such molecules for a total length of 97 kbp)
illustrating the distinction between the freely-jointed chain model (dotted line)
and the worm-like chain model (solid line). The freely-jointed chain model will
be discussed in detail in chap. 8 and the worm-like chain model will be discussed
in chap. 10. (Adapted from C. Bustamante et al., Science, 265:1599, 1994.)

5.3 The Mathematics of Superlatives

The search for extrema is a mathematical embodiment of the human instinct for
superlatives. In casual conversation, rarely an hour goes by without injecting
words such as “best” and “worst” into our speech. Our technologies similarly
reflect the pressure to make things faster, smaller, lighter, safer; etc. The devel-
opment of modern mathematics included tools for finding functions that could
be characterized by superlatives such as biggest and smallest. The present sec-
tion is a mathematical excursion which aims to show how to replace the verbal
and intuitive case-by-case discriminations with precise mathematical tools that
permit us to search over what amounts to an infinite set of competitors. The
reason such a mathematical interlude is necessary is that the study of equilib-
rium demands that we minimize functions such as the potential energy or the
free energy and as a result, we need the mathematics that permits us to effect
such minimizations.

5.3.1 The Mathematization of Judgement: Functions and
Functionals
The translation from everyday language, where superlatives are characterized

by words such as “best”, “fastest”, etc. to the mathematical form of these same
concepts requires the introduction of a scheme for attaching numbers to the
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(A

Figure 5.15: Two different representations of the geometry of a beam subjected
to a load on its end. (A) continuous representation of the beam geometry, (B)
discretization of the geometry of the beam.

degree of “bestness”.

As a concrete example in the mathematization of superlatives, we consider
the bending of a beam as shown in fig. 5.15. This particular example will
arise repeatedly througout the remainder of the book in many disguises. For
example, when we think about the geometry of deformed DNA, the buckling of
microtubules under force and the use of cantilevers as tools for applying force
to macromolecules, in each case we will write the energy of the system in terms
of the geometry of these bent beams and will seek the configuration that leads
to the lowest energy cost. The question we are interested in answering is: what
choice of the displacement function u(z) leads to the lowest value of the potential
energy of the beam and the loading device? Note that in this case, the potential
energy depends upon the specification of an entire function, Ey.[u(z)], where
we have introduced the square bracket notation |[...] to call attention to the fact
that the energy depends upon a function rather than a finite set of parameters.
An alternative that sometimes comes in handy is to discretize the geometry of
the beam as shown in fig. 5.15(B). In this case, we treat the beam as a series of
discrete masses where now there is a set (ug,usg, - - uy) of displacements which
determine the potential energy. In this case, the energy is a function of the
unknowns (u1, ug, - -uy) and can be written as Epo(u1, ug, - un).
Functionals Deliver a Number For Every Function They Are Given

When we write the energy in the form Fy,;(ug,ug, - - - un), we are on familiar
mathematical turf. A discrete set of parameters ui, us etc. suffice to describe
the geometry of the system and the energy is a function of these geometric
parameters. In writing the energy in the form FEj.:[u(z)] we have implicitly
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introduced a new mathematical idea (a functional), since in this case it takes
a function u(x) to characterize the geometry of the deformed beam and the
energy depends upon the function. An energy functional assigns an energy to
each configuration, where the configuration itself is characterized by an entire
function.

To be concrete in our thinking, fig. 5.16 shows several examples where the
free energy depends upon the disposition of the system as characterized by a
function. Fig. 5.16(A) shows several different structures for a deformed beam.
Each deformed configuration of the beam is described by a different function
u(z). Further, each such u(z) corresponds to a different energy. The figure
shows the energy minimizing configuration as well as a particularly bad guess
(i.e. high energy) for the deformed geometry. The energy meter icon aims to
show how the energy of the latter configuration is higher than that of the energy
minimizing structure. A more subtle example to be taken up again in chap. 9
concerns the distribution of ions around a protein. In this case, the unknown
function is p(r), the density of ions as a function of position in space. Here too,
it is possible to write down a free energy functional that delivers a free energy
for each and every guess we might make for the density of ions. Fig. 5.16(B)
shows both the free energy minimizing distribution of ions as well as a less than
optimal distribution of ions and the energy meter reports their respective overall
free energies.

The overarching theme of this section is the idea of a cost function or func-
tional. The key point is that we want to compute some quantity that we are
interested in minimizing. In many cases, this “cost function” is the energy or
free energy. If that cost function depends upon the disposition of a finite set of
parameters such as the (u1,us, - -uy) that characterized our beam represented
discretely in fig. 5.15, then indeed, the cost function is a function. On the other
hand, if it takes an entire function such as u(x) to characterize the state of the
beam, then we have a cost functional since we have to specify a function in
order to determine the energy or free energy.

5.3.2 The Calculus of Superlatives

The previous discussion showed the way in which we can cast our ideas about the
extent to which some quality or quantity of interest is best or worst, biggest or
smallest and so on. This led us naturally to the idea of functions and functionals.
Now that we are able to say how good or bad, big or small a particular quantity
is as a function of some control parameters (or control function), we pose the
question of how to discriminate amongst all the competitors to find the winner.
We begin by discussing the implementation of these ideas in the context of
ordinary calculus. The more general question of finding the extreme values of
functionals is treated in the appendix at the end of the chapter.

Finding the Maximum and Minimum Values of a Function Requires
That We Find Where the Slope of the Function Equals Zero

As our first foray into the question of how to cast our search for superlatives
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Figure 5.16: Example of two functionals. (A) Energy as a function of the shape,
u(z) of a beam. Different shapes have different strain energies. (B) Free energy
as a function of the distribution of ions in solution in the vicinity of a protein.
The density of ions is characterized by the function p(r).
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in mathematical terms, we recall a few ideas from the ordinary calculus of
maxima and minima. We consider a function f(uy,us,---un) = f({u;}), which
depends upon the N variables {u;}, where we have introduced the notation {}
to indicate a set of objects. We imagine the variables {u;} are allowed to range
over some set of values, and we ask the question: what choice of the values {u;}
renders the function f({w;}) maximum or minimum? To be concrete, we remind
the reader of the discussion surrounding fig. 5.11. In this case, our minimization
problem involves one parameter, the displacement zx.

To find the maxima and minima of functions, we find those values of the
function for which the slope is zero as embodied in

of
8ui a

That is, our problem amounts to solving the N-equations in N unknowns given
by eqn. 5.10. The notation 0f/0u; refers to the partial derivative and is ex-
plained in “The Math Behind the Models” box below. We have said nothing
about how we might go about solving such equations, but the prescription for
obtaining them is now clear. Though we will not have the space to go into the
subtlety of solving such equations for a generic nonlinear problem, we refer the
reader to the entertaining cautionary tales of Acton (1990).

0,(i=1,2,--- N). (5.10)

e The Math Behind the Models: the Partial Derivative. Through-
out the book, it will be of interest to find out how functions vary as
we change a variable. Often, however, we will be interested in functions
that depend upon more than one variable simultaneously. For example,
in minimization problems, often the energy (or free energy) will depend
upon more than one parameter. For example, the free energy can de-
pend both upon the volume of the system and the number of particles.
Another important example is functions f(z,t) that depend upon both
position (z) and time (¢) simultaneously. For example, we might like to
know the deflection of a beam characterized by the function u(x,t) which
tells us how much deflection there is a distance = along the beam at a
time ¢t. Alternatively, we might interest ourselves in the concentration of
some molecule ¢(r, t) at every position in space. In this case, the function
depends upon four variables since the vector r is really (z,y, z).

In these cases, the notion of a derivative is more subtle because we have
to say with respect to what variable. The mathematical tool that arises in
this case is the partial derivative. The idea is explained in fig. 5.17. The
derivative of ordinary calculus tells how a function changes as a result of a
small excursion. The partial derivative generalizes that idea by telling us
how a function changes when we make an excursion in one of the variables
in the function while leaving the others constant. An intuitive example
from everyday experience is illustrated by walking off of a mountain pass.
The shape of a mountain pass is like a saddle. In particular, walking in
one direction leads us down whereas walking in a perpendicular direction
leads us up the peaks that bound that mountain pass. In these two cases,
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Figure 5.17: Illustration of the concept of a partial derivative. The plot shows
the function f(u1,u2) which depends upon the variables uy and us. If ug is
held fixed, the surface is reduced to a curve and the partial derivative is nothing
more than the ordinary derivative familiar from calculus, but on this particular
curve.

the partial derivatives actually have different signs since in one case the
curve is sloping downward and in the other, it is sloping upward.

If we think of the height of the local topography of a mountain as f(u1, us),
where u; and us correspond to two perpendicular axes, then the partial
derivative tells us how the function changes when we walk along these
two directions. These ideas are represented mathematically through the

definitions
ouq Aui;—0 Auy
and
M ~ lim flur,ue + Aug) — f(ug, Uz)' (5.12)
s Auz—0 Auy

For the sake of concreteness in finding minima, we consider the simple ex-
ample of quadratic functions like those shown in fig. 5.18. The two-dimensional
example has the functional form

1
f(ul,u2) = 5(1411’&% + AQQU% =+ 2A12u1u2). (513)

If we now implement the injunction of eqn. 5.10 (i.e. f/0u; =0 and 9f /Ous =
0), we find

Apug + Ajgug
Asiug + Agous = 0, (514)
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Figure 5.18: Quadratic energy functions. (A) Case of f(u) = 1Au? and (B)
case of f(u1,uz) = (Ar1ud + Aggu3 + 2A10u1usz).

a pair of coupled, linear equations for the minimizing values of u; and wus.
Assuming the equations have a unique solution (which is true if the determinant
of the matrix A is non-zero), u; = us = 0 is clearly such a solution, indicating
that the function f has a minimum (or maximum) at (0, 0).

5.4 Configurational Energy

In Mechanical Problems, Potential Energy Determines the Equilib-
rium Structure

Our brief foray into the mathematical machinery used to find minimizers
leaves us poised now to ask physically motivated questions of biological interest.
In particular, we return to the way in which biological structures can be thought
of either as minimizers of the potential energy (this in cases where thermal effects
can be ignored) or of the free energy. In this section, we attack the strictly
mechanical question of what determines the potential energy of structures and,
how the potential energy minimizing structure may be selected from the class
of all structural competitors. These ideas will be used in subsequent chapters
in thinking about deformations of DNA, cytoskeletal filaments and membranes.

In order to apply the mathematics of superlatives, we must first be able
to pass energetic judgement on the relative goodness or badness of a given
structure. In particular, to pass this judgement we require an energy function
(or functional) which delivers an energy for each and every value of the structural
parameters for the structure of interest. The nature of such energy functions
forms the backdrop for much of the history of physics.

One class of energy functions with deep significance are those which posit
a quadratic dependence of the energy on the departure from equilibrium. The
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Figure 5.19: Potential energy as a function of the coordinate x. A quadratic rep-
resentation of that energy landscape is shown in the vicinity of two equilibrium
points.

motivation for this class of energy function is the idea that, regardless of the
detailed features of a given energy landscape, near equilibria any such function
can be treated as a quadratic function of the variables that describe the ex-
cursion from equilibrium. Concretely, if we consider the one-dimensional case
where the potential energy is of the form U(xz) as shown in fig. 5.19 and there
is a point of equilibrium at z.q, then we may expand the function U(z) in a
Taylor series, keeping terms only up to quadratic order. The idea of the Taylor
series is pervasive and is explained in the “Math Behind the Models” box after
this section. The Taylor series for our potential is of the form

au 1d%U 9
U(x) = U(xeq + 0x) = U(xeq) + %|eq5x + §W|6q6x , (5.15)
where we have introduced the notation dz to characterize the excursion about
the equilibrium point. In this one-dimensional case, dz can be thought of as the
distance traveled away from the equilibrium point z.,. This situation is shown
in fig. 5.19. Equilibrium demands that %|eq = 0 since at the equilibrium point

there are no unbalanced forces and hence we are left with

52 LU, o s
U(xeqg + 02) = U(xeq) + §Wleq x°, (5.16)
which is of the form U(z) = %kxz, where the ‘stiffness’ of the ‘spring’ holding
the system at equilibrium is given by k¥ = d?U/dz?. This same idea can be
generalized to higher dimensions in which excursions are permissible in multi-
ple directions (for example, on a mountain top, we can choose to walk off in
two orthogonal directions and the energy cost of doing so is quadratic in the
excursion variables).

One of the most powerful incarnations of the idea developed above is pro-
vided by the theory of elasticity which teaches us how to write down the energy

of a continuous body, such as a rod or a membrane, as a quadratic function of
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the strain which measures the amount of deformation. We take up the elastic
energy of deformation (and Hooke’s law) in the next section.

e The Math Behind the Models: The Beauty of the Taylor Ex-
pansion A very important tool invoked in the mathematical analysis of
physical models is the use of the so-called Taylor expansion. Series ex-
pansions of this kind will be one of our primary mathematical tools in the
remainder of the book. The idea is very simple and amounts to replacing a
function f(z) in some neighborhood with a simple polynomial. As will be
seen repeatedly throughout the book, the virtue of these approximations
is that it allows us often to replace intractable nonlinear expressions with
simple algebraic surrogates which we can handle analytically and give an
intuitive sense of the mathematics.

The idea of the Taylor expansion is embodied in the simple formula
f(x) ~ao+ a1z + aga® + ... (5.17)

The symbol = refers to the fact that in the neighborhood of the point z,
the left and right sides of this equation are approzimately equal. Most of
the time, we will only keep terms up to second order and as a result, the
Taylor series algorithm reduces to the question: what three coefficients
ap, a1 and ap should we use to best approximate the function f(z)?

For concreteness, let’s consider the case in which we are interested in the
behavior of the function f(x) near = 0. If we set 2 = 0 in both sides of
eqn. 5.17, we see that ag = f(0). But we already know the function f(x)
so all we have to do is find its value at « = 0 to obtain the first coefficient.
Next, let’s take the derivative of both sides of eqn. 5.17 with respect to z.
We are left with the equation

f(z) ~a; +2ax + ... (5.18)

Once again, if we set = 0, we are left with a; = f/(0). We can continue
to play the same game, this time evaluating the second derivative, with
the result

f'(x) =~ 2a2 + ..., (5.19)

which leads to az = f”(0)/2. This same basic analysis can be carried on
indefinitely if one is interested in higher order terms. Most of the time we
will be content with the expression

£(x) ~ FO) + £ O)x + 31 (0)27. (5.20)

The conclusion of this little analysis is that if we want to find a simple
quadratic surrogate for our function of interest, all we need to know is
the value of the function and its first two derivatives at the point around
which we are expanding. An example of this kind of analysis for the case
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Figure 5.20: Comparison of the function cos x and its Taylor expansion. The
curves are labeled by the order of the highest term kept in the Taylor series.
For example, n = 2 means that the series goes to quadratic order, etc. The
cosine function we are approximating is shown in bold for comparison to the
approximate expressions.

of cos = is shown in fig. 5.20. In particular, using the rules given above,
the Taylor series for this function is given by

Z‘Q JJ4 1‘6 378 3710

coszr 1 o1 + T + 8 100 4+ (5.21)
Fig. 5.20 compares the function cos x to various approximations based
upon the Taylor series. We see that as more terms are included, the
approximation is good for a wider range of values of x. Of course, there
are mathematical subtleties that arise when considering a generic function,
such as the question of convergence of the Taylor series. For example the
function 1/(1 — ) has the Taylor series, 1 + x + 2% + 2% + - -+, which is
finite only for values of = such that —1 <z < 1.

5.4.1 Hooke’s Law: Actin to Lipids

There Is a Linear Relation Between Force and Extension of a Beam

To see how these ideas about small departures from equilibrium can be
applied to continuous bodies of biological significance such as DNA, cytoskeletal
filaments and membranes, we begin by examining the elasticity of a stretched
rod. This subject will be taken up in detail in chap. 10 and our aim here is to
present the conceptual underpinnings of the ideas of elasticity theory. Consider
a beam of undeformed length L which is stretched by an amount AL as shown
in fig. 5.21. The geometric state of deformed objects is most naturally captured
in terms of a quantity known as the strain and defined in the current setting as
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AL
=5
The central idea captured by the notion of strain is that adjacent points of the
material suffer different displacements. In our current example, the displace-
ment of a given point depends upon how far it is from the origin. The result
of such relative displacements is that the bonds in the material are stretched as
depicted schematically in fig. 5.21. Though our thought experiment considers
the case of extension, one can just as easily consider the case of compression in
which case AL < 0. Note that for simplicity we ignore the small displacements
perpendicular to the direction of stretch known as the Poisson effect.

To garner an idea of the mechanical interpretation of these deformations,
fig. 5.21 suggests that we can think of the overall macroscopic deformation as
imposing the stretching of a huge set of microscopic springs which correspond to
the bonds between the atoms making up that beam. We recall that the relation
between force and stretch for a spring is given by

F = —kAa, (5.23)

- (5.22)

where k is the spring constant, Aa is the extension of the spring and F' is the
force it engenders. Macroscopically, this same idea is written as

F AL

Vi E 7 (5.24)
where F' is the applied force, A is the cross sectional area of the beam and F is a
material property known as the Young modulus which reflects the stiffness of the
beam. Note that the Young modulus has units of force/area or energy/volume,
since the strain is dimensionless. The quantity F'/A is known as the stress and
has dimensions of force per unit area.

For the simple model of a beam composed of many microscopic springs shown
in fig. 5.21, where two nearby springs are separated by distance ag, eqn. 5.24 can
be derived from eqn. 5.23. In particular, if a force F' is applied to the beam it is
balanced by all the springs in the cross-section of the beam which each stretch
by the same amount. Springs in “parallel” (like resistors) share the load. Since
the number of such springs is A/a2, where a? is area taken up by an individual
Az
of the fact that n equivalent springs in parallel will each suffer a displacement
(F/k)/n. Since all the springs that make up the beam have the same extension,
the net extension of the beam will be AL = (L/ag)Aa, where L/ag is the
number of springs along the length of the beam, each contributing amount Aa
to AL. If we substitute for Aa in the last equation the expression derived in the
previous one, we arrive at eqn. 5.24, with E = k/ag. In this simple model of an
elastic solid, the Young modulus is the ratio of the spring constant associated
with a bond between two atoms, divided by the typical distance between them.
The Energy to Deform an Elastic Material Is a Quadratic Function
of the Strain

spring, each spring will be extended by Aa = This result is a reflection
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Figure 5.21: Illustration of the interpretation of beam stretching in terms of
deformation of microscopic springs. The continuum description of the beam as
a deformable solid can be interpreted in terms of the stretching of the individual
atomic bonds.

As yet, we have presented Hooke’s law as a statement about the forces that
result from deforming elastic materials. However, in many circumstances it
is more useful to characterize the elastic properties of a deformable material
through reference to its energy. If we refer back to simple ideas about springs,
the elastic energy stored in a spring by virtue of displacing it a distance Aa
from its equilibrium position is given by

1
Estrain = ik(Aa)27 (525)

where once again, k is the spring constant. The more general statement that
is applicable to an elastic material that has suffered an extensional strain like
that shown in fig. 5.21 can be obtained by a divide and conquer strategy in
which the material is divided up into a bunch of little volume elements. In each
such volume element, we compute the strain energy density and multiply by the
volume of that element to obtain the energy for that little chunk of material. By
summing (in fact, integrating) over all of the material elements in the material,
we find the total strain energy as

EA (Y AL
Etrain = —/ (=)%dz, (5.26)

where A is the cross-sectional area of the beam. This equation can be derived
for the simple model of a beam shown in fig.5.21, in the same way eqn. 5.24 was
derived above, by adding up the elastic energy of all the microscopic springs
that make up the beam.

If we consider the more general case in which the relative stretch is a function
of position along the axis of the beam, the energy associated with deformation

is given by
EA [* d
Estrain: 7/ ( U(I))de (527)
0

2 dxr

The key point of all of this is the existence of an energy function that penalizes
relative changes in length of adjacent material points in a body.
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Figure 5.22: Deformation of macromolecular assemblies and the corresponding
elastic energy cost associated with these deformations. (A) Schematic of F-actin
stretching in response to a force applied along the filament axis. The energy
curve shows a quadratic cost to either elongate or shrink the filament relative to
its equilibrium length. (B) Schematic of deformation in which the thickness of
the lipid bilayer is changed relative to its equilibrium value. The energy curve
shows the elastic energy cost to change the thickness of a lipid bilayer from its
equilibrium thickness.

In the remainder of the book, we will appeal to elastic arguments like those
described above. The virtue of these elastic arguments is that they will permit
us to probe the energy cost of processes such as DNA packing (in nucleosomes
and viruses), the buckling of microtubules at high force and the deformation of
lipid bilayers in the neighborhood of ion channels, to name but a few examples.
Several examples are illustrated in fig. 5.22 where we see that analysis of ele-
ments of the cytoskeleton will be couched in the language of elasticity theory.
In addition, the figure also foreshadows our examination of lipid bilayer mem-
branes in chap. 11. In both cases, the basic idea is the same, namely, that there
is a quadratic energy cost associated with small excursions of the system about
its equilibrium configuration.

So far, we have argued that in many instances it is convenient to repre-
sent mechanical equilibrium as the condition of minimum potential energy. Of
course, to carry out such a minimization, we must first have a way of assign-
ing potential energy to different configurations. We have seen that for systems
near equilibrium the energy cost can be written as a quadratic function of the
excursions about that equilibrium. These quadratic energies emerge both when
characterizing the elastic response of materials treated as a continuous medium
and when carrying out an atom-by-atom reckoning of the energy of configu-
ration. However, there is often more to the delicate balance that determines
structures than their potential energy alone. Thermal forces also make their
presence known and we take up the apparatus to handle this part of the free
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energy budget in the remainder of the chapter.

5.5 Structures as Free Energy Minimizers

In the previous section, we have seen how mechanics can provide insights into
the equilibrium configurations of systems at all different scales. However, our
arguments were incomplete because we neglected the role of thermal fluctuations
in dictating equilibria. The aim of the present section is to explore the extension
of our discussion of equilibrium to supplement energy minimization with the
often conflicting demand of maximizing the entropy.

Though we will derive the result in its full glory later in the chapter, for the
moment we examine the notion of free energy qualitatively. The concept of the
free energy is embodied in the equation

free energy = energy — temperature X entropy, (5.28)

where the entropy (as will be shown below) is a measure of the number of
different ways of rearranging the system. The fundamental argument of the
remainder of the chapter and one of the foundational tools of the rest of the
book is the idea that the equilibrium state of a system is that choice out of all
states available to the system that minimizes the free energy.

The Entropy Is a Measure of the Microscopic Degeneracy of a Macro-
scopic State

From a mathematical perspective, the ideas introduced above about thermal
forces are codified in the notion of the entropy. Though we are coached in
thinking about energy from our earliest exposures to science, in fact, there is
a much more intuitive state variable that provides deep insight into the factors
determining the equilibrium states of complex systems such as a solution with
a number of interacting species. In particular, the entropy of a closed system
provides a measure of the number of different microscopic ways that we can
realize a given observed macroscopic state, and can be written as

S =kpIn W, (5.29)

where W is the number of microstates compatible with the macrostate of interest
and kp is the Boltzmann constant. In light of this definition, we see that when
minimizing the free energy, the energetic terms tend to favor lower energy while
the entropy contribution favors the macrostates that can be realized in the most
ways.

As a concrete example relevant to our attempt to quantitatively unravel gene
expression (see chaps. 6 and 19), we consider the role of entropy in the context of
DNA-binding proteins. In particular, the entropy in this case reveals the number
of distinct ways that we can arrange the bound proteins (nonspecifically) along
the entire DNA molecule, as shown in fig. 5.23. We imagine that our DNA
molecule has a total of NV binding sites, N, of which are occupied by the protein
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Figure 5.23: Possible arrangements of proteins on a DNA molecule. (A) The
cartoon schematizes a DNA molecule on which are a series of binding sites which
are shaded dark gray. The DNA binding proteins can occupy any of these sites.
(B) The lattice model represents a further idealization in which we imagine the
DNA molecule as a series of boxes into which we can put the DNA-binding
proteins.

of interest. Further, we assume that the binding energies when the proteins
are bound nonspecifically are the same regardless of which nonspecific sites are
occupied (though in reality, even the energetics of nonspecific binding varies
from site to site). As stated above, the entropy is a measure of the number of
distinct ways of realizing a given macroscopic situation, in this case characterized
by the number of possible binding sites and the number of binding proteins and
is given in most general terms as

S = kg In W(N,; N), (5.30)

where S is the entropy and W (Np; N) is the multiplicity factor which reflects
the number of ways of rearranging the IV, proteins on the N binding sites. This
definition of the entropy results from key consistency conditions such that the
entropy of a composite system should be additive (although the total number
of microstates for such a composite system is multiplicative).

For our example of DNA-binding proteins, we note that we have N choices
as to where we lay down the first of the N, proteins. Once this protein has been
put down, we only have N —1 remaining sites where we might elect to put down
the second protein. The third protein may now be put down on the DNA in
any one of the remaining N — 2 binding sites. Hence, the total number of ways
of laying down our N, proteins is N x (N —1) x (N —2)--- x (N — N, +1).
However, we have ignored the fact that these are not distinct configurations
since we have no way to distinguish the case in which the first protein landed
on site 10 and the second protein on site 15 and vice versa. As a result, we have
overcounted and must divide by the number of rearrangements of those N,
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proteins on the occupied sites, which, following the same argument as above, is
N, x (N, —1)---x1. This product of all integers from one to N, is N,-factorial,
which is denoted N,!. We are now in a position to write the total number of
microscopic arrangements as

Nx(N-1)x(N—=2)---x(N—=N,+1)
Ny, x (N, —1)---x1

W(Ny; N) = . (5.31)
If we now multiply top and bottom of the equation by (N — N,)!, it results in
the more pleasingly symmetric form
N!
W(Ny;N)= ———. 5.32

For a DNA-binding protein such as Lac repressor, there are roughly 10 copies
of this protein bound on the roughly 5 x 10 DNA-binding sites within the E.
coli genome. The formula above then tells us that there are roughly 3 x 10%°
distinct arrangements of the Lac repressor bound to the F. coli genome.

Now that the counting has been effected, we are prepared to invoke Boltz-
mann’s equation for the entropy given in eqn. 5.30. To compute this entropy
we need to evaluate

N!
NN — NI
One of the key approximations needed in cases like this is known as the Stirling
approximation which in its simplest form can be written as

S =kg In (5.33)

In N~ N1In N — N. (5.34)

The origins of this approximation are taken up in “The Math Behind the Mod-
els” below and in the problems at the end of the chapter. In the context of our
DNA-protein problem, if we invoke the Stirling approximation we find

S=—kpN[clnc+ (1—c¢)In (1-c¢)], (5.35)

where we have introduced the more convenient concentration variable, ¢ =
N,/N. The entropy as a function of concentration is shown in fig. 5.24. The
key insight to emerge from this expression is the way in which the number of
different ways of arranging the two species of interest depends upon their rel-
ative numbers. We see that the entropy is maximal when half of the sites are
occupied - this situation reflects the fact that this concentration permits the
most distinct arrangements.

e The Math Behind the Models: The Stirling Approximation. The
Stirling approximation arises as a result of the need to evaluate expressions
of the form In N!. The simplest heuristic argument to derive the result is
based on the observation that

In N!=In [N(N — 1)(N —2)---1]. (5.36)
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Figure 5.24: Entropy as a function of concentration of DNA binding proteins.
The schematics show a DNA molecule with binding sites labeled in gray and
with DNA binding proteins as black ovals on the binding sites. In going from
left to right, the fraction of sites occupied by proteins increases.

On the other hand, by virtue of the property of logarithms that In AB =
In A+ In B, we can rewrite eqn. 5.36 as

N
In NI = Z In n. (5.37)
n=1
We can now replace this sum with the approximate integral
N N
Zlnnz/ In z dz = Nln N — N. (5.38)
n=1 1

In the problems at the end of the chapter, this approximation is treated
more carefully.

5.5.1 Entropy and Hydrophobicity

To gain a little more practice in the use of the entropy idea we consider a
toy model of one of the most important molecular driving forces in biological
systems, namely, the hydrophobic effect. The qualitative idea is that when
a hydrophobic molecule is placed in water it deprives the water molecules in
its vicinity from participating in some of the hydrogen bonds that they would
have in the hydrophobic molecule’s absence. An example of the highly idealized
hydrogen bonding network in water is illustrated in fig. 5.25.
Hydrophobicity Results From Depriving Water Molecules of Some of
Their Configurational Entropy
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Figure 5.25: The hydrogen bonding network in water. Water molecules par-
ticipate in hydrogen bonding (illustrated by the dashed lines joining adjacent
water molecules). A given water molecule can be idealized as having neighbors
arranged in a tetrahedral structure.

The objective of the present section is to make an estimate of the magnitude
of these hydrophobic effects. The basic thrust of the argument will be to describe
how nonpolar molecules in solution deprive water molecules of the capacity to
engage in hydrogen bonding and thereby steal away part of their orientational
entropy. This simple model borrows from a model originally formulated by
Pauling (1935) to capture the entropy of ice. With this mechanism in hand, we
then carry out numerical estimates of the size of this effect.

The structural idea suggested by fig. 5.25 is that the oxygen atoms of neigh-
boring water molecules form a tetrahedral network. As further suggested by
fig. 5.25, these water molecules form a dynamic network of hydrogen bonds,
where each oxygen, on average, makes two hydrogen bonds with the four water
molecules surrounding it. A useful conceptual framework for thinking about hy-
drophobicity is that when nonpolar molecules are placed in solution, the water
molecules that neighbor the nonpolar molecule of interest have a restricted set
of choices for effecting such hydrogen bonding. We can coarse grain the con-
tinuum of possible orientations available to a water molecule to the six distinct
orientations shown in fig. 5.26. As a result, it is possible to estimate the entropic
disadvantage associated with the presence of nonpolar molecules (see Dill and
Bromberg, 2002 for a clear description of this effect).

The six orientations that a water molecule can assume derive from the
six ways of choosing to point the hydrogen atoms associated with the water
molecule of interest towards the vertices of a tetrahedron. If one of the four
water molecules in its immediate vicinity is replaced by a nonpolar molecule
then the number of available orientations drops to three since one of the possi-
ble hydrogen bonding partners is now gone. For example, if we assume that the
neighboring water molecule in the direction of the lower right hand vertex of
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Figure 5.26: Orientations of water molecules in a tetrahedral network. Each
image shows a different arrangement of the water molecule that permits the
formation of hydrogen bonds with neighboring water molecules. The hydrogen
bonds are in the directions of the vertices that are not occupied by hydrogens in
the figure. (Adapted from K. Dill and S. Bromberg, Molecular Driving Forces,
New York, Garland Press, 2003.)

fig. 5.26 is removed, this means that hydrogen bonds can no longer be formed
with the oxygen on the water shown in the figure and the hydrogen atoms on
the missing water molecule. As a result, the three configurations in the bottom
of fig. 5.26 are now forbidden. This simple model predicts that the presence of
the nonpolar molecule deprives each neighboring water molecule of half of its
possible orientations as a participant in the hydrogen bonding network. The
entropy change of each such water molecule is given by

AShydrophobic = kB ln 3 - kB ln 6 = —kB ln 2. (539)
—— ——
constrained H,0 unconstrained H,O

Thus far we have determined the entropy loss per water molecule. To make our
estimate useful, we now need to estimate the number of water molecules that
are impacted by the presence of the nonpolar (i.e. hydrophobic) molecule of
interest.

We can obtain a quantitative description of the hydrophobic cost to place a
hydrophobic molecule in water as

AGhydrophobic(n) = nkBT ln 2, (540)

where n is the number of water molecules adjacent to the nonpolar molecule
of interest. Here we have accounted only for the entropic contribution to the
free energy cost, which is given by —T'AShydrophobic- One particularly useful
way of characterizing our result is to say that the presence of hydrophobic
molecules incurs some free energy cost per unit area (Ynydrophobic) and hence
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that the free energy cost to embed a given hydrophobic molecule in water is
obtained as AGhydrophobic = YA, where A is the effective area of the interface
between the hydrophobic molecule and the surrounding water. As said above,
a more convenient representation of this result is to assign a free energy per
unit area which can be obtained by determining the area per water molecule
that is contributed. Using the simple estimate that ten water molecules cover
an area of approximately 1 nm? and that In 2 ~ 0.7, we can see that the
interfacial free energy required to submerse a hydrophobic object in water is
roughly 7 kgT/ nm?. For a small molecule such as oxygen (O,) that has an
approximate surface area between 0.1 nm? and 0.2 nm?, the energetic cost
of putting this molecule in water costs roughly 1 kgT. As a result, oxygen
can be readily dissolved in water, even though it is nonpolar and cannot form
hydrogen bonds. However, larger hydrophobic molecules comparable in size to
a protein or even a sugar molecule would require significant free energy input
to be dissolved in water.

The hydrophobic effect is responsible for the everyday observation that oil
and water do not mix. The free energy cost resulting from this simple model
for putting an individual hydrocarbon molecule such as octane into a watery
environment is on the order of 15 kgT. Each addition of a new molecule of
octane to water costs the same amount of free energy additively. However, if
the octane molecules clump together, the total surface area of the clump may
be much less than the sums of their individual surface areas. In water at room
temperature where individual molecules can jiggle around rapidly it usually
takes no more than a few seconds for the molecules to sort themselves out such
that the interfacial surface is minimized.

Amino Acids Can Be Classified According to Their Hydrophobicity

The energies associated with the hydrophobic effect are extremely important
at both the molecular and cellular scale in dictating the formation of structures.
For example, consider a protein that contains a variety of amino acid side chains,
some of which are hydrophilic (able to form hydrogen bonds with water) and
others of which are hydrophobic. From the argument outlined above, it is clear
that there must be a free energy cost for the hydrophobic side chains to exist in
an aqueous environment. As a first approximation, the folding of proteins into
defined three-dimensional structures can be thought of as an application of the
principle of the separation of oil and water. The protein is made up of an elastic
backbone from which dangle a mixture of hydrophobic and hydrophilic amino
acid side chains. As described above, the entropic demands of the system will
tend to force the hydrophobic side chains to gather together in a sequestered
internal oil droplet at the heart of the protein. Hydrophilic amino acid side
chains will tend to remain on the protein surface where they can form hydrogen
bonds with water. This concept was illustrated in fig. 5.8 (pg. 258).

To make an accurate quantitative model describing the role of the hydropho-
bic effect in protein folding we would have to know the relative free energy cost
for water exposure for each of the 20 amino acids. However, as a useful sim-
plified strategy for building intuition, we will start off by simply dividing the
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amino acids into two broad groups, one that includes all hydrophobic residues
(H) and the other that includes all hydrophilic or polar residues (P). As we will
explore in more detail in chap. 8, this drastically oversimplified model provides
useful estimates for many aspects of structure.

As a result of the arguments given above, we can rank the various hydropho-
bic amino acids most simply through reference to the effective area that they
present to the surrounding water. Within this framework, the hydrophobic cost
of exposing such a residue is of the form

AGhydrophobic ~ Yhydrophobic Ahydrophobic . (541)

cost/area hydrophobic area

The detailed implementation of this strategy is left to the reader in the problems
at the end of the chapter.
When in Water, Hydrocarbon Tails on Lipids Have an Entropy Cost

These same ideas can also be used to give an approximate description of
the free energy associated with lipids when they are isolated in solution. Lipid
molecules are characterized by polar head groups that are attached to long,
fatty acid tails which are hydrophobic. The simple and useful idea in this case
is to consider each such tail as though it presents a cylinder of hydrophobic
material and to assign a free energy cost to isolated lipids given by the product
of the hydrophobic free energy cost per unit area computed above and the area
presented by the “cylinder” from the lipid tails. The free energy cost associated
with isolated lipids leads to the key driving force resulting in the formation of
lipid bilayers.

5.5.2 Gibbs and the Calculus of Equilibrium

We have already observed that the principle of minimum potential energy pre-
sides over questions of the mechanical equilibrium configurations of systems at
zero temperature. We now enter into a discussion of a principle that plays pre-
cisely the same role for systems in equilibrium at finite temperature. Once again,
we will see that the equilibrium edict can be couched in variational language
(i.e. as a minimization problem). In particular, our discussion will culminate
with the statement that out of all competing states of a system, the equilibrium
state minimizes the relevant free energy. However, before discussing free energy
minimization, we reflect on the even more fundamental embodiment of the sec-
ond law of thermodynamics, namely, that for a closed system in equilibrium the
entropy is a maximum.

Thermal and Chemical Equilibrium Are Obtained by Maximizing the
Entropy

The study of thermal and chemical equilibrium are presided over by the sec-
ond law of thermodynamics. In words, this law can be stated as the assertion
that the macroscopic equilibrium state of an isolated system is that state that
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Figure 5.27: Schematic representation of an isolated system with two subcom-
partments and a barrier between these two compartments which permits transfer
of (A) energy, (B) volume and (C) particles.

can occur in the largest number of microscopic ways (i.e. which maximizes the
entropy). Stated differently, when faced with the question of choosing from the
space of all macroscopic competitors, choose that one that has the most micro-
scopic representatives. This is the governing principle of all of thermodynamics
in the same sense as all of mechanics derives from Newton’s second law, F' = ma.

How the injunction of entropy maximization plays out in real but simple
circumstances is illustrated in an isolated system like that shown in fig. 5.27
which has an internal partition. Our use of the word “isolated” refers to the
fact that the contents of the container are entirely indifferent to anything and
everything that we do outside - hence, we are unable to communicate with
that system by doing work on it, by heating it or by applying any sorts of
fields such as magnetic or electric fields. The thought experiment of interest
here involves the idea of spontaneously removing the constraint implied by the
internal partition. For example, as shown in fig. 5.27(A), if we permit the flow
of energy between the two compartments, there will be a transfer of energy until
the entropy is maximized (which corresponds to equality of temperature). As
shown in fig. 5.27(B), if the brakes which hold the partition fixed are released,
this partition is free to slide until the overall entropy of the system has reached
a maximum. Depending upon which side has the greater pressure, the partition
will roll either to the left or the right until the pressures on the two sides are
equal. Finally, the case of most biological interest is that shown in fig. 5.27(C) in
which the internal partition is rendered permeable to the flow of particles. In this
case, the particles will flow across the partition until the entropy is maximized,
a state we will show later corresponds to equality of chemical potentials in the
two regions.

To show that the idea of entropy maximization leads to consequences that
are consistent with our physical intuition, we reason quantitatively about the
isolated system with a partition shown in fig. 5.27. We claimed that upon
removal of the constraints represented by the partition, there would be a redis-
tribution of energy (heat will flow), an adjustment in the volume (the partition
will roll in one direction or the other) and a redistribution of particles (particles



5.5. STRUCTURES AS FREE ENERGY MINIMIZERS 287

will diffuse) until the entropy of the closed system reaches a maximum. Mathe-
matically, we can see this by examining St = S1(F1, Vi, N1) + Sa(E2, Va, Na),
the total entropy which is an additive function of the entropy on the two sides
of the partition. Note that because our system is isolated, there are constraints
of the form Etot = E1 + EQ, ‘/tot = ‘/1 + Vg and Ntot = N1 + NQ, where Etot
is the total energy of the closed system, V;, is the total volume and N, is
the total number of particles. As noted above, when the conditions implied by
the initial constraints are relaxed (e.g. the brake is released and the partition
can roll), there will be a spontaneous change in the state of the system until
the system entropy is maximized. Mathematically, for the case in which the
partition permits exchange of energy, the entropy maximization takes the form

s = (%)dEl + (%)dEg =0, (5.42)
If we now invoke the fact that the total energy is conserved, we have dF; =
—dFE7, which when substituted into eqn. 5.42 yields

051 05

To see our derivation through to the end, we now introduce the thermodynamic
definition of temperature, dS/dE = 1/T, which reveals that our result is equiv-
alent to the statement that 77 = T5. That is, when the partition permits energy
transfer, heat will flow until the temperature on the two sides is equal. Note that
we cannot derive every result from thermodynamics here and encourage readers
unfamiliar with thermodynamic identities to consider the “Further Reading” at
the end of the chapter.

The argument goes in precisely the same way when we consider the case
where the brakes are removed and the partition is permitted to slide. In this
case it is the volume which will be adjusted in such a way as to maximize the
system entropy. In particular, the condition of entropy maximization is

051 0S5

dS = (==)dV; —)dVo =0 5.44

(8V1) 1+(8V2) > =0, (5.44)

Once again, we exploit the constraint which tells us that dVo = —dV;, resulting
in

051 05
— — —=)dV, =0. 4
(Gt — Vi =0 (5.45)

At this point, we use the thermodynamic identity that p/T = (95/0V)e N,
resulting in the observation that entropy maximization corresponds to equality
of pressure.

The case which is probably of greatest biological interest is that in which
the partition permits the flow of particles. In this case, entropy maximization
corresponds to the statement

051 055
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Exploiting the constraint that the overall number of particles is fixed, we have
that dN7 = —dN,, resulting in

051 052

Here we use the result that the chemical potential is defined in terms of the
entropy change as p/T" = —(9S/ON)g,v, and hence, entropy maximization
implies equality of chemical potentials on both sides of the partition.

The key point of these arguments has been to highlight the variational de-
scription of thermodynamic equilibrium. That is, the privileged equilibrium
state of a system can be found by maximizing the entropy. The driving forces
implied by entropy maximization have a variety of interesting consequences
which we take up presently. Though many problems of interest will require a
more sophisticated implementation of the second law in the form of the prin-
ciple of minimum free energy, there are a number of problems where entropy
maximization can be used directly. Important examples include the notion of an
entropic spring which describes the force-extension characteristics of molecules
like DNA, the notion of depletion forces between macromolecular assemblies in
solution and the origins of osmotic pressure. In anticipation of the role of en-
tropy maximization in coming sections, it is of interest here to show how order
can arise from entropy maximization.

5.5.3 Structure as a Competition

Thus far, we have asserted that equilibrium structures reflect energy minima
(zero temperature) and entropy maxima (finite temperature). However, the case
of greatest interest for biological model building is associated with a variational
middle ground between the strictly mechanical ambition of minimizing energy
and the statistical ambition of maximizing entropy. In particular, both the in
vitro assays of solution biochemistry and the in vivo chemical action of cellular
life reflect a more subtle situation in which the system of interest can exchange
energy or matter (or both) with the surroundings. The variational injunction
in these cases is to minimize the free energy, which can be thought of intuitively
as teasing out the competition between maximizing multiplicity and minimizing
energy. The variational principle that is equipped to permit the playing out of
this competition is the principle of minimum free energy introduced in words
earlier in the chapter.

Free Energy Minimization Can Be Thought of as an Alternative For-
mulation of Entropy Maximization

As developed above, Gibbs’ calculus of equilibrium asserts that when con-
templating isolated systems, our best guess as to the equilibrium state is that
macroscopic state that can happen in the most ways microscopically. This in-
junction is translated into mathematical terms by virtue of the introduction of
the entropy which we are asked to maximize in order to find equilibria. On
the other hand, there are a number of problems of interest for which the system
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may not be thought of as isolated. Indeed, most interesting systems (like macro-
molecules in the cell, macromolecular assemblies such as RNA polymerase or the
ribosome, or indeed, cells themselves) are in contact with an external medium
with which they can exchange energy and matter. Whether we think of a cell
in the ocean or DNA polymerase in a thermal cycler used for doing the poly-
merase chain reaction, our system of interest is in contact with the rest of the
world. Interestingly, the problem of maximizing the entropy of a system plus
the reservoir with which it is in contact is equivalent to minimizing the free
energy of just the system itself. The beauty of this principle is that it allows us
to dismiss the huge potential complexity engendered by the fact that our system
is in contact with a reservoir and to consider only those degrees of freedom that
describe the system itself.

To see how this discussion goes, consider fig. 5.28 which shows examples of
both isolated and closed systems. Note that a closed system is characterized by
the ability to exchange energy with its environment. An open system is free to
exchange both energy and matter with its environment. The theoretical trick
that allows us to exploit the principle of entropy maximization in the context
of these systems is to turn a closed system into an isolated system by putting
our original system in contact with a reservoir. From this perspective, our
overall system consists of the original system and its associated reservoir and
its equilibrium is now dictated by entropy maximization. For example, in the in
vitro situation of solution biochemistry, a test tube in contact with a water bath
is an example of a closed system that can exchange energy with its environment.
Similarly, within the confines of a cell, we can think of a particular site on a
DNA molecule as the system of interest, and the reservoir as the DNA-binding
proteins in the cytoplasm or on other nonspecific sites on the DNA.

To see the analysis of this problem through to the end, we now maximize the
entropy of our composite system made up of the original system and reservoir.
An alternative way of thinking of our requirement that the entropy be maxi-
mized is to say that during any spontaneous process that follows the removal of
a constraint, the entropy will increase. We may write this statement as

dSior = dS, + dS, > 0. (5.48)

where S refers to the entropy of our system and S, to the entropy of the reser-
voir. We may borrow from our knowledge of the first law of thermodynamics,
which permits us to write the change in energy of the reservoir as

dE, = TdS, — pdV,, (5.49)

where T'dS, is the heat added to the reservoir and pdV;. is the work done by the
reservoir. If we substitute this relation into our entropy inequality, we have

dE,

dSs
S+T

+ %dvr > 0. (5.50)

Like before, since the energy and volume are conserved in our overall isolated
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Figure 5.28: Isolated and closed systems. The isolated system is unable to
exchange energy and matter with the rest of the world. In the closed system,
there is an exchange of energy between the system and the surrounding reservoir.

system, we have dF, = —dE; and dV,. = —dVj, resulting in

1 P
— —LZav. > 0. .
dStor = dSs TdES Td s >0 (5.51)
Finally, if we multiply both sides of our equation by —7', resulting in a change

in direction of the inequality, we are left with
dG =d(Es +pVs — TS;) <0, (5.52)

where we have introduced the Gibbs free energy G = E — T'S + pV and have
shown that in a spontaneous process, the free energy will be reduced or, what
is the same, that the Gibbs free energy will take its minimum value in the
equilibrium state. We remind the reader that the statement that the Gibbs
free energy is minimized in equilibrium is founded upon the more fundamental
statement of entropy maximization for the entire system which is built up from
the subsystem of interest and the reservoir. Further, note that once we elect to
invoke the Gibbs free energy, there is no reference to the coordinates associated
with the reservoir, other than to say that our system of interest is kept at fixed
temperature T and pressure p by virtue of its contact with the reservoir.

5.5.4 An Ode to AG

The Free Energy Reflects a Competition Between Energy and En-
tropy
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The interesting physical insight tied to the free energy is that equilibrium
structures reflect a competition between energetic and entropic influences. If the
temperature goes to zero, we recover the minimization of the energy E, which is
the principle that presides over questions of strictly mechanical equilibrium. On
the other hand, as the temperature rises, the entropic term makes itself heard
with increasing forcefulness until at sufficiently high temperatures, it dominates
the decision concerning the equilibrium state.

To be specific, this battle between energy and entropy is well illustrated by
the examples presented in fig. 5.7 (pg. 257). For example, in the context of
the folding of a protein into its native state, the energetic component of the
problem has to do with the formation of various native contacts between amino
acids that result in a net energy lowering, while the entropic part of the free
energy budget has to do with the number of alternative conformations available
to the protein when it is not folded. At high enough temperatures, the entropic
imperative must be obeyed and the protein denatures. A similar competition is
seen in the context of the charges on proteins where the energy of electrostatic
interactions tends to keep charges localized to their molecular hosts while the
entropic part of the free energy budget prefers to see these charges delocalized.
As a final case study in deconstructing the free energy in the context of the
examples of fig. 5.7, consider the case of binding of ligands to a protein. In
this case, the ligands are afforded an entropic advantage if they wander around
in solution. On the other hand, binding to their molecular hosts confers an
energetic advantage and the interplay between these competing demands is the
province of free energy minimization.

In the coming chapters, we will invoke this idea of a competition between
energetic and entropic factors repeatedly in contexts ranging from protein fold-
ing to the distribution of ions around a ribosome to the deflection of biofunc-
tionalized cantilevers in the presence of particular antigens. In each case, our
arguments will be formulated first in terms of an energetic term which tends to
pull the system in one direction - for example, the Coulomb attraction between
ions in solution and some macromolecule will tend to localize those ions near the
macromolecule. The second competing term will reflect the will of the entropic
term which will favor the spreading out of the ions around the macromolecule.
Such arguments ultimately serve as the concrete outcome of the present chapter
which has argued for the idea that the question of equilibrium structures can be
seen as one of minimization of the relevant potential. As such, the free energy
presides over all questions requiring that we determine the equilibrium state.
Note that there are different free energies that are most convenient (Helmholtz
free energy, Gibbs free energy) and for simplicity, we will ignore these subtleties
and always use the symbol G for the free energy in the remainder of the book.

5.6 Summary and Conclusions

Much of the busy activity of cellular life involves transformations of matter and
energy. In this chapter we showed that the study of these physical and chemical
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transformations can be couched in the language of finding the maximum (en-
tropy) or least (potential energy) value of some physical quantity. In particular,
we argued that Newtonian statics can be reformulated through the idea that
we seek the lowest value of the potential energy of the system that is consistent
with whatever constraints are imposed. Though these mechanical principles are
important, we saw that the principle of minimum free energy is of even greater
biological importance. In particular, we have argued that isolated systems con-
taining many particles (and thus which can be realized by astronomical numbers
of microscopically distinct but macroscopically identical states) can be thought
of as satisfying a different variational imperative, namely, the maximization
of their multiplicity. The calculus of equilibrium for many-particle systems is
founded on the idea that macroscopic states are those which can be realized
in the largest number of ways microscopically. Coming chapters will show how
this simple idea can be used to understand a huge variety of different biological
phenomena.

5.7 Appendix: The Euler-Lagrange Equations,
Finding the Superlative

Finding the Extrema of Functionals Is Carried Out Using the Calcu-
lus of Variations

This chapter centered on our ability to find the maxima and minima of
energies, entropies and free energies. On the other hand, as we saw in fig. 5.16,
often the energy and free energy dictated by our biological problems will be
functionals rather than functions. This raises the mathematical question of:
given an infinite set of competitor functions, how can we find that function
that minimizes the energy or free energy functional? The aim of the present
discussion is to generalize the earlier discussion based on ordinary calculus and
to examine the functional analog of finding the extremum of a function. For
a deeper discussion of these issues, we refer the reader to both Lanczos (1970)
and Gelfand and Fomin (1963).

The Euler-Lagrange Equations Let Us Minimize Functionals By Solv-
ing Differential Equations

In many cases, the type of functional minimization described above can be
written in a very specialized form, namely, as the search for that function which
leads to an extremum for an integral. In this case, we are asked to minimize a
functional of the form

Elu(s)] = /a2 fu(s),u'(s))ds. (5.53)

As with the calculation of extrema of functions, the defining condition is that for
any “small excursion” about the extrema, there should be no first order change
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in the value of the functional. To make this idea more concrete, we consider
excursions of the form n(s), and demand that
S Efu(s)] Elu(s) +en(s)] — Elu(s)]

el LA A R
du(s) 20 €

~0. (5.54)

If we reason by analogy with ordinary calculus, what this expression tells us is
that if we have found the minimizing function u(s), then any small excursion
(namely, en(s)) about that minimum will lead to no change in the functional.
The notation §E[u(s)]/du(s) reminds us that we are taking the “functional
derivative” as opposed to the derivative of ordinary calculus. The class of ad-
missible excursions, 7(s) is further specified by boundary conditions imposed
on the competitor functions. For example, for the case when the values of the
competitor functions are fixed at the boundaries, the admissible excursions must
satisfy n(a1) = n(az) = 0. The condition expressed in eqn. 5.54 may now be
written as

oE 1. [ @2
soc = I L)+ en). ')+ en'(6)ds = [ pluts) ol s))as)

' (5.55)
We now consider a Taylor series expansion of the integrand f(u(s)+en(s), v (s)+
en'(s)), and in particular, we consider such an expansion to first order, resulting
in

F(u(s) + en(s) u(5) + 20/ (5)) = F(u(s), () + £ 9 (5) +2 S0 (5.56)
As a result, we may now write
s = |G+ Ghateas (5.57)

Until now, our results have shown us how to reexpress our original problem,
in terms of the rate of change of the function f(u(s),u'(s)). At this point,
we have two essential steps which remain. First, we rearrange eqn. 5.57 by
exploiting a single integration by parts. In particular, we note

@ gf If s “2 d of

8u’n (s)ds = "(S)auf a1 o ds 3u’77
where the first term on the right hand side of the equation is zero because
n(a1) = n(az) = 0 as dictated by boundary conditions. As a result of these
manipulations, we may rewrite eqn. 5.57 as

(s)ds, (5.58)

ax

oF @2 d, of af
= ——(==)+ =— ds. 5.59
ou(s) /a1 ( ds(au’) + (’9u)n(8) s ( )
We now carry out the second step, which is to acknowledge that the condition

for an extremum really corresponds to the statement % = 0. In light of this

condition and as a result of the fact that 7(s) is arbitrary, we are left with

d of, _of _,

—(55) -5 = (5.60)
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What we have learned is that the problem of minimizing a functional is equiv-
alent to that of solving a differential equation. In particular, the differential
equation associated with variational problems like that given above is the so-
called Euler-Lagrange equation of the problem of interest. The beauty of this
result is that it has replaced a problem that we don’t know how to do, namely,
minimizing a functional, with another that we might know how to do, namely,
solving a differential equation. The minimization of a functional to solve prob-
lems of interest will show up again in chap. 9 when we think about the charge
distribution around a protein, chap. 10 when thinking about the atomic-force
microscope and biofunctionalized cantilevers and in chap. 11 when we work out
the deformation in a lipid bilayer membrane induced by membrane proteins such
as ion channels.

5.8 Problems

. The sugar budget revisited.

In chap. 3 we worked out the rate of sugar uptake to provide the construction
materials for a dividing bacterium. However, as shown in this chapter, sugar
molecules also provide the energy needed to perform macromolecular synthesis.
Amend the estimate of chap. 3 to include the fact that sugar supplies construc-
tion materials and the energy needed to assemble them. How many sugars are
needed to provide the energy and construction materials for making a new cell?
Make an estimate for the average rate of sugar uptake for a dividing bacterium
in light of this amendment to our earlier estimates.

2. A feeling for the numbers: covalent bonds.

(a) Based on their typical energies and distances estimate the frequency of
vibration of covalent bonds.

(b), Based on your result from part (a), estimate the time step required to
do a classical mechanical simulation of protein dynamics.

3. Stretching DNA

Fig. 5.29 shows the experimental force-extension curve for stretching single
stranded DNA (ssDNA). Here we consider the model of ssDNA as N springs
which represent the covalent bonds connecting all the phosphorous atoms along
the backbone of the ssDNA molecule.

(A) From the graph we see that for forces exceeding 50pN the ssDNA behaves
like a spring (i.e. there is a simple linear relation between the force and the
extension. By drawing a straight line through these data points estimate the
spring constant of the ssDNA molecule (in pN/um) as well as its unstretched
length (in pm).

(B) Using the estimate for the spring constant of a covalent bond, k; = 20N/m,
and the distance between neighboring P atoms (or nucleotides) in unstretched
ssDNA, a = 54, compute the spring constant of the ssDNA molecule used in
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the experiment. How does your computed value compare to the experimentally
determined value from part a)?
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Figure 5.29: Force extension curve for single stranded DNA. (Adapted from
S. B. Smith et al., Science, 271:795, 1996.)

4. Taylor expansions.

(a) Repeat the derivation of the Taylor expansion for cos x given in the chapter,
but now expand around the point = = 7/2.

(b) Do a Taylor expansion of the function e*. Generate a plot of the fractional
error as a function of x for different orders of the approximation and a com-
parison of the function and the different order expansions such as was shown in
fig. 5.20.

(c) A one-dimensional potential energy landscape is give by the equation f(x) =
2% — 222 — 1. Find the two minima and do a Taylor expansion around one of
them to second order. Show the original function and the approximation on the
same plot in the style of fig. 5.19 (pg. 272).

5. A feeling for the numbers: comparing multiplicities.

Boltzmann’s equation for the entropy (eqn. 5.29) tells us that the entropy dif-
ference between a gas and liquid is given by

Wyas

—_—. 5.61
I/Vliquid ( )

Sgas - Sliquid = kB In

From the macroscopic definition of entropy as dS = dQ/T we can make an
estimate of the ratios of multiplicities by noting that boiling of water takes
place at fixed T at 373 K.

(a) Consider a cubic centimeter of water and use the result that the heat needed
to boil water (the latent heat of vaporization) is given by Quaporization = 40.66
kJ/mole (at 100 degrees centigrade) to estimate the ratio of multiplicities of
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water and water vapor for this number of molecules. Write your result as 10
to some power. If we think of multiplicities in terms of an ideal gas at fixed T,

then
wi (vi\Y
() 62
e (V ) (5.62)

What volume change would one need to account for the liquid /vapor multiplicity
ratio? Does this make sense?

(b) In the chapter we discussed the Stirling approximation and the fact that
our results are incredibly tolerant of error. Let’s pursue that in more detail.
We have found that the typical types of multiplicities for a system like a gas
are of order W a exp(102°). Now, let’s say we are off by a factor of 101°% in
our estimate of the multiplicities, namely, W = 1019%ezp(1025). Show that the
difference in our evaluation of the entropy is utterly negligible whether we use
the first or second of these results for the multiplicity. This is the error tolerance
that permits us to use the Stirling approximation so casually!

6. Stirling approximation revisited.

The Stirling approximation is useful in a variety of different settings. The goal
of the present problem is to work through a more sophisticated treatment of this
approximation than the simple heuristic argument given in the chapter. Our
task is to find useful representations of n! since terms of the form In n! arise
often in reasoning about entropy.

(a) Begin by showing that
o0
n! = / x"e” “dx. (5.63)
0

To demonstrate this, use repeated integration by parts. In particular, demon-
strate the recurrence relation

/ a"e dr = n/ " e %dx, (5.64)
0 0

and then argue that repeated application of this relation leads to the desired
result.

(b) Make plots of the integrand z™e~* for various values of n and observe the
peak width and height of this integrand. We are interested now in finding the
value of x for which this function is a maximum. The idea is that we will then
expand about that maximum. To carry out this step, consider In(z"e~*) and
find its maximum - argue why it is okay to use the logarithm of the original
function as a surrogate for the function itself - that is, show that the maxima of
both the function and its logarithm are at the same z. Also, argue why it might
be a good idea to use the logarithm of the integrand rather than the integrand
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itself as the basis of our analysis. Call the value of x for which this function is
maximized xg. Now expand the logarithm about x. In particular, examine

In ((zo + 6)"e” @) = nIn (zq + 6) — (zo + 0) (5.65)

and expand to second order in . Exponentiate your result and you should now
have an approximation to the original integrand which is good in the neighbor-
hood of zg. Plug this back into the integral (be careful with limits of integration)
and by showing that it is acceptable to send the lower limit of integration to
—o00, show that
o0 52
n! &~ n"e_"/ e 2 dd. (5.66)
— 00

Evaluate the integral and show that in this approximation
n! = n"e " (2mn)/2. (5.67)

Also, take the logarithm of this result and make an argument as to why we can
get away with dropping the discussion of the (27m)1/ 2 term.

7. Energy cost of macromolecular synthesis.

Visit the website “ecocyc.org” and find the metabolic pathways for synthesis and
breakdown of all the small molecules found in E. coli. Look at two pathways,
glycolysis and serine synthesis. As you will see, the amino acid serine is con-
structed from the small molecule 3-phosphoglycerate which is an intermediate
of the glycolytic pathway. Several energy-requiring steps and energy-generating
steps occur along the way. How many molecules of glucose must be taken up
to provide the carbon skeleton used to make serine? How many molecules of
ATP are consumed and created along the way? How many reducing equivalents
of NADH and NADPH are consumed or created along the way? What is the
overall energy cost to synthesize one molecule of serine in units of ATP and
units of k7?7 How many molecules of glucose must be metabolized in order to
generate this amount of energy?

8. Counting and diffusion.

In this chapter, we began practicing with counting arguments. One of the ways
we will use counting arguments is in thinking about diffusive trajectories.
Consider 8 particles, 4 are black and 4 are white. 4 particles can fit left of a
permeable membrane and 4 can fit right of the membrane. Imagine that due to
random motion of the particles every arrangement of the 8 particles is equally
likely. Some possible arrangements are: BBBB|[WWWW, BBBW|BWWW,
WBWB|WBWB; the membrane position is denoted by |.

(a) How many different arrangements are there?

(b) Calculate the probability of all 4 black particles on the left of the permeable
membrane. What is the probability of having 1 white particle and 3 black
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particles on the left of the membrane. Finally, calculate the probability that
2 white and 2 black particles are left of the membrane. Compare these three
probabilities. Which arrangement is most likely?

(¢) Imagine that in one time instant a random particle from the left side ex-
changes places with a random particle on the right hand side. Starting with 3
black particles and 1 white particle on the left of the membrane, compute the
probability that after one time instant there are 4 black particles on the left?
What is the probability that there are 2 black and 2 white particles on the left,
after that same time instant? Which is the more likely scenario of the two?

(adapted from Dill and Bromberg 2003)

9. Molecular driving forces In section 5.5.2 we showed that entropy maxi-

mization leads to our intuitive ideas about equilibrium. However, that discussion
can be extended to reveal the direction of spontaneous processes. In particular,
during any spontaneous process, we know that the entropy will increase. Use
this fact in the form of the statement that (us — p1)dN1 > 0 to deduce the
role of differences chemical potential as a “driving force” for mass transport. If
o > p1, which direction will particles flow? Make analogous arguments for the
flow of energy and changes in volume.

5.9 Further Reading

O. Morton, Eating the Sun, Fourth Estate, London: England, 2007. This
excellent book describes the story of how our modern understanding of photo-
synthesis was developed.

F. C. Neidhardt, J. L. Ingraham and M. Schaechter, Physiology of the Bac-
terial Cell, Sinauer Associates, Inc., Sunderland: Massachusetts, 1990. Chap.
5 on “Biosynthesis and Fueling” is particularly relevant for the present chapter.

G. Gottschalk, Bacterial Metabolism, Springer-Verlag, New York: New York,
1986. This book is full of interesting insights into the census and energy budget
of bacterial cells.

N. C. Price, R. A. Dwek, R. G. Ratcliffe and M. R. Wormald, Principles
and Problems in Physical Chemistry for Biochemists, Oxford Univer-
sity Press, Oxford: England, 2001. This excellent book describes many of the
important chemical reactions of biology from a thermodynamic perspective.

D. S. Lemons, Perfect Form, Princeton University Press, Princeton: New
Jersey, 1997. Lemon’s book is a pedagogical delight and offers a variety of
interesting, yet simple, insights into how mechanics can be couched in the lan-
guage of minimization.
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P. J. Nahin, When Least is Best, Princeton University Press, Princeton: New
Jersey, 2004. Nahin gives a sense of the wide range of problems that can be
formulated as questions of minimization.

F. S. Acton, Numerical Methods That Work, The Mathematical Associa-
tion of America, Washington, D. C., 1990. Acton is thoughtful and very amusing
and describes some of the pitfalls of numerical mathematics. See also his book
Real Computing Made Real for more fun and insights.

C. Kittel and H. Kroemer, Thermal Physics, W. H. Freeman and Company,
San Francisco: California, 1980. This book will provide background on thermo-
dynamics and statistical mechanics for the interested reader.

H. B. Callen, Thermodynamics and an Introduction to Thermostatis-
tics, John Wiley and Sons, New York: New York, 1985. Callen champions
the idea of maximum entropy as the basis for finding equilibrium states. Our
treatment mirrors his chap. 2. on “The Conditions of Equilibrium”.

C.Tanford, “Contribution of Hydrophobic Interactions to the Stability of the
Globular Conformation of Proteins”, J. Am. Chem. Soc. 84, 4240 (1962) and
The Hydrophobic Effect: Formation of Micelles and Biological Mem-
branes, Krieger Publishing Company, Malabar: Florida, 1991. Tanford has a
nice touch in describing hydrophobicity.
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